Reverse functional analysis on complex Hilbert spaces

Takeshi Yamazaki

Mathematical institute, Tohoku University
The 9th International Conference on Computability Theory and Foundations of Mathematics in Wuhan 2019.03.25

A countable vector space A over $\mathbb{Q}+i \mathbb{Q}$ consists of a set $|A| \subseteq \mathbb{N}$ with operations + , and distinguished element $0 \in \overline{\mid} A \mid$ such that $(|A|,+, \cdot, 0)$ satisfies the usual properties of a vector space over $\mathbb{Q}+i \mathbb{Q}$.

Definition $1\left(\mathrm{RCA}_{0}\right)$

A (complex separable) Hilbert space H consists of a countable vector space A_{H} over $\mathbb{Q}+i \mathbb{Q}$ together with a function $():, A_{H} \times A_{H} \rightarrow \mathbb{C}$ satisfynig
(1) $(x, x) \geq 0,(x, y)=(y, x)$
(2) $(a x+b y, z)=a(x, z)+b(y, z),(x, y)=\overline{(y, x)}$
for all $x, y, z \in A_{H}$ and $a, b \in \mathbb{Q}+i \mathbb{Q}$.
An element x of H is a sequence $\left\langle x_{n}: n \in \mathbb{N}\right\rangle$ from A_{H} such that $\left\|x_{n}-x_{m}\right\|=\sqrt{<x_{n}-x_{m}, x_{n}-x_{m}>} \leq 2^{-n}$ whenever $n \leq m$.

Let H be a Hilbert space. A closed subspace M is defined as a separably closed subset of H, i.e, it is defined by a sequence $\left\langle x_{n}: n \in \mathbb{N}\right\rangle$ from H such that $x \in M$ if and only if for any $\varepsilon>0,\left\|x-x_{n}\right\|<\varepsilon$ for some n.

Theorem 2 (RCA_{0}, Avigad and Simic 06)

Each of the following statements is equivalent to ACA:
(1) For every closed subspace M of a Hilbert space H, the orthogonal projection P_{M} for M exists.
(2) For every closed subspace M of H and every point x in H, the orthogonal projection of x on M exists.
(3) For every closed subspace M of H and every point x in $H, d(x, M)$ exists.

For a subset A of $H, x \in A^{\perp}$ is an element such that $(x, y)=0$ for all $y \in A$.

Theorem 3 (RCA ${ }_{0}$, Tanaka and Saito 96?)

The following statement is equivalent to ACA: For every closed subspace M of a Hilbert space H, a closed subspace M^{\perp} exists.

Note that if M^{\perp} may not exist, we can state $H=M \oplus M^{\perp}$ by \mathcal{L}_{2}-formula. From Theorem 2, this holds.

Proposition 4 (RCA $)$

The following statement is equivalent to ACA: For every closed subspace M of a Hilbert space $H, H=M \oplus M^{\perp}$

Theorem 5 (RCA_{0}, Avigad and Simic 06)

Any Hilbert space has an orthonormal basis.
So two infinite dimensional Hilbert spaces are unitarily equivalent. Let $\left\langle e_{n}: n \in \mathbb{N}\right\rangle$ be an orthonormal basis of H. We have Parseval's identity:

$$
\|x\|^{2}=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} \quad \text { where } a_{n}=\left(x, e_{n}\right) .
$$

Definition 6 (RCA $)$

A bounded linear operator T between Hilbert spaces H_{1} and H_{2}, is a function $T: A_{H_{1}} \rightarrow H_{2}$ such that
(1) T is linear, i.e., $T\left(q_{1} x_{1}+q_{2} x_{2}\right)=q_{1} T\left(x_{1}\right)+q_{2} T\left(x_{2}\right)$ for all $q_{1}, q_{2} \in \mathbb{Q}+i \mathbb{Q}$ and $x_{1}, x_{2} \in A_{H_{1}}$.
(2) The norm of T is bounded, i.e., there exists a real number K such that $\|T(x)\| \leq K\|x\|$ for all $x \in A_{H_{1}}$.
Then, for $x=\left\langle x_{n}: n \in \mathbb{N}\right\rangle \in H_{1}$, we define
$T(x)=\lim _{n \rightarrow \infty} T\left(x_{n}\right)$. So we can regarded T as
$T: H_{1} \rightarrow H_{2}$.
A linear operator $T: H_{1} \rightarrow H_{2}$ is bounded if and only if it is continuous. A linear functional T is a linear operator from a Hilbert space H to \mathbb{C}.
The Riesz representation theorem is the statement that any bounded linear functional T on a Hilbert space H, has a unique vector $y \in H$ such that $T(x)=(x, y)$ for each $x \in H$.

Fact 7 (RCA RC_{0} Tanaka and Saito 96?)

The Riesz representation theorem is equivalent to ACA.

The proof is simple. To prove the Riesz representation theorem implies ACA, for an injective function $f: \mathbb{N} \rightarrow \mathbb{N}$, consider $T: I^{2} \rightarrow \mathbb{C} ; e_{n} \mapsto \sum_{i<n} 2^{-f(i)}$. Take $y \in I^{2}$ such that $T(x)=(x, y)$ for each $x \in I^{2}$, then $\|y\|=\sum_{n=0}^{\infty} 2^{-f(n)} . \square$ Let $\left\langle x_{n}: n \in \mathbb{N}\right\rangle$ be a sequence from H and $x \in H$. Define
(1) $x_{n} \rightarrow x(\mathrm{w}) \Leftrightarrow\left(x_{n}, y\right) \rightarrow(x, y)$ for all $y \in H$.
(2) $x_{n} \rightarrow x(\mathrm{~s}) \Leftrightarrow \lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|=0$.

Proposition $8\left(\mathrm{RCA}_{0}\right)$

(1) $x_{n} \rightarrow x(w)$ and $\left\|x_{n}\right\| \rightarrow\|x\|$, then $x_{n} \rightarrow x(s)$
(2) $x_{n} \rightarrow x(w)$ and $y_{n} \rightarrow y(s)$, then $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$

To prove (2), we use the Uniform boundedness principle which is proved in RCA_{0}.

Proposition 9 (RCA_{0})

The following statement is equivalent to ACA: any bounded sequence $\left\langle x_{n}: n \in \mathbb{N}\right\rangle$ from a Hilbert space has a weakly convergent subsequence.

For a bounded linear operator $T: H_{1} \rightarrow H_{2}, T^{*}: H_{2} \rightarrow H_{1}$ is the adjoint if $(T x, y)=\left(x, T^{*} y\right)$ for all $x \in H_{1}$ and $y \in H_{2}$.

Theorem 10 (RCA_{0}, Tanaka and Saito 96)

The existence of the adjoint for any bounded linear operator is equivalent to ACA.

In fact, the following statement already implies ACA: For any bounded linear operator $T: I^{2} \rightarrow I^{2}$ and any $x \in I^{2}$, there exists $u \in I^{2}$ such that $(T y, x)=(y, u)$ for all $y \in I^{2}$.

Basic properties of the adjoint, if it exists, are shown in RCA_{0}.
Let $\left\langle T_{n}: n \in \mathbb{N}\right\rangle$ be a sequence of bounded linear operators from H_{1} to H_{2}, and T a bounded linear operator from H_{1} to H_{2}. Define
(1) $T_{n} \rightarrow T(w) \Leftrightarrow T_{n}(x) \rightarrow T(x)(w)$ for all $x \in H_{1}$.
(2) $T_{n} \rightarrow T(s) \Leftrightarrow T_{n}(x) \rightarrow T(x)$ (s) for all $x \in H_{1}$.
(3) $T_{n} \rightarrow T$ uniformly \Leftrightarrow there is a sequence $\left\langle r_{n}: n \in \mathbb{N}\right\rangle$ of nonnegative reals such that $\left\|T_{n}(x)-T(x)\right\| \leq r_{n}$ for all n and $x \in H_{1}$ and $\lim _{n} r_{n}=0$.

Let $T_{n}, T: H_{1} \rightarrow H_{2}$ and $S_{n}, S: H_{2} \rightarrow H_{3}$.
If $T_{n} \rightarrow T(s)$ and $S_{n} \rightarrow S(s)$, then $S_{n} T_{n} \rightarrow S T(s)$.
If $T_{n} \rightarrow T(w)$ and their adjoints exist, then $T_{n}^{*} \rightarrow T^{*}(w)$.
These and the uniform-continuity versions are proved in RCA_{0}.

Theorem 11 (Banach-Steinhaus Theorem)

Let H_{1} and H_{2} be Hilbert spaces. Let $\left\langle T_{n}: n \in \mathbb{N}\right\rangle$ be a sequence of bounded linear operators from H_{1} to H_{2}. If $\left\langle\left(T_{n} x, y\right): n \in \mathbb{N}\right\rangle$ is convergent for any $x, y \in H_{1}$, then there exists a bounded linear operator $T: H_{1} \rightarrow H_{2}$ such that $T_{n} \rightarrow T(w)$.

Theorem 12 (RCA_{0})

The Banach-Steinhaus theorem is equivalent to ACA.

For self-adjoint operators T_{1} and T_{2} over $H, T_{1} \leq T_{2}$ if $\left(T_{1} x, x\right) \leq\left(T_{2} x, x\right)$ for all $x \in H$. If $O \leq T$, then $O \leq T^{n}$, and if $O \leq T \leq I$, then $T^{n} \leq T^{m}$ for $m \leq n$, by the usual induction.

Using the above version of the Banach-Steinhaus theorem, we can show this.

Theorem 13 (RCA_{0})

The following statement is equivalent to ACA: Let $\left\langle T_{n}: n \in \mathbb{N}\right\rangle$ be an increasing sequence of self-adjoint operators bounded some self-adjoint operator S. Then it strongly converges to some self-adjoint operator T.

For a closed subspace M, if the orthogonal projection P_{M} exists, P_{M} is a positive self-adjoint operator which is idempotent. Conversely, given an idempotent self-adjoint operator P, we define a closed subspace M by $\left\langle P(a): a \in A_{H}\right\rangle$. Then $P=P_{M}$.

Theorem 14 (RCA_{0})

Each of the following statements is equivalent to ACA:
(1) Any increasing sequence $\left\langle P_{n}: n \in \mathbb{N}\right\rangle$ strongly converges to some projection.
(2) Any decreasing sequence $\left\langle P_{n}: n \in \mathbb{N}\right\rangle$ strongly converges to some projection.

A bounded linear operator $U: H \rightarrow H$ is an isometry if $\|U(x)\|=\|x\|$ for all $x \in H$. A surjective isometry is said to be unitary.
A bounded linear operator $U: H^{\prime} \rightarrow H$ is a "partial" isometry on H if $\|U(x)\|=\|x\|$ for all $x \in H^{\prime}$.

Proposition 15 (RCA_{0})

The following statement is equivalent to ACA: For any bounded linear operator T of a Hilbert space H, there are a positive self-adjoint Q and a "partial" isometry U such that $\|Q x\|=\|T x\|$ for all $x \in H$ and $T=U Q$.
if T is normal, that is, $T^{*} T=T T^{*}$, then the above U can be taken as unitary, as usual.
The idea of the proof. For an injective function $f: \mathbb{N} \rightarrow \mathbb{N}$, consider $T: I^{2} \rightarrow I^{2} ; e_{0} \mapsto e_{0}, e_{n} \mapsto 2^{-f(n-1) / 2} e_{0} n>0$. Then $\left\|Q^{2} e_{0}\right\|^{2}=1+\sum_{n=0}^{\infty} 2^{-f(n)} . \square$

We say that a bounded operator T on H is invertible if T is a bijection of H and its inverse is also bounded. The spectrum of T, denoted by $\sigma(T)$, is the set of complex numbers z for which $T-z$ l is not invertible.

Proposition 16 (RCA_{0})

If T is self-adjoint, then $\sigma(T)$ is a bounded subset of reals.
ACA_{0} implies $\sigma(T)$ is closed.

Proposition $17\left(\Gamma_{1}^{1}-\mathrm{CA}_{0}\right)$

Any compact self-adjoint operator T has a sequence $\left\langle P_{n}: n \in \mathbb{N}\right\rangle$ of projections and a sequence $\left\langle r_{n}: n \in \mathbb{N}\right\rangle$ of real numbers such that $P_{n} P_{m}=0$ for any $n \neq m$ and $\lim _{n \rightarrow \infty} r_{n}=0$ and $T_{n}=\sum_{i<n} r_{i} P_{i} \rightarrow T$ uniformly.

References

T
Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge university press, 2009.

嗇 Jeremy Avigad and Ksenija Simic, Fundamental Notions of Analysis in Subsystems of Second-Order Arithmetic, Annals of Pure and Applied Logic, 139:138-184, 2006.

