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A Turing degree d is uniformly non-low; if there is a computable

function / such that if ®? is total then CD';'(e) is total and not
dominated by it.
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There is a non-lows c.e. degree d which is not uniformly non-lows.
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A Turing degree d is array non-computable if for any total function
f <0 there is a total function g <t d which is not dominated
by f, i.e. 3%°n[f(n) > g(n)].

A Turing degree d is totally w-c.e. if every total function g <t d is
w-c.e..

In the c.e. Turing degrees,
{uniformly non — lows} C {non — lows} C

{not totally w— c.e.} C {array non — computable}.
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Computable Lipchitz reducibility

Given two sequences like: “ 11111-.-111111 ... and

35 consecutive numbers 1s
10110101110101011110000101010001011 - -- ."

35 numbers

@ Let M be a Turing machine: M(1) =0 = 22" Then 7 is an
M-description of o.

@ For instance, if 7 = 101, then
M(7) =0 = 92% _ 54204967296

and |o| = 232,
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Computable Lipchitz reducibility

@ The Kolmogorov complexity of a string o with respect to M
via
Cm(o) = min{|r|,00 : M(1) =0},

where min () = .
@ For a universal machine U, C(c) = Cy(o) < Cu(o) + O(1).

@ In randomness and incomputability we have two fundamental
measures: the plain complexity C and the prefix-free
complexity K.

e Given M and U are prefix-free, Kpj(o) and K(o) = Ky(o) are
well-defined.
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Computable Lipchitz reducibility

Definition (Levin 1974, Chaitin 1975)

A real a is 1-random if Vn[K(« [ n) > n— ¢].

Definition (Martin-Lof, P., 1966)

A real « is Martin-Lof random if for all computable collections of
c.e. open sets {U, : n € w}, with p(U,) <27" a & N,U,.

Theorem (Schnorr, 1973)

The following are equivalent for a real a.
Q « is 1-random;
Q@ « is ML-random:;.

© no c.e. Martingale succeeds on it.




Computable Lipchitz reducibility

o Real a is AJ (left-c.e.) if it is the limit of a computable
(increasing) sequence of rational numbers.



Computable Lipchitz reducibility

o Real a is AJ (left-c.e.) if it is the limit of a computable
(increasing) sequence of rational numbers.

@ For a universal prefix-free machine U, Qy = Z 2717l is a

U(o)d
left-c.e. random real.



Computable Lipchitz reducibility

o Real a is AJ (left-c.e.) if it is the limit of a computable
(increasing) sequence of rational numbers.

@ For a universal prefix-free machine U, Qy = Z 2717l is a

U(o)d
left-c.e. random real.

o a <k Bif K(a]n) <K(B]|n)+ O(1).



Computable Lipchitz reducibility

o Real a is AJ (left-c.e.) if it is the limit of a computable
(increasing) sequence of rational numbers.

@ For a universal prefix-free machine U, Qy = Z 2717l is a

U(o)d
left-c.e. random real.

o a <k Bif K(a]n) <K(B]|n)+ O(1).

e a<cpBif Cla] n)<C(Bn)+0(1).



Computable Lipchitz reducibility

o Real a is AJ (left-c.e.) if it is the limit of a computable
(increasing) sequence of rational numbers.

@ For a universal prefix-free machine U, Qy = Z 2717l is a

U(o)d
left-c.e. random real.

a <k Bif K(a | n) <K(B | n)+ O(1).

a<cpif Cla|n)<C(B1n)+ 0O(Q).

Solovay reducibility, computable Lipschitz (Strongly weak
truth table) reducibility, relative K-reducibility
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Definition (Downey,Hirschfeldt,2008; Barmpalias and Lewis 2006)

Given two reals o and 8, v is computable Lipschitz (<) to S if
there is a Turing functional I and a constant ¢ such that oo = ?
and the use of [ on any argument n is bounded by n+ c.

@ (Soare,2013) The identity bound Turing reducibility (ibT).
o If a <. B, then for all n, K(a [ n) < K(B | n) + O(1).

@ The cl-degree only contains either only random reals or
non-random reals.

o (Downey, Hirschfeldt,Lafort 2001) The cl-degrees of left-c.e.
reals is neither a lower semi-lattice, nor an upper semi-lattice.



Computable Lipschitz reducibility

o (Downey, Hirschfeldt,Lafort 2001) There is no cl-complete
left-c.e. real.



Computable Lipschitz reducibility

o (Downey, Hirschfeldt,Lafort 2001) There is no cl-complete
left-c.e. real.

@ (Yu and Ding,2004) There are two c.e.reals a and 8 which
have no common upper bound under cl-reducibility in left-c.e.
reals.
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o (Downey, Hirschfeldt,Lafort 2001) There is no cl-complete
left-c.e. real.

@ (Yu and Ding,2004) There are two c.e.reals a and 8 which
have no common upper bound under cl-reducibility in left-c.e.
reals.

o (Barmpalias and Levis,2006) There is a left-c.e. real which is
not cl-reducible to any Martin-Lof random left-c.e. real.
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Array non-computability and Computable Lipschitz
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o (a,p) is a cl-maximal pair of left-c.e. reals if no left-c.e. real
can cl-compute both of them.

e (A, B) is a cl-maximal pair of c.e. sets if no c.e. set can
cl-compute both of them.

o (Barmpalias,2005; Fan and Lu,2005) There exists a
cl-maximal pair of c.e. sets.

Theorem (Ambos-spies, Ding, Fan and Wolfgang, 2013)

For a c.e. Turing degree d, the following are equivalent:
(1) d is array non-computable.
(2) There is a cl-maximal pair of c.e. sets (A, B) in d.
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Theorem (Ambos-spies etc. unpublished)
For a c.e. Turing degree d, the following are equivalent:
(1) d is not totally w-c.e..

(2) There is a left-c.e. real 8 in d which is not cl-reducible to any
complex left-c.e. real.

(3) There is a left-c.e. real 5 in d which is not cl-reducible to any
wtt-complete left-c.e. real.
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Theorem (Fan, 2017)
If a c.e. degree d is uniformly non-lows, then
for any non-computable Ag real «, there is a left-c.e. real 5 in d

such that both of them have no common upper bound of c.e. reals
under cl-reducibility.

Theorem (Fan, unpublished)

If a c.e. degree d is uniformly non-lows, then

for any non-computable AJ real a, if a <1 v for the left-c.e. real
v, then there is a left-c.e. real g <t d such that 5 <4 7.
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o (Kjos-Hanssen, Wolfgang, Stephen, 2006) A set A is
auto-complex if there is a nondecreasing, unbounded,total
function h <7 A such that K(A | x) > h(x) for all x.

@ Let A be T-complete, if A is auto-complex, then the
corresponding h <t (.

o Ch={A:Vx[K(A | x) > h(x)]}.
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Theorem (Fan, unpublished)

Suppose that d is a non-lowy c.e. degree, then

if Cp # 0 with at least one T-complete c.e. set, then there is a
left-c.e. real 8 <7 d which is not cl-reducible to any left-c.e. reals
in Cp. such that both of them have no common upper bound of
c.e. reals under cl-reducibility.

Theorem (Fan, unpublished)

Suppose that d is a lows c.e. degree, then

there is an Cp, # () with at least one T-complete c.e. set such that
each left-c.e. real § <t d is cl-reducible to some v € Cj.
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Theorem (Barmpalias,2005)

There is no cl-maximal c.e set.

Theorem (Lewis,Barmpalias,2007)

@ There exists a quasi-maximal cl-degree, i.e. there exits a real
«, such that, for all reals 3, if a < (3, then 8 <t a. In fact,
every random real satisfies the quasi-maximality property.

@ Not every quasi-maximal cl-degree is random.

@ No real is cl-maximal.

Theorem (Fan,unpublished)

There is no cl-maximal left-c.e real.
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@ How to characterize in c.e. Turing degrees: uniformly
non-lows-ness or highness by cl-properties?

@ analyze the structure of left-c.e. random reals under
cl-reducibility

@ What's the relations among cl,ibT, wtt, T-degrees?




Thank you!



