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Introduction

I Many questions in computability theory, even for big question as
𝐾𝐿-randomness vs 1−randomness, have close connection to
combinatorics.

I We present one example in this talk. We prove that the relativized
version of a naturally arisen reverse math question is equivalent to
a purely combinatorial question.
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We thank Denis Hirschfeldt, Benoit Monin and Ludovic Patey for
helpful discussion on the first example.
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VWI problem

We adopt the problem-instance-solution framework to introduce the
following problem. We first introduce some notations.

Definition 1 (Variable word)

An infinite variable word 𝑊 on alphabet {0, · · · , 𝑙 − 1} is a 𝜔-sequence
of {0, · · · , 𝑙− 1} ∪ {𝑥𝑖 : 𝑖 ∈ 𝜔} such that each variable 𝑥𝑖 occurs at least
once.
Given �⃗� = 𝑎0 · · · 𝑎𝑘−1, let 𝑊 (⃗𝑎) denote the finite {0, · · · , 𝑙 − 1}-string
obtained by replacing 𝑥𝑖 with 𝑎𝑖 in 𝑊 and then truncating the result
just before the first occurrence of 𝑥𝑘.
Without loss of generality we assume that the first occurrence of 𝑥𝑖 is
smaller than that of 𝑥𝑖+1 for all 𝑖 ∈ 𝜔.
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VWI problem

Example 2

Infinite variable word 𝑊 on {0, 1}:

011 𝑥0𝑥0 011 𝑥1 𝑥0𝑥0 𝑥1𝑥100 𝑥2𝑥2 · · · (0.1)

�⃗� = 10,𝑊 (⃗𝑎) =011 11 011 0 11 0000 · · ·

Definition 3

I Problem: VWI(𝑙, 𝑘).

I Instance: 𝑐 : 𝑙<𝜔 → 𝑘.

I Solution: an infinite variable word 𝑊 such that {𝑊 (⃗𝑎) : �⃗� ∈ 𝑙<𝜔}
is monochromatic.
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VWI vs RCA

Joe Miller and Solomon proposed the following question in
[Miller and Solomon, 2004].

Question 4

Is VWI(2, 𝑘) provable in RCA?

Or in terms of computability language:

Question 5

Does every computable VWI(2, 𝑘) instance admit computable solution?

A relativized version of the question is:

Question 6

Does every VWI(2, 𝑘) instance 𝑐 admit 𝑐-computable solution?
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Related literature

Definition 7 (VW,OVW)

If we require the occurrence of 𝑥𝑖 being finite for all 𝑖 then the problem
is called VW.
If we require all the occurrence of 𝑥𝑖 comes before any occurrence of
𝑥𝑖+1 then it is called OVW (ordered variable word).

The problem is proposed by [Carlson and Simpson, 1984] and studied
in [Miller and Solomon, 2004] [Liu et al., 2017]. Clearly,

Theorem 8

VWI(𝑙, 𝑘) ≤ VW(𝑙, 𝑘) ≤ OVW(𝑙, 𝑘).
VWI(𝑙, 𝑘) ⇔ VWI(𝑙, 𝑘 + 1),VW(𝑙, 𝑘) ⇔ VW(𝑙, 𝑘 + 1),OVW(𝑙, 𝑘) ⇔
OVW(𝑙, 𝑘 + 1).
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Related literature

Theorem 9 ([Miller and Solomon, 2004])

There exists a computable instance of OVW(2, 2) that does not admit
Δ0

2 solution. Thus RCA0 +WKL does not prove VW(2, 2).

The following result answers a question of [Miller and Solomon, 2004]
and [Montalbán, 2011].

Theorem 10 (Monin, Patey, L)

I For every computable OVW(2, 𝑘) instance 𝑐, every ∅′-PA degree
compute a solution to 𝑐.

I There exists a computable OVW(2, 2) instance such that every
solution is ∅′-DNC degree.

Corollary 11 (Monin, Patey, L)

ACA proves OVW(2, 𝑘).
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Related literature

Question 12 ([Miller and Solomon, 2004])

Does OVW(𝑙, 𝑘) or VW(𝑙, 𝑘) implies ACA0 for some 𝑙?
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A combinatorial equivalence of ”VWI(2, 2) vs RCA”

For two sets of numbers 𝐴,𝐵, write 𝐴 < 𝐵 iff max𝐴 < min𝐵.

Definition 13 (𝑂𝑝𝑝𝑟𝑒𝑠𝑠(𝑛0, · · · , 𝑛𝑟−1))

For a sequence of integers 𝑛0, · · · , 𝑛𝑟−1 > 0, let 𝑁0 < · · · < 𝑁𝑟−1 be 𝑟
sets of integers with |𝑁𝑖| = 𝑛𝑖, 𝑖 ≤ 𝑟 − 1, let 𝑁 =

⋃︀
𝑖≤𝑛−1

𝑁𝑖 we say

𝑂𝑝𝑝𝑟𝑒𝑠𝑠(𝑛0, · · · , 𝑛𝑟−1) holds iff:
there exists a function 𝑓 : 𝒫(𝑁) → {0, 1} such that for any 𝑘 ≤ 𝑟 − 1,
any 𝑛𝑘 + 1 many mutually disjoint subsets 𝑀0, · · · ,𝑀𝑛𝑘

of 𝑁 with

𝑀𝑖 ∩𝑁𝑘 = {𝑡ℎ𝑒 𝑖𝑡ℎ 𝑙𝑎𝑟𝑔𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑁𝑘} = {min𝑀𝑖}, 0 < 𝑖 ≤ 𝑛𝑘,

there exists 𝐼, 𝐽 ⊆ {1, · · · , 𝑛𝑘} such that:

𝑓(𝑀0 ∪ (
⋃︁
𝑖∈𝐼

𝑀𝑖)) ̸= 𝑓(𝑀0 ∪ (
⋃︁
𝑖∈𝐽

𝑀𝑖)).
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A combinatorial equivalence of ”VWI(2, 2) vs RCA”

Theorem 14

The following are equivalent:

I There exists a VWI(2, 2) instance 𝑐 that does not admit
𝑐-computable solution.

I There exists an infinite sequence of positive integers 𝑛0, 𝑛1, · · ·
such that for all 𝑟 ∈ 𝜔 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(𝑛0, · · · , 𝑛𝑟) holds.
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Intuition on 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(𝑛0, · · · , 𝑛𝑟−1)

Suppose Φ𝑐
0,Φ

𝑐
1 has computed two variable word initial segment,

namely 𝑊0,𝑊1. For each 𝑖 ∈ {0, 1}, let 𝑃 𝑖
𝑗 = {𝑚 : 𝑊𝑖(𝑚) = 𝑥𝑗},

𝑃 𝑖
0 = {𝑚 : 𝑊𝑖(𝑚) = 1}. Suppose there are 𝑛0, 𝑛1 many variables

appearing in 𝑊0,𝑊1 respectively. Suppose 𝑊1 agrees with 𝑊0 before
|𝑊0|, i.e., |𝑊1| > |𝑊0|, 𝑃 1

0 ∩ |𝑊0| = 𝑃 0
0 , min𝑃 1

1 > |𝑊0|.

The key note is that: if 𝑊0 can not be extended, and for any
configuration of 𝑊0 (namely 𝑊0(⃗𝑎), �⃗� ∈ {0, 1}𝑛0 ), 𝑊1/𝑊0(⃗𝑎) can not
be extended, then 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(𝑛0, 𝑛1) holds.

We consider 𝑐 as a function 𝑓 : (Finite set of 𝜔)× 𝜔 → {0, 1} as
following: 𝑐(𝜎) = 𝑓(𝜎−1(1), |𝜎|) and 𝑓(𝐵,𝑛) = 𝑓(𝐵 ∩ 𝑛, 𝑛) for all
𝐵 ⊆ 𝜔, 𝑛 ∈ 𝜔.
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To see this:
To extend 𝑊0 we need to find mutually disjoint sets 𝑃 ′

𝑖 , 0 ≤ 𝑖 ≤ 𝑛0

with 𝑃 ′
𝑖 − 𝑃 0

𝑖 > |𝑊0|, 𝑖 ≤ 𝑛0 and a 𝑝 > 𝑃 ′
𝑖 , 𝑖 ≤ 𝑛0 such that for all

𝐼, 𝐽 ⊆ {1, · · · , 𝑛0}: 𝑓
(︂
𝑃 ′
0 ∪ (

⋃︀
𝑖∈𝐼

𝑃 ′
𝑖 ), 𝑝

)︂
= 𝑓

(︂
𝑃 ′
0 ∪ (

⋃︀
𝑖∈𝐽

𝑃 ′
𝑖 ), 𝑝

)︂
.

𝑊0 cannot be extended implies such 𝑃 ′
𝑖 , 𝑝 do not exist. In particular

for any mutually disjoint subset 𝑀0,𝑀1, · · · ,𝑀𝑛1 of 𝑛1, let
𝑃 ′
𝑖 = 𝑃 0

𝑖 ∪
(︀ ⋃︀
𝑗∈𝑀𝑖

𝑃 1
𝑗

)︀
, 𝑃 ′

0 = 𝑃 0
0 ∪ 𝑃 1

0 ∪
(︀ ⋃︀
𝑗∈𝑀0

𝑃 1
𝑗

)︀
, there exists 𝐼, 𝐽 with

𝐼, 𝐽 ⊆ {1, · · · , 𝑛0}: 𝑓
(︂
𝑃 ′
0 ∪ (

⋃︀
𝑖∈𝐼

𝑃 ′
𝑖 ), 𝑝

)︂
̸= 𝑓

(︂
𝑃 ′
0 ∪ (

⋃︀
𝑖∈𝐽

𝑃 ′
𝑖 ), 𝑝

)︂
. Where

𝑝 = |𝑊1|.
Moreover, for any configuration of 𝑊0, 𝑊1/𝑊0(⃗𝑎) can not be extended
implies for any 𝑀0 ⊆ {1, · · · , 𝑛0}, let 𝑃 ′

0 = 𝑃 1
0 ∪ 𝑃 0

0 ∪
(︀ ⋃︀
𝑗∈𝑀0

𝑃 0
𝑗

)︀
, there

exists 𝐼, 𝐽 ⊆ {1, · · · , 𝑛1} such that

𝑓

(︂
𝑃 ′
0 ∪ (

⋃︀
𝑖∈𝐼

𝑃 1
𝑖 ), 𝑝

)︂
̸= 𝑓

(︂
𝑃 ′
0 ∪ (

⋃︀
𝑖∈𝐽

𝑃 1
𝑖 ), 𝑝

)︂
.
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Thus the following 𝑓 : 𝒫(𝑛0 ∪ 𝑛1) → {0, 1} witness 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(𝑛0, 𝑛1):

𝑓(𝑀) = 𝑓

(︂
𝑃 1
0 ∪ 𝑃 0

0 ∪ (
⋃︀

𝑖∈𝑀∩𝑛0

𝑃 0
𝑖 ) ∪ (

⋃︀
𝑗∈𝑀∩𝑛1

𝑃 1
𝑗 ), 𝑝

)︂
.
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Intuition on 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(𝑛0, · · · , 𝑛𝑟−1)

For n,n′ ∈ 𝜔<𝜔 we write n ≤ n′ if |n| = |n′| and n(𝑗) ≤ n′(𝑗) for all
𝑗 ≤ |n|.
It’s obvious that:

Proposition 15

For n being a subsequence of n′, 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(n′) implies 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(n).
For n ≤ n′, 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(n) implies 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(n′).
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Intuition on 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(𝑛0, · · · , 𝑛𝑟−1)

Proposition 16

𝑂𝑝𝑝𝑟𝑒𝑠𝑠(2, 2), 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(2, 2, 2) holds. 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(𝑛) holds for all 𝑛 > 0.

Proof.

To see 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(2, 2), consider

𝑓(𝜌) = 𝜌(0) + 𝜌(1) + 𝜌(2) 𝑚𝑜𝑑 2.

To see 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(2, 2, 2), consider

𝑓(𝜌) = 𝐼(𝜌(0) + 𝜌(1) > 0) + 𝜌(2) + 𝜌(3) + 𝜌(4) 𝑚𝑜𝑑 2.

Where 𝐼() is the indication function.
To see 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(𝑛), simply consider 𝑓(𝜌) =

∑︀
𝑖<|𝜌|

𝜌(𝑖) 𝑚𝑜𝑑 2.
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Intuition on 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(𝑛0, · · · , 𝑛𝑟−1)

Proposition 17

𝑂𝑝𝑝𝑟𝑒𝑠𝑠(2, 2, 2, 2) does not hold.

Proof.

We don’t know the proof. Adam P. Goucher at Mathoverflow
examined this using SAT solver (
https://mathoverflow.net/questions/293112/ramsey-type-theorem ).
It’s easy to check that the following functions don’t work:

𝑓(𝜌) = 𝐼(𝜌(0) + 𝜌(1) > 0) + 𝜌(2) + 𝜌(3) + 𝜌(4) + 𝜌(6) 𝑚𝑜𝑑 2; (0.2)

𝑓(𝜌) = 𝐼(𝜌(0) + 𝜌(1) > 0) + 𝐼(𝜌(2) + 𝜌(3) > 0)+

+ 𝜌(4) + 𝜌(5) + 𝜌(6) 𝑚𝑜𝑑 2;
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Proof of theorem 14

(⇐) Let n = 𝑛0, 𝑛1 · · · be such an infinite sequence. Let Φ𝑖 be all
Turing functional compute a VWI solution. For simplicity reason, let’s
put priority aside and assume n is computable and all Φ𝑖 are total. It
will be clear how the proof goes without these assumptions.

Let 𝑁0 be a set consisting 𝑛0 many first occurrence position of
variables of Φ0;
let 𝑁1 > 𝑁0 be an arbitrary set consisting 𝑛1 many first occurrence
position of variables of Φ1;
and let 𝑁2, 𝑁3, · · · be defined similarly.
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For all 𝜎 with max𝑁𝑘+1 ≥ |𝜎| > max𝑁𝑘, define 𝑐(𝜎) to be

𝑓𝑘

(︂
(𝑁0 ∪ · · · ∪𝑁𝑘) ∩ 𝜎−1(1)

)︂
where 𝑓𝑘 is the witness of

𝑂𝑝𝑝𝑟𝑒𝑠𝑠(𝑛0, · · · , 𝑛𝑘).
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We show that Φ𝑖 = 𝑊 is not a solution. W.l.o.g suppose 𝑁𝑖 contains
the first occurrence position of variable 𝑥0, · · · , 𝑥𝑛𝑖−1,
let 𝐹𝑂𝑥𝑗 denote the first occurrence position of 𝑥𝑗 in 𝑊 ,
let 𝑀0 = {𝑚 < 𝐹𝑂𝑥𝑛𝑖

: 𝑊 (𝑚) = 1} ∩ (
⋃︀

𝑙≤𝑖−1

𝑁𝑙),

𝑀𝑗 = {𝑚 < 𝐹𝑂𝑥𝑛𝑖
: 𝑊 (𝑚) = 𝑥𝑗} ∩ (

⋃︀
𝑙≥𝑖

𝑁𝑙), 𝑗 ≤ 𝑛𝑖 − 1.

let 𝑘 be such that max𝑁𝑘 < 𝐹𝑂𝑥𝑛𝑖
≤ max𝑁𝑘+1.

Clearly 𝑀𝑗 ⊆ 𝑁0 ∪ · · · ∪𝑁𝑘 are mutually disjoint with

𝑀𝑗 ∩𝑁𝑖 = {min𝑀𝑗} = { the 𝑗𝑡ℎ large element of 𝑁𝑖}.

By definition of 𝑐 and 𝑓𝑘, for �⃗� ∈ {0, 1}𝑛𝑖 ,
𝑐(𝑊 (⃗𝑎) � 𝐹𝑂𝑥𝑛𝑖−1) = 𝑓𝑘(𝑀0 ∪

⋃︀
𝑗∈�⃗�−1(1)

𝑀𝑗). But there exists 𝐼, 𝐽 with

𝑓𝑘(𝑀0 ∪
⋃︀
𝑗∈𝐼

𝑀𝑗) ̸= 𝑓𝑘(𝑀0 ∪
⋃︀
𝑗∈𝐽

𝑀𝑗), thus there exists �⃗�𝐼 , �⃗�𝐽 with

𝑐(𝑊 (⃗𝑎𝐼) � 𝐹𝑂𝑥𝑛𝑖−1) ̸= 𝑐(𝑊 (⃗𝑎𝐽) � 𝐹𝑂𝑥𝑛𝑖−1).
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(⇒) We try to construct countably many greedy solutions Φ𝑐
0,Φ

𝑐
1 · · ·

such that the failure of Φ𝑐
0,Φ

𝑐
1 · · · provides a sequence n with

𝑂𝑝𝑝𝑟𝑒𝑠𝑠(𝑛0, · · · , 𝑛𝑟) holds for all 𝑟. In the following proof, we consider
𝑐 as a function 𝑓 : (Finite set of 𝜔)× 𝜔 → {0, 1} as following:
𝑐(𝜎) = 𝑓(𝜎−1(1), |𝜎|) and 𝑓(𝐵,𝑛) = 𝑓(𝐵 ∩ 𝑛, 𝑛) for all 𝐵 ⊆ 𝜔, 𝑛 ∈ 𝜔.
A solution to 𝑓 is a sequence of set 𝑃0, 𝑃1, · · · such that there exists
𝑘 ∈ {0, 1} such that for all 𝐼 ⊆ 𝜔, 𝑟 ∈ 𝜔 𝑓(𝑃0 ∪ (

⋃︀
𝑗∈𝐼

𝑃𝑗),min𝑃𝑟) = 𝑘.
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Each Φ𝑐
𝑖 will compute a sequence of sets 𝑃1, 𝑃2, · · · and 𝑃0 as the

position of 𝑥1, 𝑥2, · · · and {𝑖 : 𝑊 (𝑖) = 1}.

Φ𝑐
0 compute 𝑃1, 𝑃2, · · · as following: At the beginning, let 𝑃0[0] = ∅

and let 𝑃1[0] = {𝑏} with 𝑏 arbitrary. Suppose at time 𝑡, 𝑃0[𝑡], · · · , 𝑃𝑛[𝑡]
are defined. To define 𝑃𝑛+1, try to find an integer 𝑝𝑛+1 > 𝑃𝑛[𝑡] and
mutually disjoint sets 𝑃 ′

𝑗 ⊇ 𝑃𝑗 [𝑡], 𝑗 ≤ 𝑛 with
𝑝𝑛+1 > 𝑃 ′

𝑗 , 𝑃 ′
𝑗 − 𝑃𝑗 [𝑡] > 𝑃𝑛[𝑡], 𝑗 ≤ 𝑛 such that:

for all 𝐼, 𝐽 ⊆ {1, · · · , 𝑛},

𝑓

(︂
𝑃 ′
0 ∪ (

⋃︀
𝑖∈𝐼

𝑃 ′
𝑖 ), 𝑝𝑛+1

)︂
= 𝑓

(︂
𝑃 ′
0 ∪ (

⋃︀
𝑖∈𝐽

𝑃 ′
𝑖 ), 𝑝𝑛+1

)︂
.

Whenever at time 𝑠 such 𝑝𝑛+1, 𝑃
′
𝑗 , 𝑗 ≤ 𝑛 are found, update 𝑃𝑗 [𝑡] into

𝑃𝑗 [𝑠] = 𝑃 ′
𝑗 and let 𝑃𝑛+1 = {𝑝𝑛+1}.
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Note that at some point 𝑡 Φ𝑐
0 can no longer find the next 𝑝𝑛+1

otherwise Φ𝑐
0 is a solution to 𝑐.

Φ𝑐
1 will make a guess on the 𝑛 that Φ𝑐

0 can no longer find 𝑝𝑛+1.
Whenever Φ𝑐

1 find his last guess 𝑛 is incorrect he destroy his current
computation and do it again with a new guess 𝑛+ 1. Suppose in the
end Φ𝑐

0 output 𝑛0 many 𝑃𝑗 denoted as 𝑃 0
𝑗 , 𝑗 ≤ 𝑛0 − 1. Let

𝑚0 = max𝑃 0
𝑛0−1. Φ

𝑐
1 will act slightly different from Φ𝑐

0 as following.
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Suppose at time 𝑡, Φ𝑐
1 has defined 𝑃0[𝑡], · · · , 𝑃𝑛[𝑡] > 𝑚0. To define

𝑃𝑛+1, try to find an integer 𝑝𝑛+1 > 𝑃𝑛[𝑡], a set 𝐼 ⊆ 𝑛0 and mutually
disjoint sets 𝑃 ′

𝑗 ⊇ 𝑃𝑗 [𝑡], 𝑗 ≤ 𝑛 with 𝑝𝑛+1 > 𝑃 ′
𝑗 , 𝑃 ′

𝑗 − 𝑃𝑗 [𝑡] > 𝑃𝑛[𝑡], 𝑗 ≤ 𝑛

such that, let 𝑃 =
⋃︀
𝑗∈𝐼

𝑃 0
𝑗 :

for all 𝐽, 𝐽 ′ ⊆ {1, · · · , 𝑛},

𝑓

(︂⋃︁
𝑖<1

𝑃 𝑖
0∪𝑃 ′

0∪𝑃 ∪(
⋃︁
𝑖∈𝐽 ′

𝑃 ′
𝑖 ), 𝑝𝑛+1

)︂
= 𝑓

(︂⋃︁
𝑖<1

𝑃 𝑖
0∪𝑃 ′

0∪𝑃 ∪(
⋃︁
𝑖∈𝐽

𝑃 ′
𝑖 ), 𝑝𝑛+1

)︂
.
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Whenever at time 𝑠 such 𝑝𝑛+1, 𝑃
′
𝑗 , 𝑗 ≤ 𝑛 are found, update 𝑃𝑗 [𝑡] into

𝑃𝑗 [𝑠] = 𝑃 ′
𝑗 and let 𝑃𝑛+1 = {𝑝𝑛+1}.

At some point 𝑡 Φ𝑐
1 can no longer find the next 𝑝𝑛+1 otherwise Φ𝑐

1 is a
solution to 𝑐. To see this, note that 𝑛0 is finite therefore there exists
𝐼 ⊆ 𝑛0 such that Φ𝑐

1 find 𝑝𝑛 with 𝑃 =
⋃︀
𝑗∈𝐼

𝑃 0
𝑗 for infinitely many 𝑛. Let

𝑖−1 = 0 < 𝑖0 < 𝑖1 < · · · and 𝑃 be such that 𝑝𝑖𝑟 is found with 𝑃 = 𝑃 .
Let 𝑄𝑟 =

⋃︀
𝑖𝑟−1≤𝑗<𝑖𝑟

𝑃𝑗 . We have that for any 𝑟 ∈ 𝜔, any 𝐽 ′, 𝐽 ⊆ 𝑟,

𝑓

(︂
(
⋃︀
𝑖<1

𝑃 𝑖
0)∪𝑃0∪𝑃∪(

⋃︀
𝑗∈𝐽 ′

𝑄𝑗), 𝑝𝑖𝑟

)︂
= 𝑓

(︂
(
⋃︀
𝑖<1

𝑃 𝑖
0)∪𝑃0∪𝑃∪(

⋃︀
𝑗∈𝐽

𝑄𝑗), 𝑝𝑖𝑟

)︂
,

and min𝑄𝑟 = 𝑝𝑖𝑟−1 . This gives a solution to 𝑐 by further thinning the
sequence of sets 𝑄𝑗 according to the color of 𝑓 .
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Similarly, every Φ𝑐
𝑖 can only find finitely many 𝑃0, 𝑃1, · · · . Suppose in

the end Φ𝑐
𝑖 find 𝑛𝑖 > 0 many variable sets denoted as 𝑃 𝑖

𝑗 , 𝑗 ≤ 𝑛𝑖 − 1.
We show that n = 𝑛0, 𝑛1 · · · is a sequence such that
𝑂𝑝𝑝𝑟𝑒𝑠𝑠(𝑛0, · · · , 𝑛𝑟) holds for all 𝑟. To define 𝑓𝑘, the witness of
𝑂𝑝𝑝𝑟𝑒𝑠𝑠(𝑛0, · · · , 𝑛𝑟), for 𝐵 ⊆ 𝑁0 ∪ · · · ∪𝑁𝑘 let

𝑓𝑘(𝐵) = 𝑓

(︂ ⋃︀
𝑗≤𝑘

𝑃 𝑗
0 ∪ (

⋃︀
𝑟≤𝑘,𝑗∈𝐵∩𝑁𝑟

𝑃 𝑟
𝑗 ),max𝑃 𝑘

𝑛𝑘
+ 1

)︂
.

To see 𝑓𝑘 witness of 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(𝑛0, · · · , 𝑛𝑟), let 𝑀0,𝑀1, · · · ,𝑀𝑛𝑖 be such
mutually disjoint sets that
𝑀𝑗 ∩𝑁𝑖 = {min𝑀𝑗} = { the 𝑗𝑡ℎ large element of 𝑁𝑖}. If for all
𝐽, 𝐽 ′ ⊆ 𝑛𝑖, 𝑓𝑘(𝑀0 ∪ (

⋃︀
𝑗∈𝐽 ′

𝑀𝑗)) = 𝑓𝑘(𝑀0 ∪ (
⋃︀
𝑗∈𝐽

𝑀𝑗)), then it means Φ𝑐
𝑖

can find 𝑝𝑛𝑖+1 with 𝑃 =
⋃︀

𝑟<𝑖,𝑗∈𝑀0∩𝑁𝑟

𝑃 𝑟
𝑗 , 𝑃

′
0 =

⋃︀
𝑖≤𝑟≤𝑘

𝑃 𝑟
0 ,

𝑃 ′
𝑗 =

⋃︀
𝑟≥𝑖,𝑢∈𝑀𝑗∩𝑁𝑟

𝑃 𝑟
𝑢 , 𝑝𝑛𝑖+1 = max𝑃 𝑘

𝑛𝑘
+ 1.
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Let 𝒪𝒫𝒫ℛℰ𝒮𝒮 denote the set of infinite sequence of integers
𝑛0, 𝑛1, · · · such that 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(𝑛0, · · · , 𝑛𝑟) holds for all 𝑟.

Theorem 18

The following two degree classes are equal:{︀
c : c′ compute a member in 𝒪𝒫𝒫ℛℰ𝒮𝒮.

}︀
(0.3){︀

c : c compute a VWI(2, 2) instance 𝑐

that does not admit 𝑐-computable solution.
}︀
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On 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(𝑛0, · · · , 𝑛𝑟)

Lemma 19

There exists a sufficiently large 𝑅 ∈ 𝜔 such that 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(2, · · · , 2⏟  ⏞  
𝑅 𝑚𝑎𝑛𝑦

) does

not hold.

Question 20

Does 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(2, 2, 2, 3) holds?
Does 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(2, 2, 2, 𝑅) holds for sufficiently large 𝑅?
Is there a sufficiently large 𝑅 such that 𝑂𝑝𝑝𝑟𝑒𝑠𝑠(3, · · · , 3⏟  ⏞  

𝑅 𝑚𝑎𝑛𝑦

) does not

hold?
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Many thanks
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