
Working with computably Lipschitz reducibility
above (uniformly) non-low2 c.e. degrees

Fan Yun

School of Mathematics
Southeast University, Nanjing, China

March 23, 2019

Fan Yun



Two non-low2-ness notions

A Turing degree d is non-low2 if for any total function f≤T∅′
there is a total function g ≤T d which is not dominated by f , i.e. ,
∃∞n[g(n) ≥ f (n)].

A Turing degree d is uniformly non-low2 if there is a computable
function l such that if Φ∅

′
e is total then Φd

l(e) is total and not
dominated by it.
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Proposition(Fan,2017)

There is an incomplete uniformly non-low2 c.e. degree d.

Proposition(Fan,2017)
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Two non-low2-ness notions

A Turing degree d is array non-computable if for any total function
f≤wtt∅′ there is a total function g ≤T d which is not dominated
by f , i.e. ∃∞n[f (n) ≥ g(n)].

A Turing degree d is totally ω-c.e. if every total function g ≤T d is
ω-c.e..

In the c.e. Turing degrees,

{uniformly non− low2} ( {non− low2} (

{not totally ω − c .e.} ( {array non − computable}.
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Computable Lipchitz reducibility

Given two sequences like: “ 11111 · · · 111111︸ ︷︷ ︸
35 consecutive numbers 1s

· · · and

10110101110101011110000101010001011︸ ︷︷ ︸
35 numbers

· · · .”

Let M be a Turing machine: M(τ) = σ = 22
2τ

. Then τ is an
M-description of σ.

For instance, if τ = 101, then

M(τ) = σ = 22
32

= 24294967296

and |σ| = 232.

Fan Yun



Computable Lipchitz reducibility

Given two sequences like: “ 11111 · · · 111111︸ ︷︷ ︸
35 consecutive numbers 1s

· · · and

10110101110101011110000101010001011︸ ︷︷ ︸
35 numbers

· · · .”

Let M be a Turing machine: M(τ) = σ = 22
2τ

. Then τ is an
M-description of σ.

For instance, if τ = 101, then

M(τ) = σ = 22
32

= 24294967296

and |σ| = 232.

Fan Yun



Computable Lipchitz reducibility

Given two sequences like: “ 11111 · · · 111111︸ ︷︷ ︸
35 consecutive numbers 1s

· · · and

10110101110101011110000101010001011︸ ︷︷ ︸
35 numbers

· · · .”

Let M be a Turing machine: M(τ) = σ = 22
2τ

. Then τ is an
M-description of σ.

For instance, if τ = 101, then

M(τ) = σ = 22
32

= 24294967296

and |σ| = 232.

Fan Yun



Computable Lipchitz reducibility

Given two sequences like: “ 11111 · · · 111111︸ ︷︷ ︸
35 consecutive numbers 1s

· · · and

10110101110101011110000101010001011︸ ︷︷ ︸
35 numbers

· · · .”

Let M be a Turing machine: M(τ) = σ = 22
2τ

. Then τ is an
M-description of σ.

For instance, if τ = 101, then

M(τ) = σ = 22
32

= 24294967296

and |σ| = 232.

Fan Yun



Computable Lipchitz reducibility

The Kolmogorov complexity of a string σ with respect to M
via

CM(σ) = min{|τ |,∞ : M(τ) = σ},

where min ∅ =∞.

For a universal machine U, C (σ) = CU(σ) ≤ CM(σ) + O(1).

In randomness and incomputability we have two fundamental
measures: the plain complexity C and the prefix-free
complexity K .

Given M and U are prefix-free, KM(σ) and K (σ) = KU(σ) are
well-defined.
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Computable Lipchitz reducibility

Definition (Levin 1974, Chaitin 1975)

A real α is 1-random if ∀n[K (α � n) > n − c].

Definition (Martin-Löf, P., 1966)

A real α is Martin-Löf random if for all computable collections of
c.e. open sets {Un : n ∈ ω}, with µ(Un) ≤ 2−n, α 6∈ ∩nUn.

Theorem (Schnorr, 1973)

The following are equivalent for a real α.

1 α is 1-random;

2 α is ML-random;.

3 no c.e. Martingale succeeds on it.
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Computable Lipchitz reducibility

Real α is ∆0
2 (left-c.e.) if it is the limit of a computable

(increasing) sequence of rational numbers.

For a universal prefix-free machine U, ΩU =
∑
U(σ)↓

2−|σ| is a

left-c.e. random real.

α ≤K β if K (α � n) ≤ K (β � n) + O(1).

α ≤C β if C (α � n) ≤ C (β � n) + O(1).

Solovay reducibility, computable Lipschitz (Strongly weak
truth table) reducibility, relative K -reducibility
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Computable Lipschitz reducibility

Definition (Downey,Hirschfeldt,2008; Barmpalias and Lewis 2006)

Given two reals α and β, α is computable Lipschitz (≤cl) to β if
there is a Turing functional Γ and a constant c such that α = Γβ

and the use of Γ on any argument n is bounded by n + c .

(Soare,2013) The identity bound Turing reducibility (ibT).

If α ≤cl β, then for all n, K (α � n) ≤ K (β � n) + O(1).

The cl-degree only contains either only random reals or
non-random reals.

(Downey, Hirschfeldt,Lafort 2001) The cl-degrees of left-c.e.
reals is neither a lower semi-lattice, nor an upper semi-lattice.
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Computable Lipschitz reducibility

(Downey, Hirschfeldt,Lafort 2001) There is no cl-complete
left-c.e. real.

(Yu and Ding,2004) There are two c.e.reals α and β which
have no common upper bound under cl-reducibility in left-c.e.
reals.

(Barmpalias and Levis,2006) There is a left-c.e. real which is
not cl-reducible to any Martin-Löf random left-c.e. real.
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Array non-computability and Computable Lipschitz
reducibility

Theorem (Barmpalias, Downey and Greenberg,2010)

For a c.e. degree d, the following are equivalent:

(1) d is array non-computable.

(2) There is a cl-maximal pair of left-c.e. reals (α, β) in d.

(3) There is a left-c.e. real β in d which is not cl-reducible to any
random left-c.e. real.

(4) There is a set A in d which is not cl-reducible to any random
left-c.e. real.
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Array non-computability and Computable Lipschitz
reducibility

(α, β) is a cl-maximal pair of left-c.e. reals if no left-c.e. real
can cl-compute both of them.

(A,B) is a cl-maximal pair of c.e. sets if no c.e. set can
cl-compute both of them.

(Barmpalias,2005; Fan and Lu,2005) There exists a
cl-maximal pair of c.e. sets.

Theorem (Ambos-spies, Ding, Fan and Wolfgang, 2013)

For a c.e. Turing degree d, the following are equivalent:
(1) d is array non-computable.
(2) There is a cl-maximal pair of c.e. sets (A,B) in d.
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(2) There is a cl-maximal pair of c.e. sets (A,B) in d.

Fan Yun



Totally ω-c.e. degrees and Computable Lipschitz
reducibility

(Kjos-Hanssen, Wolfgang, Stephen, 2006) A set A is complex
if there is an order (nondecreasing, unbounded, computable)
function h such that K (A � x) > h(x) for all x .

(Downey, Hirschfeldt,2004) There is a real (not c.e.) which is
not cl-reducible to any random real (indeed to any complex
real).

A degree d is called generalised low2 if d′′ ≤ (d ∨ 0)′.

(Barmpalias, Downey, Greenberg, 2010) If d is not
generalised low2, then there is some A ≤T d which is not
ibT-reducible to any complex real.
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Totally ω-c.e. degrees and Computable Lipschitz
reducibility

Theorem (Ambos-spies etc. unpublished)

For a c.e. Turing degree d, the following are equivalent:

(1) d is not totally ω-c.e..

(2) There is a left-c.e. real β in d which is not cl-reducible to any
complex left-c.e. real.

(3) There is a left-c.e. real β in d which is not cl-reducible to any
wtt-complete left-c.e. real.
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Uniformly non-low2-ness and Computably Lipschitz
reducibility

Theorem (Fan, 2017)

If a c.e. degree d is uniformly non-low2, then

for any non-computable ∆0
2 real α, there is a left-c.e. real β in d

such that both of them have no common upper bound of c.e. reals
under cl-reducibility.

Theorem (Fan, unpublished)

If a c.e. degree d is uniformly non-low2, then

for any non-computable ∆0
2 real α, if α ≤T γ for the left-c.e. real

γ, then there is a left-c.e. real β ≤T d such that β ≤cl γ.
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Non-low2-ness and Computably Lipschitz reducibility

(Kjos-Hanssen, Wolfgang, Stephen, 2006) A set A is
auto-complex if there is a nondecreasing, unbounded,total
function h ≤T A such that K (A � x) > h(x) for all x .

Let A be T-complete, if A is auto-complex, then the
corresponding h ≤T ∅′.

Ch = {A : ∀x [K (A � x) > h(x)]}.
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Non-low2-ness and Computably Lipschitz reducibility

Theorem (Fan, unpublished)

Suppose that d is a non-low2 c.e. degree, then

if Ch 6= ∅ with at least one T -complete c.e. set, then there is a
left-c.e. real β ≤T d which is not cl-reducible to any left-c.e. reals
in Ch. such that both of them have no common upper bound of
c.e. reals under cl-reducibility.

Theorem (Fan, unpublished)

Suppose that d is a low2 c.e. degree, then

there is an Ch 6= ∅ with at least one T -complete c.e. set such that
each left-c.e. real β ≤T d is cl-reducible to some γ ∈ Ch.
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Non-low2-ness and Computably Lipschitz reducibility

Theorem (Barmpalias,2005)

There is no cl-maximal c.e set.

Theorem (Lewis,Barmpalias,2007)

There exists a quasi-maximal cl-degree, i.e. there exits a real
α, such that, for all reals β, if α ≤cl β, then β ≤T α. In fact,
every random real satisfies the quasi-maximality property.

Not every quasi-maximal cl-degree is random.

No real is cl-maximal.

Theorem (Fan,unpublished)

There is no cl-maximal left-c.e real.
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Future works

How to characterize in c.e. Turing degrees: uniformly
non-low2-ness or highness by cl-properties?

analyze the structure of left-c.e. random reals under
cl-reducibility

What’s the relations among cl,ibT, wtt,T-degrees?
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Thank you!

Fan Yun


