Two Propositions Between WWKL_{0} and WKL_{0}

Wei Wang
Institute of Logic and Cognition, Sun Yat-sen University

CTFM 2019, Wuhan

Based on joint works of Chitat Chong, Wei Li, WW and Yue Yang, and of Barmaplias, WW and Xia.

The Two Propositions

P: every positive binary tree has a perfect subtree.
P^{+}: every positive binary tree has a positive perfect subtree.

Definitions

Cantor space

The Cantor space 2^{ω} is the set of countable binary sequences.
The canonical topology of Cantor space 2^{ω} has a base consisting of

$$
[\sigma]=\left\{X \in 2^{\omega}: \sigma \prec X\right\}, \sigma \in 2^{<\omega},
$$

where $2^{<\omega}$ denotes the set of finite binary sequences and $\sigma \prec X$ means that σ is an initial segment of X.
The Lebesgue measure μ on Cantor space is a measure such that:

$$
\mu([\sigma])=2^{-|\sigma|}
$$

A set $\mathcal{C} \subseteq 2^{\omega}$ is null iff $\mu(\mathcal{C})=0$, conull iff $\mu(\mathcal{C})=1$, positive iff $\mu(\mathcal{C})>0$.

Definitions

Closed sets and trees

A (binary) tree T is a subset of $2^{<\omega}$ s.t. $\sigma \prec \tau \in T$ implies $\sigma \in T$. A leaf of a tree T is some $\sigma \in T$ without extensions in T. A branch of a tree T is an element of Cantor space whose finite initial segments are always in T. [T] is the set of branches of T. The set $[T]$ of a tree T is always a closed subset of Cantor space. T is positive iff $[T]$ is positive as a subset of 2^{ω}.
On the other hand, a closed subset \mathcal{C} of Cantor space can be coded by a tree

$$
T=\{\sigma: \exists X \in \mathcal{C}(\sigma \prec X)\}
$$

in the sense that $\mathcal{C}=[T]$. There could be $S \neq T$ with $[S]=[T]$, e.g., T is defined from some \mathcal{C} as above and S contains T and some extra leaves.
A perfect subset of Cantor space is a closed set without isolated points. A perfect (binary) tree is an infinite binary tree isormorphic to $2^{<\omega}$. Note that a tree T could be non-perfect even if $[T]$ is a perfect subset of Cantor space.

Motivation from Algorithmic Randomness

In algorithmic randomness, elements of positive subsets of 2^{ω} have been extensively studied.
As a widely observed phenomenon in algorithmic randomness, almost every element of 2^{ω} has weak computational strength. E.g., given a non-computable X, the following set is conull:

$$
\begin{equation*}
\left\{Y \in 2^{\omega}: Y \text { cannot compute } X\right\} \text {. } \tag{1}
\end{equation*}
$$

So, it is natural to go a step further to study perfect subsets of positive sets from a computability viewpoint. And for this sake, perfect trees are more convenient than perfect subsets of 2^{ω}.
An easy observation: if a tree contains a perfect subtree then it contains a perfect subtree computing the halting problem. In particular, every positive tree contains a perfect subtree computing the halting problem (in contrast to (1)).

Motivation from Reverse Mathematics

WKL_{0} consists of RCA_{0} and the statement that every infinite binary tree has a branch. Over $\mathrm{RCA}_{0}, \mathrm{WKL}_{0}$ is equivalent to many important theorems, like Brouwer's Fixpoint theorem and Gödel's Completeness theorem.
WKL_{0} has a corollary so-called WWKL_{0}, which plays an important role in the reverse mathematics of the part of analysis related to measure theory. WWKL ${ }_{0}$ consists of RCA_{0} and the statement that every positive binary tree has a branch.
WWKL_{0} is closely related to algorithmic randomness, in that for every Martin-Löf random sequence X there is a standard model of WWKL_{0} whose second order elements are all computable in X.
WKL_{0} is strictly stronger than WWKL_{0}, and WWKL_{0} is strictly stronger than RCA_{0}.
Clearly, P and P^{+}can be regarded as variants of WWKL_{0} and seem stronger than WWKL_{0}.

The Propositions and WKL_{0}

Theorem (Chong, Li, Wang, Yang)

1. There exists a computable infinite tree $T \subset 2^{<\omega}$ whose perfect subtrees always compute the halting problem.
2. Every computable positive tree $T \subseteq 2^{<\omega}$ contains a positive perfect subtree P which is low (i.e., the halting problem relative to P, P^{\prime}, is computable in \emptyset^{\prime}, the standard halting problem).
3. $\mathrm{WKL}_{0} \rightarrow \mathrm{P}^{+} \rightarrow \mathrm{P} \rightarrow \mathrm{WWKL}_{0}$.

Claus 1 means that P would become much less interesting if the positiveness assumption on T were omitted.
Clauses 2 and 3 can be regarded as analogues of Low Basis Theorem (which is a computability form of WKL_{0}).

The Propositions and WKL_{0}

Proof

Notation: For a finite binary sequence $\sigma,|\sigma|$ denotes its length. Let T_{σ} be the subtree of T whose nodes are all comparable with σ.

- Every positive tree T computes a subtree S and a density function $d: 2^{<\omega} \rightarrow \mathbb{Q}$ s.t. $\mu([S])>q$ for some positive rational $q<\mu([T])$ and if $\left[S_{\sigma}\right] \neq \emptyset$ then $\mu\left(\left[S_{\sigma}\right]\right)>d(\sigma)$.
- Define a computable increasing function $g: \omega \rightarrow \omega$ s.t. if $\left[S_{\sigma}\right] \neq \emptyset$ then σ has two extensions $\tau_{0}, \tau_{1} \in S$ s.t. $\left|\tau_{i}\right|=g(|\sigma|)$ and $\left[S_{\tau_{i}}\right] \neq \emptyset$.
- Now the perfect subtrees P of S s.t. $\mu([P]) \geq q$ and the nodes of P split no later than g form a Π_{1}^{0} class, which allows an application of Low Basis Theorem to obtain the 2nd clause.
- The above proof formalized in second order arithmetic yields $\mathrm{WKL}_{0} \vdash \mathrm{P}^{+}$.

Perfect Subsets of Arbitrary Sets

Theorem (CLWY)

Fix a noncomputable X (e.g., the halting problem).

1. Every positive binary tree (regardless of its complexity) contains a perfect subtree which does not compute X.
2. Every positive subset of Cantor space contains a perfect subset which can be coded by a perfect tree not computing X.

Perfect Subsets of Arbitrary Sets

Proof

Let S be a positive tree. We build the desired subtree $G \subset S$ by a variant of Mathias forcing.

A forcing condition is a pair (F, T) s.t. F is a finite binary tree, T is a binary tree not computing X, and for every leaf σ of F the tree $(S \cap T)_{\sigma}$ (i.e., take the intersection of S and T, then remove nodes incomparable with σ) is positive.

A condition $\left(F_{1}, T_{1}\right)$ extends $\left(F_{0}, T_{0}\right)$ iff F_{1} end-extends F_{0} (i.e., $F_{0} \subseteq F_{1}$ and every new node in F_{1} extends a leaf of F_{0}) and $T_{1} \subseteq T_{0}$.
The key here is the following observation. Given a condition (F, T) and a positive rational q s.t. $\mu\left(\left[(S \cap T)_{\sigma}\right]\right)>q$ for all leaves σ of F, the set of trees R, s.t. $\mu\left(\left[(R \cap T)_{\sigma}\right]\right)>q$ for all leaves σ of F, form a $\Pi_{1}^{0, T}$ class and contains S.

Then it can be shown that a sufficiently generic sequence $\left(\left(F_{n}, T_{n}\right): n \in \omega\right)$ produces a perfect $P=\bigcup_{n} F_{n} \subseteq T$ as desired.

Two Questions

We have

$$
\mathrm{WKL}_{0} \rightarrow \mathrm{P}^{+} \rightarrow \mathrm{P} \rightarrow \mathrm{WWKL}_{0}
$$

Are these arrows reversible?

Does every positive subset of Cantor space contain a positive perfect subset coded by a perfect tree with low computational strength?

Separating WKL_{0} and P^{+}

Theorem (Patey)
Every positive tree contains a perfect subtree which does not compute a completion of PA (the first order Peano arithmetic).
$\mathrm{RCA}_{0}+\mathrm{P} \nvdash \mathrm{WKL}_{0}$.
Theorem (Barmaplias, Wang, Xia)
Fix a non-computable X. Every positive tree contains a positive perfect subtree which computes neither a completion of PA nor X.
Hence $\mathrm{RCA}_{0}+\mathrm{P}^{+} \nvdash \mathrm{WKL}_{0}$.
By the regularity of Lebesgue measure, the above computatibility results also apply for arbitrary positive subsets of Cantor space.

Separating WKL_{0} and P^{+}

Proof: lower density function

The proof of the computability result of BWX uses a refined forcing of CLWY.

A lower density function (l.d.f.) is a function d s.t. its domain is a finite binary tree, d takes real values, and if $\sigma \in \operatorname{dom} d$ then

$$
d(\sigma) 2^{-|\sigma|} \leq \sum_{\sigma\langle i\rangle \in \operatorname{dom} d} d(\sigma\langle i\rangle) 2^{-|\sigma|-1}
$$

An infinite tree T is d-dense iff $\mu\left(\left[T_{\sigma}\right]\right) \geq d(\sigma) 2^{-|\sigma|}$ for each $\sigma \in \operatorname{dom} d$. Given two l.d.f. d and $d^{\prime}, d^{\prime} \leq d$ iff $\operatorname{dom} d^{\prime}$ end-extends dom d (as finite trees) and if $\sigma \in \operatorname{dom} d$ then $d^{\prime}(\sigma) \geq d(\sigma)$. So if T is d^{\prime}-dense and $d^{\prime} \leq d$ then T is d-dense as well.

Separating WKL_{0} and P^{+}

Proof: forcing conditions

A condition is a pair $p=\left(d_{p}, T_{p}\right)$ s.t. T_{p} is an infinite d_{p}-dense tree and $\mu\left(\left[\left(T_{p}\right)_{\sigma}\right]\right)>0$ for every $\sigma \in T_{p}$.
$q=\left(d_{q}, T_{q}\right) \leq p$ iff $d_{q} \leq d_{p}$ and T_{q} is a subtree of T_{p}.
Note that if we let $F_{p}=\operatorname{dom} d_{p}$ then $\left(F_{p}, T_{p}\right)$ is a condition in the forcing of CLWY. However, the computability condition in CLWY is removed here, thanks to an observation of Patey.
Fix a non-computable X and a positive tree T. We may assume that every T_{σ} is positive.
Working with conditions whose second components are subtrees of T, a series of density lemmas show that a sufficiently generic sequence ($p_{n}: n \in \omega$) produces a tree $P=\bigcup_{n} F_{p_{n}}=\bigcup_{n}$ dom $d_{p_{n}}$ with desired properties (positive, perfect, being a subtree of T, neither PA nor computing X).

Separating P and $W W K L_{0}$

Theorem (BWX)

There exists a positive computable tree T s.t. the following set is null:

$$
\{X: X \text { computes a perfect subtree of } T\} .
$$

So sufficiently random sequences cannot compute perfect subtrees of T. Hence WWKL_{0} is strictly weaker than P .

This can also be seen as another evidence that random sequences have weak computational strength.

Separating P and WWKL_{0}

Proof

The key to the construction of T is the following technical lemma.

Lemma

Let Φ be an oracle Turing machine s.t. if $k \in \omega$ and X is any oracle with $\Phi(X ; k) \downarrow$ then $\Phi(X ; k)$ is a set of 2^{k} many pairwise incomparable finite binary sequences. Then for any $k \in \omega$ and any $\epsilon>0$, there exists a c.e. set $V \subset 2^{<\omega}$ of pairwise incomparable sequences s.t.

1. $\sum_{\sigma \in V} 2^{-|\sigma|} \leq \epsilon$;
2. $\{X: \Phi(X ; k) \downarrow$ contains no extension of any element of $V\}$ has measure at most $1 /(k \epsilon)$.
$\Phi(X ; k)$ is supposed to be the k-th layer of a perfect tree computable in X. So, by removing a subset of 2^{ω} with measure $\leq \epsilon$ from $[T]$, we can prevent a set of oracles with measure $\geq 1-1 /(k \epsilon)$ from computing a complete binary subtree of T with height k.

Thank you for your attention.

