Combinatorial implication of computability theory

Lu Liu
Email: g.jiayi.liu@gmail.com

Central South University School of Mathematics and Statistics

CTMF 2019

March 22, 2019

Introduction

- Many questions in computability theory, even for big question as $K L$-randomness vs 1 -randomness, have close connection to combinatorics.
- We present one example in this talk. We prove that the relativized version of a naturally arisen reverse math question is equivalent to a purely combinatorial question.

We thank Denis Hirschfeldt, Benoit Monin and Ludovic Patey for helpful discussion on the first example.

VWI problem

We adopt the problem-instance-solution framework to introduce the following problem. We first introduce some notations.

Definition 1 (Variable word)

An infinite variable word W on alphabet $\{0, \cdots, l-1\}$ is a ω-sequence of $\{0, \cdots, l-1\} \cup\left\{x_{i}: i \in \omega\right\}$ such that each variable x_{i} occurs at least once.
Given $\vec{a}=a_{0} \cdots a_{k-1}$, let $W(\vec{a})$ denote the finite $\{0, \cdots, l-1\}$-string obtained by replacing x_{i} with a_{i} in W and then truncating the result just before the first occurrence of x_{k}. Without loss of generality we assume that the first occurrence of x_{i} is smaller than that of x_{i+1} for all $i \in \omega$.

VWI problem

Example 2

Infinite variable word W on $\{0,1\}$:

$$
\begin{array}{rrcrcr}
011 & x_{0} x_{0} 011 & x_{1} x_{0} x_{0} & x_{1} x_{1} 00 & x_{2} x_{2} \cdots & (0.1) \\
\vec{a}=10, W(\vec{a})=011 & 11011 & 011 & 0000 & \cdots &
\end{array}
$$

Definition 3

- Problem: VWI (l, k).
- Instance: $c: l^{<\omega} \rightarrow k$.
- Solution: an infinite variable word W such that $\left\{W(\vec{a}): \vec{a} \in l^{<\omega}\right\}$ is monochromatic.

VWI vs RCA

Joe Miller and Solomon proposed the following question in [Miller and Solomon, 2004].

Question 4

Is $\mathrm{VWI}(2, k)$ provable in RCA?
Or in terms of computability language:

Question 5

Does every computable $\mathrm{VWI}(2, k)$ instance admit computable solution?
A relativized version of the question is:

Question 6

Does every $\mathrm{VWI}(2, k)$ instance c admit c-computable solution?

Related literature

Definition 7 (VW, OVW)

If we require the occurrence of x_{i} being finite for all i then the problem is called VW.
If we require all the occurrence of x_{i} comes before any occurrence of x_{i+1} then it is called OVW (ordered variable word).

The problem is proposed by [Carlson and Simpson, 1984] and studied in [Miller and Solomon, 2004] [Liu et al., 2017]. Clearly,

Theorem 8

$\mathrm{VWI}(l, k) \leq \mathrm{VW}(l, k) \leq \mathrm{OVW}(l, k)$.
$\mathrm{VWI}(l, k) \Leftrightarrow \operatorname{VWI}(l, k+1), \mathrm{VW}(l, k) \Leftrightarrow \operatorname{VW}(l, k+1), \mathrm{OVW}(l, k) \Leftrightarrow$ $\operatorname{OVW}(l, k+1)$.

Related literature

Theorem 9 ([Miller and Solomon, 2004])

There exists a computable instance of $\operatorname{OVW}(2,2)$ that does not admit Δ_{2}^{0} solution. Thus $\mathrm{RCA}_{0}+\mathrm{WKL}$ does not prove $\mathrm{VW}(2,2)$.

The following result answers a question of [Miller and Solomon, 2004] and [Montalbán, 2011].

Theorem 10 (Monin, Patey, L)

- For every computable $\operatorname{OVW}(2, k)$ instance c, every $\emptyset^{\prime}-P A$ degree compute a solution to c.
- There exists a computable OVW(2,2) instance such that every solution is \emptyset^{\prime} - $D N C$ degree.

Corollary 11 (Monin, Patey, L)

ACA proves $\operatorname{OVW}(2, k)$.

Related literature

Question 12 ([Miller and Solomon, 2004])

Does OVW (l, k) or $\mathrm{VW}(l, k)$ implies ACA_{0} for some l ?

A combinatorial equivalence of " $\mathrm{VWI}(2,2)$ vs RCA "

For two sets of numbers A, B, write $A<B$ iff $\max A<\min B$.

Definition 13 (Oppress $\left(n_{0}, \cdots, n_{r-1}\right)$)

For a sequence of integers $n_{0}, \cdots, n_{r-1}>0$, let $N_{0}<\cdots<N_{r-1}$ be r sets of integers with $\left|N_{i}\right|=n_{i}, i \leq r-1$, let $N=\bigcup_{i \leq n-1} N_{i}$ we say
$\operatorname{Oppress}\left(n_{0}, \cdots, n_{r-1}\right)$ holds iff:
there exists a function $f: \mathcal{P}(N) \rightarrow\{0,1\}$ such that for any $k \leq r-1$, any $n_{k}+1$ many mutually disjoint subsets $M_{0}, \cdots, M_{n_{k}}$ of N with

$$
M_{i} \cap N_{k}=\left\{\text { the } i^{\text {th }} \text { large element in } N_{k}\right\}=\left\{\min M_{i}\right\}, 0<i \leq n_{k},
$$

there exists $I, J \subseteq\left\{1, \cdots, n_{k}\right\}$ such that:

$$
f\left(M_{0} \cup\left(\bigcup_{i \in I} M_{i}\right)\right) \neq f\left(M_{0} \cup\left(\bigcup_{i \in J} M_{i}\right)\right) .
$$

A combinatorial equivalence of " $\mathrm{VWI}(2,2)$ vs RCA "

Theorem 14

The following are equivalent:

- There exists a $\mathrm{VWI}(2,2)$ instance c that does not admit c-computable solution.
- There exists an infinite sequence of positive integers n_{0}, n_{1}, \cdots such that for all $r \in \omega \operatorname{Oppress}\left(n_{0}, \cdots, n_{r}\right)$ holds.

Intuition on $\operatorname{Oppress}\left(n_{0}, \cdots, n_{r-1}\right)$

Suppose $\Phi_{0}^{c}, \Phi_{1}^{c}$ has computed two variable word initial segment, namely W_{0}, W_{1}. For each $i \in\{0,1\}$, let $P_{j}^{i}=\left\{m: W_{i}(m)=x_{j}\right\}$, $P_{0}^{i}=\left\{m: W_{i}(m)=1\right\}$. Suppose there are n_{0}, n_{1} many variables appearing in W_{0}, W_{1} respectively. Suppose W_{1} agrees with W_{0} before $\left|W_{0}\right|$, i.e., $\left|W_{1}\right|>\left|W_{0}\right|, P_{0}^{1} \cap\left|W_{0}\right|=P_{0}^{0}, \min P_{1}^{1}>\left|W_{0}\right|$.
The key note is that: if W_{0} can not be extended, and for any configuration of W_{0} (namely $W_{0}(\vec{a}), \vec{a} \in\{0,1\}^{n_{0}}$), $W_{1} / W_{0}(\vec{a})$ can not be extended, then Oppress $\left(n_{0}, n_{1}\right)$ holds.

We consider c as a function $f:($ Finite set of $\omega) \times \omega \rightarrow\{0,1\}$ as following: $c(\sigma)=f\left(\sigma^{-1}(1),|\sigma|\right)$ and $f(B, n)=f(B \cap n, n)$ for all $B \subseteq \omega, n \in \omega$.

To see this:

To extend W_{0} we need to find mutually disjoint sets $P_{i}^{\prime}, 0 \leq i \leq n_{0}$ with $P_{i}^{\prime}-P_{i}^{0}>\left|W_{0}\right|, i \leq n_{0}$ and a $p>P_{i}^{\prime}, i \leq n_{0}$ such that for all $I, J \subseteq\left\{1, \cdots, n_{0}\right\}: f\left(P_{0}^{\prime} \cup\left(\bigcup_{i \in I} P_{i}^{\prime}\right), p\right)=f\left(P_{0}^{\prime} \cup\left(\bigcup_{i \in J} P_{i}^{\prime}\right), p\right)$.
W_{0} cannot be extended implies such P_{i}^{\prime}, p do not exist. In particular for any mutually disjoint subset $M_{0}, M_{1}, \cdots, M_{n_{1}}$ of n_{1}, let $P_{i}^{\prime}=P_{i}^{0} \cup\left(\bigcup_{j \in M_{i}} P_{j}^{1}\right), P_{0}^{\prime}=P_{0}^{0} \cup P_{0}^{1} \cup\left(\bigcup_{j \in M_{0}} P_{j}^{1}\right)$, there exists I, J with
$I, J \subseteq\left\{1, \cdots, n_{0}\right\}: f\left(P_{0}^{\prime} \cup\left(\bigcup_{i \in I} P_{i}^{\prime}\right), p\right) \neq f\left(P_{0}^{\prime} \cup\left(\bigcup_{i \in J} P_{i}^{\prime}\right), p\right)$. Where
$p=\left|W_{1}\right|$.
Moreover, for any configuration of $W_{0}, W_{1} / W_{0}(\vec{a})$ can not be extended implies for any $M_{0} \subseteq\left\{1, \cdots, n_{0}\right\}$, let $P_{0}^{\prime}=P_{0}^{1} \cup P_{0}^{0} \cup\left(\bigcup_{j \in M_{0}} P_{j}^{0}\right)$, there exists $I, J \subseteq\left\{1, \cdots, n_{1}\right\}$ such that
$f\left(P_{0}^{\prime} \cup\left(\bigcup_{i \in I} P_{i}^{1}\right), p\right) \neq f\left(P_{0}^{\prime} \cup\left(\bigcup_{i \in J} P_{i}^{1}\right), p\right)$.

Thus the following $\tilde{f}: \mathcal{P}\left(n_{0} \cup n_{1}\right) \rightarrow\{0,1\}$ witness $\operatorname{Oppress}\left(n_{0}, n_{1}\right)$: $\tilde{f}(M)=f\left(P_{0}^{1} \cup P_{0}^{0} \cup\left(\bigcup_{i \in M \cap n_{0}} P_{i}^{0}\right) \cup\left(\bigcup_{j \in M \cap n_{1}} P_{j}^{1}\right), p\right)$.

Intuition on $\operatorname{Oppress}\left(n_{0}, \cdots, n_{r-1}\right)$

For $\mathbf{n}, \mathbf{n}^{\prime} \in \omega^{<\omega}$ we write $\mathbf{n} \leq \mathbf{n}^{\prime}$ if $|\mathbf{n}|=\left|\mathbf{n}^{\prime}\right|$ and $\mathbf{n}(j) \leq \mathbf{n}^{\prime}(j)$ for all $j \leq|\mathbf{n}|$.
It's obvious that:

Proposition 15

For \mathbf{n} being a subsequence of \mathbf{n}^{\prime}, Oppress $\left(\mathbf{n}^{\prime}\right)$ implies Oppress (\mathbf{n}). For $\mathbf{n} \leq \mathbf{n}^{\prime}$, Oppress (\mathbf{n}) implies $\operatorname{Oppress}\left(\mathbf{n}^{\prime}\right)$.

Intuition on $\operatorname{Oppress}\left(n_{0}, \cdots, n_{r-1}\right)$

Proposition 16

Oppress(2, 2), Oppress(2, 2, 2) holds. Oppress(n) holds for all $n>0$.

Proof.

To see $\operatorname{Oppress}(2,2)$, consider

$$
f(\rho)=\rho(0)+\rho(1)+\rho(2) \bmod 2
$$

To see $\operatorname{Oppress}(2,2,2)$, consider

$$
f(\rho)=I(\rho(0)+\rho(1)>0)+\rho(2)+\rho(3)+\rho(4) \bmod 2 .
$$

Where $I()$ is the indication function.
To see $\operatorname{Oppress}(n)$, simply consider $f(\rho)=\sum_{i<|\rho|} \rho(i) \bmod 2$.

Intuition on $\operatorname{Oppress}\left(n_{0}, \cdots, n_{r-1}\right)$

Proposition 17

Oppress(2, 2, 2, 2) does not hold.

Proof.

We don't know the proof. Adam P. Goucher at Mathoverflow examined this using SAT solver (https://mathoverflow.net/questions/293112/ramsey-type-theorem). It's easy to check that the following functions don't work:

$$
\begin{align*}
& f(\rho)=I(\rho(0)+\rho(1)>0)+\rho(2)+\rho(3)+\rho(4)+\rho(6) \bmod 2 \tag{0.2}\\
& f(\rho)=I(\rho(0)+\rho(1)>0)+I(\rho(2)+\rho(3)>0)+ \\
& \quad+\rho(4)+\rho(5)+\rho(6) \bmod 2
\end{align*}
$$

Proof of theorem 14

(\Leftarrow) Let $\mathbf{n}=n_{0}, n_{1} \cdots$ be such an infinite sequence. Let Φ_{i} be all Turing functional compute a VWI solution. For simplicity reason, let's put priority aside and assume \mathbf{n} is computable and all Φ_{i} are total. It will be clear how the proof goes without these assumptions.

Let N_{0} be a set consisting n_{0} many first occurrence position of variables of Φ_{0};
let $N_{1}>N_{0}$ be an arbitrary set consisting n_{1} many first occurrence position of variables of Φ_{1};
and let N_{2}, N_{3}, \cdots be defined similarly.

For all σ with $\max N_{k+1} \geq|\sigma|>\max N_{k}$, define $c(\sigma)$ to be $f_{k}\left(\left(N_{0} \cup \cdots \cup N_{k}\right) \cap \sigma^{-1}(1)\right)$ where f_{k} is the witness of $\operatorname{Oppress}\left(n_{0}, \cdots, n_{k}\right)$.

We show that $\Phi_{i}=W$ is not a solution. W.l.o.g suppose N_{i} contains the first occurrence position of variable $x_{0}, \cdots, x_{n_{i}-1}$, let $F O_{x_{j}}$ denote the first occurrence position of x_{j} in W, let $M_{0}=\left\{m<F O_{x_{n_{i}}}: W(m)=1\right\} \cap\left(\bigcup_{l \leq i-1} N_{l}\right)$, $M_{j}=\left\{m<F O_{x_{n_{i}}}: W(m)=x_{j}\right\} \cap\left(\bigcup_{l \geq i} N_{l}\right), j \leq n_{i}-1$. let k be such that $\max N_{k}<F O_{x_{n_{i}}} \leq \max N_{k+1}$.
Clearly $M_{j} \subseteq N_{0} \cup \cdots \cup N_{k}$ are mutually disjoint with

$$
M_{j} \cap N_{i}=\left\{\min M_{j}\right\}=\left\{\text { the } j^{t h} \text { large element of } N_{i}\right\} .
$$

By definition of c and f_{k}, for $\vec{a} \in\{0,1\}^{n_{i}}$, $c\left(W(\vec{a}) \upharpoonright F O_{x_{n_{i}-1}}\right)=f_{k}\left(M_{0} \cup \underset{j \in \vec{a}^{-1}(1)}{ } M_{j}\right)$. But there exists I, J with $f_{k}\left(M_{0} \cup \bigcup_{j \in I} M_{j}\right) \neq f_{k}\left(M_{0} \cup \bigcup_{j \in J} M_{j}\right)$, thus there exists \vec{a}_{I}, \vec{a}_{J} with $c\left(W\left(\vec{a}_{I}\right) \upharpoonright F O_{x_{n_{i}-1}}\right) \neq c\left(W\left(\vec{a}_{J}\right) \upharpoonright F O_{x_{n_{i}-1}}\right)$.
(\Rightarrow) We try to construct countably many greedy solutions $\Phi_{0}^{c}, \Phi_{1}^{c} \ldots$ such that the failure of $\Phi_{0}^{c}, \Phi_{1}^{c} \cdots$ provides a sequence \mathbf{n} with Oppress $\left(n_{0}, \cdots, n_{r}\right)$ holds for all r. In the following proof, we consider c as a function $f:($ Finite set of $\omega) \times \omega \rightarrow\{0,1\}$ as following: $c(\sigma)=f\left(\sigma^{-1}(1),|\sigma|\right)$ and $f(B, n)=f(B \cap n, n)$ for all $B \subseteq \omega, n \in \omega$. A solution to f is a sequence of set P_{0}, P_{1}, \cdots such that there exists $k \in\{0,1\}$ such that for all $I \subseteq \omega, r \in \omega f\left(P_{0} \cup\left(\bigcup_{j \in I} P_{j}\right)\right.$, min $\left.P_{r}\right)=k$.

Each Φ_{i}^{c} will compute a sequence of sets P_{1}, P_{2}, \cdots and P_{0} as the position of x_{1}, x_{2}, \cdots and $\{i: W(i)=1\}$.
Φ_{0}^{c} compute P_{1}, P_{2}, \cdots as following: At the beginning, let $P_{0}[0]=\emptyset$ and let $P_{1}[0]=\{b\}$ with b arbitrary. Suppose at time $t, P_{0}[t], \cdots, P_{n}[t]$ are defined. To define P_{n+1}, try to find an integer $p_{n+1}>P_{n}[t]$ and mutually disjoint sets $P_{j}^{\prime} \supseteq P_{j}[t], j \leq n$ with $p_{n+1}>P_{j}^{\prime}, \quad P_{j}^{\prime}-P_{j}[t]>P_{n}[t], j \leq n$ such that: for all $I, J \subseteq\{1, \cdots, n\}$,
$f\left(P_{0}^{\prime} \cup\left(\bigcup_{i \in I} P_{i}^{\prime}\right), p_{n+1}\right)=f\left(P_{0}^{\prime} \cup\left(\bigcup_{i \in J} P_{i}^{\prime}\right), p_{n+1}\right)$.
Whenever at time s such $p_{n+1}, P_{j}^{\prime}, j \leq n$ are found, update $P_{j}[t]$ into $P_{j}[s]=P_{j}^{\prime}$ and let $P_{n+1}=\left\{p_{n+1}\right\}$.

Note that at some point $t \Phi_{0}^{c}$ can no longer find the next p_{n+1} otherwise Φ_{0}^{c} is a solution to c.
Φ_{1}^{c} will make a guess on the n that Φ_{0}^{c} can no longer find p_{n+1}.
Whenever Φ_{1}^{c} find his last guess n is incorrect he destroy his current computation and do it again with a new guess $n+1$. Suppose in the end Φ_{0}^{c} output n_{0} many P_{j} denoted as $P_{j}^{0}, j \leq n_{0}-1$. Let $m_{0}=\max P_{n_{0}-1}^{0} . \Phi_{1}^{c}$ will act slightly different from Φ_{0}^{c} as following.

Suppose at time t, Φ_{1}^{c} has defined $P_{0}[t], \cdots, P_{n}[t]>m_{0}$. To define P_{n+1}, try to find an integer $p_{n+1}>P_{n}[t]$, a set $I \subseteq n_{0}$ and mutually disjoint sets $P_{j}^{\prime} \supseteq P_{j}[t], j \leq n$ with $p_{n+1}>P_{j}^{\prime}, \quad P_{j}^{\prime}-P_{j}[t]>P_{n}[t], j \leq n$ such that, let $\tilde{P}=\bigcup_{j \in I} P_{j}^{0}$:
for all $J, J^{\prime} \subseteq\{1, \cdots, n\}$,
$f\left(\bigcup_{i<1} P_{0}^{i} \cup P_{0}^{\prime} \cup \tilde{P} \cup\left(\bigcup_{i \in J^{\prime}} P_{i}^{\prime}\right), p_{n+1}\right)=f\left(\bigcup_{i<1} P_{0}^{i} \cup P_{0}^{\prime} \cup \tilde{P} \cup\left(\bigcup_{i \in J} P_{i}^{\prime}\right), p_{n+1}\right)$.

Whenever at time s such $p_{n+1}, P_{j}^{\prime}, j \leq n$ are found, update $P_{j}[t]$ into $P_{j}[s]=P_{j}^{\prime}$ and let $P_{n+1}=\left\{p_{n+1}\right\}$.
At some point $t \Phi_{1}^{c}$ can no longer find the next p_{n+1} otherwise Φ_{1}^{c} is a solution to c. To see this, note that n_{0} is finite therefore there exists $I \subseteq n_{0}$ such that Φ_{1}^{c} find p_{n} with $\tilde{P}=\bigcup_{j \in I} P_{j}^{0}$ for infinitely many n. Let $i_{-1}=0<i_{0}<i_{1}<\cdots$ and P be such that $p_{i_{r}}$ is found with $\tilde{P}=P$. Let $Q_{r}=\bigcup_{i_{r-1} \leq j<i_{r}} P_{j}$. We have that for any $r \in \omega$, any $J^{\prime}, J \subseteq r$, $f\left(\left(\bigcup_{i<1} P_{0}^{i}\right) \cup P_{0} \cup P \cup\left(\bigcup_{j \in J^{\prime}} Q_{j}\right), p_{i_{r}}\right)=f\left(\left(\bigcup_{i<1} P_{0}^{i}\right) \cup P_{0} \cup P \cup\left(\bigcup_{j \in J} Q_{j}\right), p_{i_{r}}\right)$, and $\min Q_{r}=p_{i_{r-1}}$. This gives a solution to c by further thinning the sequence of sets Q_{j} according to the color of f.

Similarly, every Φ_{i}^{c} can only find finitely many P_{0}, P_{1}, \cdots. Suppose in the end Φ_{i}^{c} find $n_{i}>0$ many variable sets denoted as $P_{j}^{i}, j \leq n_{i}-1$. We show that $\mathbf{n}=n_{0}, n_{1} \cdots$ is a sequence such that
$\operatorname{Oppress}\left(n_{0}, \cdots, n_{r}\right)$ holds for all r. To define f_{k}, the witness of $\operatorname{Oppress}\left(n_{0}, \cdots, n_{r}\right)$, for $B \subseteq N_{0} \cup \cdots \cup N_{k}$ let $f_{k}(B)=f\left(\bigcup_{j \leq k} P_{0}^{j} \cup\left(\bigcup_{r \leq k, j \in B \cap N_{r}} P_{j}^{r}\right), \max P_{n_{k}}^{k}+1\right)$.
To see f_{k} witness of $\operatorname{Oppress}\left(n_{0}, \cdots, n_{r}\right)$, let $M_{0}, M_{1}, \cdots, M_{n_{i}}$ be such mutually disjoint sets that
$M_{j} \cap N_{i}=\left\{\min M_{j}\right\}=\left\{\right.$ the $j^{t h}$ large element of $\left.N_{i}\right\}$. If for all $J, J^{\prime} \subseteq n_{i}, f_{k}\left(M_{0} \cup\left(\bigcup_{j \in J^{\prime}} M_{j}\right)\right)=f_{k}\left(M_{0} \cup\left(\bigcup_{j \in J} M_{j}\right)\right)$, then it means Φ_{i}^{c}
can find $p_{n_{i}+1}$ with $\tilde{P}=\bigcup_{r<i, j \in M_{0} \cap N_{r}} P_{j}^{r}, P_{0}^{\prime}=\bigcup_{i \leq r \leq k} P_{0}^{r}$,
$P_{j}^{\prime}=\bigcup_{r \geq i, u \in M_{j} \cap N_{r}} P_{u}^{r}, p_{n_{i}+1}=\max P_{n_{k}}^{k}+1$.

Let $\mathcal{O P} \mathcal{P R E S S}$ denote the set of infinite sequence of integers n_{0}, n_{1}, \cdots such that $\operatorname{Oppress}\left(n_{0}, \cdots, n_{r}\right)$ holds for all r.

Theorem 18

The following two degree classes are equal:

$$
\begin{aligned}
& \left\{\mathbf{c}: \mathbf{c}^{\prime} \text { compute a member in } \mathcal{O P P \mathcal { R E S S }} .\right\} \\
& \{\mathbf{c}: \mathbf{c} \text { compute a } \mathrm{VWI}(2,2) \text { instance } c \\
& \quad \text { that does not admit c-computable solution. }\}
\end{aligned}
$$

On Oppress $\left(n_{0}, \cdots, n_{r}\right)$

Lemma 19

There exists a sufficiently large $R \in \omega$ such that Oppress $(\underbrace{2, \cdots, 2}_{R \text { many }})$ does not hold.

Question 20

Does Oppress $(2,2,2,3)$ holds?
Does $\operatorname{Oppress}(2,2,2, R)$ holds for sufficiently large R ?
Is there a sufficiently large R such that O ppress $(\underbrace{3, \cdots, 3}_{R \text { many }})$ does not hold?

Many thanks

围 Carlson, T. J. and Simpson, S. G. (1984).
A dual form of Ramsey's theorem. Adv. in Math., 53(3):265-290.

Riu, L., Monin, B., and Patey, L. (2017).
A computable analysis of variable words theorems. accepted by Proceedings of the American Mathematical Society.

囦 Miller, J. S. and Solomon, R. (2004).
Effectiveness for infinite variable words and the dual Ramsey theorem.
Arch. Math. Logic, 43(4):543-555.
© Montalbán, A. (2011).
Open questions in reverse mathematics.
Bulletin of Symbolic Logic, 17(03):431-454.

