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The Two Propositions

P: every positive binary tree has a perfect subtree.

P+: every positive binary tree has a positive perfect subtree.



Definitions
Cantor space

The Cantor space 2ω is the set of countable binary sequences.

The canonical topology of Cantor space 2ω has a base consisting of

[σ] = {X ∈ 2ω : σ ≺ X}, σ ∈ 2<ω,

where 2<ω denotes the set of finite binary sequences and σ ≺ X means
that σ is an initial segment of X.

The Lebesgue measure µ on Cantor space is a measure such that:

µ([σ]) = 2−|σ|.

A set C ⊆ 2ω is null iff µ(C) = 0, conull iff µ(C) = 1, positive iff
µ(C) > 0.



Definitions
Closed sets and trees

A (binary) tree T is a subset of 2<ω s.t. σ ≺ τ ∈ T implies σ ∈ T . A leaf
of a tree T is some σ ∈ T without extensions in T . A branch of a tree T
is an element of Cantor space whose finite initial segments are always in
T . [T ] is the set of branches of T . The set [T ] of a tree T is always a
closed subset of Cantor space. T is positive iff [T ] is positive as a subset
of 2ω.

On the other hand, a closed subset C of Cantor space can be coded by a
tree

T = {σ : ∃X ∈ C(σ ≺ X)}

in the sense that C = [T ]. There could be S 6= T with [S] = [T ], e.g., T
is defined from some C as above and S contains T and some extra leaves.

A perfect subset of Cantor space is a closed set without isolated points.
A perfect (binary) tree is an infinite binary tree isormorphic to 2<ω. Note
that a tree T could be non-perfect even if [T ] is a perfect subset of
Cantor space.



Motivation from Algorithmic Randomness

In algorithmic randomness, elements of positive subsets of 2ω have been
extensively studied.

As a widely observed phenomenon in algorithmic randomness, almost
every element of 2ω has weak computational strength. E.g., given a
non-computable X, the following set is conull:

{Y ∈ 2ω : Y cannot compute X}. (1)

So, it is natural to go a step further to study perfect subsets of positive
sets from a computability viewpoint. And for this sake, perfect trees are
more convenient than perfect subsets of 2ω.

An easy observation: if a tree contains a perfect subtree then it contains
a perfect subtree computing the halting problem. In particular, every
positive tree contains a perfect subtree computing the halting problem
(in contrast to (1)).



Motivation from Reverse Mathematics

WKL0 consists of RCA0 and the statement that every infinite binary tree
has a branch. Over RCA0, WKL0 is equivalent to many important
theorems, like Brouwer’s Fixpoint theorem and Gödel’s Completeness
theorem.

WKL0 has a corollary so-called WWKL0, which plays an important role in
the reverse mathematics of the part of analysis related to measure theory.
WWKL0 consists of RCA0 and the statement that every positive binary
tree has a branch.

WWKL0 is closely related to algorithmic randomness, in that for every
Martin-Löf random sequence X there is a standard model of WWKL0

whose second order elements are all computable in X.

WKL0 is strictly stronger than WWKL0, and WWKL0 is strictly stronger
than RCA0.

Clearly, P and P+ can be regarded as variants of WWKL0 and seem
stronger than WWKL0.



The Propositions and WKL0

Theorem (Chong, Li, Wang, Yang)

1. There exists a computable infinite tree T ⊂ 2<ω whose perfect
subtrees always compute the halting problem.

2. Every computable positive tree T ⊆ 2<ω contains a positive perfect
subtree P which is low (i.e., the halting problem relative to P , P ′,
is computable in ∅′, the standard halting problem).

3. WKL0 → P+ → P→WWKL0.

Claus 1 means that P would become much less interesting if the
positiveness assumption on T were omitted.

Clauses 2 and 3 can be regarded as analogues of Low Basis Theorem
(which is a computability form of WKL0).



The Propositions and WKL0
Proof

Notation: For a finite binary sequence σ, |σ| denotes its length. Let Tσ
be the subtree of T whose nodes are all comparable with σ.

I Every positive tree T computes a subtree S and a density function
d : 2<ω → Q s.t. µ([S]) > q for some positive rational q < µ([T ])
and if [Sσ] 6= ∅ then µ([Sσ]) > d(σ).

I Define a computable increasing function g : ω → ω s.t. if [Sσ] 6= ∅
then σ has two extensions τ0, τ1 ∈ S s.t. |τi| = g(|σ|) and [Sτi ] 6= ∅.

I Now the perfect subtrees P of S s.t. µ([P ]) ≥ q and the nodes of
P split no later than g form a Π0

1 class, which allows an application
of Low Basis Theorem to obtain the 2nd clause.

I The above proof formalized in second order arithmetic yields
WKL0 ` P+.



Perfect Subsets of Arbitrary Sets

Theorem (CLWY)

Fix a noncomputable X (e.g., the halting problem).

1. Every positive binary tree (regardless of its complexity) contains a
perfect subtree which does not compute X.

2. Every positive subset of Cantor space contains a perfect subset
which can be coded by a perfect tree not computing X.



Perfect Subsets of Arbitrary Sets
Proof

Let S be a positive tree. We build the desired subtree G ⊂ S by a
variant of Mathias forcing.

A forcing condition is a pair (F, T ) s.t. F is a finite binary tree, T is a
binary tree not computing X, and for every leaf σ of F the tree (S ∩ T )σ
(i.e., take the intersection of S and T , then remove nodes incomparable
with σ) is positive.

A condition (F1, T1) extends (F0, T0) iff F1 end-extends F0 (i.e.,
F0 ⊆ F1 and every new node in F1 extends a leaf of F0) and T1 ⊆ T0.

The key here is the following observation. Given a condition (F, T ) and a
positive rational q s.t. µ([(S ∩ T )σ]) > q for all leaves σ of F , the set of

trees R, s.t. µ([(R ∩ T )σ]) > q for all leaves σ of F , form a Π0,T
1 class

and contains S.

Then it can be shown that a sufficiently generic sequence
((Fn, Tn) : n ∈ ω) produces a perfect P =

⋃
n Fn ⊆ T as desired.



Two Questions

We have
WKL0 → P+ → P→WWKL0.

Are these arrows reversible?

Does every positive subset of Cantor space contain a positive perfect
subset coded by a perfect tree with low computational strength?



Separating WKL0 and P+

Theorem (Patey)

Every positive tree contains a perfect subtree which does not compute a
completion of PA (the first order Peano arithmetic).

RCA0 + P 6`WKL0.

Theorem (Barmaplias, Wang, Xia)

Fix a non-computable X. Every positive tree contains a positive perfect
subtree which computes neither a completion of PA nor X.

Hence RCA0 + P+ 6`WKL0.

By the regularity of Lebesgue measure, the above computatibility results
also apply for arbitrary positive subsets of Cantor space.



Separating WKL0 and P+

Proof: lower density function

The proof of the computability result of BWX uses a refined forcing of
CLWY.

A lower density function (l.d.f.) is a function d s.t. its domain is a finite
binary tree, d takes real values, and if σ ∈ dom d then

d(σ)2−|σ| ≤
∑

σ〈i〉∈dom d

d(σ〈i〉)2−|σ|−1.

An infinite tree T is d-dense iff µ([Tσ]) ≥ d(σ)2−|σ| for each σ ∈ dom d.
Given two l.d.f. d and d′, d′ ≤ d iff dom d′ end-extends dom d (as finite
trees) and if σ ∈ dom d then d′(σ) ≥ d(σ). So if T is d′-dense and
d′ ≤ d then T is d-dense as well.



Separating WKL0 and P+

Proof: forcing conditions

A condition is a pair p = (dp, Tp) s.t. Tp is an infinite dp-dense tree and
µ([(Tp)σ]) > 0 for every σ ∈ Tp.

q = (dq, Tq) ≤ p iff dq ≤ dp and Tq is a subtree of Tp.

Note that if we let Fp = dom dp then (Fp, Tp) is a condition in the
forcing of CLWY. However, the computability condition in CLWY is
removed here, thanks to an observation of Patey.

Fix a non-computable X and a positive tree T . We may assume that
every Tσ is positive.

Working with conditions whose second components are subtrees of T , a
series of density lemmas show that a sufficiently generic sequence
(pn : n ∈ ω) produces a tree P =

⋃
n Fpn =

⋃
n dom dpn with desired

properties (positive, perfect, being a subtree of T , neither PA nor
computing X).



Separating P and WWKL0

Theorem (BWX)

There exists a positive computable tree T s.t. the following set is null:

{X : X computes a perfect subtree of T}.

So sufficiently random sequences cannot compute perfect subtrees of T .

Hence WWKL0 is strictly weaker than P.

This can also be seen as another evidence that random sequences have
weak computational strength.



Separating P and WWKL0
Proof

The key to the construction of T is the following technical lemma.

Lemma

Let Φ be an oracle Turing machine s.t. if k ∈ ω and X is any oracle with
Φ(X; k) ↓ then Φ(X; k) is a set of 2k many pairwise incomparable finite
binary sequences. Then for any k ∈ ω and any ε > 0, there exists a c.e.
set V ⊂ 2<ω of pairwise incomparable sequences s.t.

1.
∑
σ∈V 2−|σ| ≤ ε;

2. {X : Φ(X; k) ↓ contains no extension of any element of V } has
measure at most 1/(kε).

Φ(X; k) is supposed to be the k-th layer of a perfect tree computable in
X. So, by removing a subset of 2ω with measure ≤ ε from [T ], we can
prevent a set of oracles with measure ≥ 1− 1/(kε) from computing a
complete binary subtree of T with height k.
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