Two Propositions Between $WWKL_0$ and WKL_0

Wei Wang

Institute of Logic and Cognition, Sun Yat-sen University

CTFM 2019, Wuhan

Based on joint works of Chitat Chong, Wei Li, WW and Yue Yang, and of Barmaplias, WW and Xia.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

The Two Propositions

- P: every positive binary tree has a perfect subtree.
- P⁺: every positive binary tree has a positive perfect subtree.

Definitions

Cantor space

The Cantor space 2^{ω} is the set of countable binary sequences. The canonical topology of Cantor space 2^{ω} has a base consisting of

$$[\sigma] = \{ X \in 2^{\omega} : \sigma \prec X \}, \sigma \in 2^{<\omega},$$

where $2^{<\omega}$ denotes the set of finite binary sequences and $\sigma \prec X$ means that σ is an initial segment of X.

The Lebesgue measure μ on Cantor space is a measure such that:

$$\mu([\sigma]) = 2^{-|\sigma|}.$$

A D A A

A set $C \subseteq 2^{\omega}$ is null iff $\mu(C) = 0$, conull iff $\mu(C) = 1$, positive iff $\mu(C) > 0$.

Definitions

Closed sets and trees

A (binary) tree T is a subset of $2^{<\omega}$ s.t. $\sigma \prec \tau \in T$ implies $\sigma \in T$. A leaf of a tree T is some $\sigma \in T$ without extensions in T. A branch of a tree Tis an element of Cantor space whose finite initial segments are always in T. [T] is the set of branches of T. The set [T] of a tree T is always a closed subset of Cantor space. T is positive iff [T] is positive as a subset of 2^{ω} .

On the other hand, a closed subset $\ensuremath{\mathcal{C}}$ of Cantor space can be coded by a tree

$$T = \{ \sigma : \exists X \in \mathcal{C}(\sigma \prec X) \}$$

in the sense that C = [T]. There could be $S \neq T$ with [S] = [T], e.g., T is defined from some C as above and S contains T and some extra leaves.

A perfect subset of Cantor space is a closed set without isolated points. A perfect (binary) tree is an infinite binary tree isormorphic to $2^{<\omega}$. Note that a tree T could be non-perfect even if [T] is a perfect subset of Cantor space.

Motivation from Algorithmic Randomness

In algorithmic randomness, elements of positive subsets of 2^ω have been extensively studied.

As a widely observed phenomenon in algorithmic randomness, almost every element of 2^{ω} has weak computational strength. E.g., given a non-computable X, the following set is conull:

$$\{Y \in 2^{\omega} : Y \text{ cannot compute } X\}.$$
 (1)

So, it is natural to go a step further to study perfect subsets of positive sets from a computability viewpoint. And for this sake, perfect trees are more convenient than perfect subsets of 2^{ω} .

An easy observation: if a tree contains a perfect subtree then it contains a perfect subtree computing the halting problem. In particular, every positive tree contains a perfect subtree computing the halting problem (in contrast to (1)).

Motivation from Reverse Mathematics

 WKL_0 consists of RCA_0 and the statement that every infinite binary tree has a branch. Over $\mathsf{RCA}_0,$ WKL_0 is equivalent to many important theorems, like Brouwer's Fixpoint theorem and Gödel's Completeness theorem.

 WKL_0 has a corollary so-called WWKL_0 , which plays an important role in the reverse mathematics of the part of analysis related to measure theory. WWKL_0 consists of RCA_0 and the statement that every positive binary tree has a branch.

WWKL₀ is closely related to algorithmic randomness, in that for every Martin-Löf random sequence X there is a standard model of WWKL₀ whose second order elements are all computable in X.

 WKL_0 is strictly stronger than $\mathsf{WWKL}_0,$ and WWKL_0 is strictly stronger than $\mathsf{RCA}_0.$

Clearly, P and P^+ can be regarded as variants of WWKL_0 and seem stronger than $\mathsf{WWKL}_0.$

The Propositions and WKL_0

Theorem (Chong, Li, Wang, Yang)

- 1. There exists a computable infinite tree $T \subset 2^{<\omega}$ whose perfect subtrees always compute the halting problem.
- 2. Every computable positive tree $T \subseteq 2^{<\omega}$ contains a positive perfect subtree P which is low (i.e., the halting problem relative to P, P', is computable in \emptyset' , the standard halting problem).
- 3. $WKL_0 \rightarrow P^+ \rightarrow P \rightarrow WWKL_0$.

Claus 1 means that P would become much less interesting if the positiveness assumption on T were omitted.

Clauses 2 and 3 can be regarded as analogues of Low Basis Theorem (which is a computability form of WKL_0).

A D A A

The Propositions and WKL_0 Proof

Notation: For a finite binary sequence σ , $|\sigma|$ denotes its length. Let T_{σ} be the subtree of T whose nodes are all comparable with σ .

- Every positive tree T computes a subtree S and a density function $d: 2^{<\omega} \to \mathbb{Q}$ s.t. $\mu([S]) > q$ for some positive rational $q < \mu([T])$ and if $[S_{\sigma}] \neq \emptyset$ then $\mu([S_{\sigma}]) > d(\sigma)$.
- ▶ Define a computable increasing function $g: \omega \to \omega$ s.t. if $[S_{\sigma}] \neq \emptyset$ then σ has two extensions $\tau_0, \tau_1 \in S$ s.t. $|\tau_i| = g(|\sigma|)$ and $[S_{\tau_i}] \neq \emptyset$.
- Now the perfect subtrees P of S s.t. µ([P]) ≥ q and the nodes of P split no later than g form a Π⁰₁ class, which allows an application of Low Basis Theorem to obtain the 2nd clause.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► The above proof formalized in second order arithmetic yields $WKL_0 \vdash P^+$.

Perfect Subsets of Arbitrary Sets

Theorem (CLWY)

Fix a noncomputable X (e.g., the halting problem).

- 1. Every positive binary tree (regardless of its complexity) contains a perfect subtree which does not compute *X*.
- 2. Every positive subset of Cantor space contains a perfect subset which can be coded by a perfect tree not computing X.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Perfect Subsets of Arbitrary Sets Proof

Let S be a positive tree. We build the desired subtree $G \subset S$ by a variant of Mathias forcing.

A forcing condition is a pair (F,T) s.t. F is a finite binary tree, T is a binary tree not computing X, and for every leaf σ of F the tree $(S \cap T)_{\sigma}$ (i.e., take the intersection of S and T, then remove nodes incomparable with σ) is positive.

A condition (F_1, T_1) extends (F_0, T_0) iff F_1 end-extends F_0 (i.e., $F_0 \subseteq F_1$ and every new node in F_1 extends a leaf of F_0) and $T_1 \subseteq T_0$.

The key here is the following observation. Given a condition (F,T) and a positive rational q s.t. $\mu([(S \cap T)_{\sigma}]) > q$ for all leaves σ of F, the set of trees R, s.t. $\mu([(R \cap T)_{\sigma}]) > q$ for all leaves σ of F, form a $\Pi_1^{0,T}$ class and contains S.

Then it can be shown that a sufficiently generic sequence $((F_n, T_n) : n \in \omega)$ produces a perfect $P = \bigcup_n F_n \subseteq T$ as desired.

Two Questions

We have

$$\mathsf{WKL}_0 \to \mathsf{P}^+ \to \mathsf{P} \to \mathsf{WWKL}_0.$$

Are these arrows reversible?

Does every positive subset of Cantor space contain a positive perfect subset coded by a perfect tree with low computational strength?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Separating WKL $_0$ and P⁺

Theorem (Patey)

Every positive tree contains a perfect subtree which does not compute a completion of PA (the first order Peano arithmetic). $RCA_0 + P \nvDash WKL_0.$

Theorem (Barmaplias, Wang, Xia)

Fix a non-computable X. Every positive tree contains a positive perfect subtree which computes neither a completion of PA nor X.

Hence $\mathsf{RCA}_0 + \mathsf{P}^+ \not\vdash \mathsf{WKL}_0$.

By the regularity of Lebesgue measure, the above computatibility results also apply for arbitrary positive subsets of Cantor space.

Separating WKL₀ and P^+

Proof: lower density function

The proof of the computability result of BWX uses a refined forcing of $\mathsf{CLWY}.$

A lower density function (I.d.f.) is a function d s.t. its domain is a finite binary tree, d takes real values, and if $\sigma \in \text{dom } d$ then

$$d(\sigma)2^{-|\sigma|} \le \sum_{\sigma\langle i\rangle\in\operatorname{dom} d} d(\sigma\langle i\rangle)2^{-|\sigma|-1}.$$

An infinite tree T is d-dense iff $\mu([T_{\sigma}]) \ge d(\sigma)2^{-|\sigma|}$ for each $\sigma \in \text{dom } d$. Given two l.d.f. d and d', $d' \le d$ iff dom d' end-extends dom d (as finite trees) and if $\sigma \in \text{dom } d$ then $d'(\sigma) \ge d(\sigma)$. So if T is d'-dense and $d' \le d$ then T is d-dense as well.

A D A A

Separating WKL₀ and P^+

Proof: forcing conditions

A condition is a pair $p = (d_p, T_p)$ s.t. T_p is an infinite d_p -dense tree and $\mu([(T_p)_{\sigma}]) > 0$ for every $\sigma \in T_p$.

 $q = (d_q, T_q) \le p$ iff $d_q \le d_p$ and T_q is a subtree of T_p .

Note that if we let $F_p = \text{dom } d_p$ then (F_p, T_p) is a condition in the forcing of CLWY. However, the computability condition in CLWY is removed here, thanks to an observation of Patey.

Fix a non-computable X and a positive tree T. We may assume that every T_σ is positive.

Working with conditions whose second components are subtrees of T, a series of density lemmas show that a sufficiently generic sequence $(p_n : n \in \omega)$ produces a tree $P = \bigcup_n F_{p_n} = \bigcup_n \operatorname{dom} d_{p_n}$ with desired properties (positive, perfect, being a subtree of T, neither PA nor computing X).

Separating P and WWKL $_0$

Theorem (BWX)

There exists a positive computable tree T s.t. the following set is null:

 $\{X : X \text{ computes a perfect subtree of } T\}.$

So sufficiently random sequences cannot compute perfect subtrees of T. Hence WWKL₀ is strictly weaker than P.

This can also be seen as another evidence that random sequences have weak computational strength.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Separating P and WWKL $_0$

The key to the construction of T is the following technical lemma.

Lemma

Let Φ be an oracle Turing machine s.t. if $k \in \omega$ and X is any oracle with $\Phi(X;k) \downarrow$ then $\Phi(X;k)$ is a set of 2^k many pairwise incomparable finite binary sequences. Then for any $k \in \omega$ and any $\epsilon > 0$, there exists a c.e. set $V \subset 2^{<\omega}$ of pairwise incomparable sequences s.t.

- 1. $\sum_{\sigma \in V} 2^{-|\sigma|} \leq \epsilon;$
- 2. $\{X : \Phi(X;k) \downarrow \text{ contains no extension of any element of } V\}$ has measure at most $1/(k\epsilon)$.

 $\Phi(X;k)$ is supposed to be the k-th layer of a perfect tree computable in X. So, by removing a subset of 2^{ω} with measure $\leq \epsilon$ from [T], we can prevent a set of oracles with measure $\geq 1 - 1/(k\epsilon)$ from computing a complete binary subtree of T with height k.

Thank you for your attention.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 りへぐ