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Preface

Welcome to CTFM 2013!

Computability Theory and Foundations of Mathematics (CTFM) aims to provide par-
ticipants with the opportunity to exchange ideas, information and experiences on active
and emerging topics in logic, including but not limited to: Computability Theory, Re-
verse Mathematics, Nonstandard Analysis, Proof Theory, Constructive Mathematics,
Theory of Randomness and Computational Complexity Theory. This is a successor to
Workshop on Proof Theory and Computability Theory 2012 - Philosophical Frontiers in
Reverse Mathematics (February 20 - 23, 2012, Tokyo).

CTFM acknowledges support from Grants-in-Aid for Scientific Research (KAKENHI)
No.23340020; the research project ”Philosophical Frontiers in Reverse Mathematics”
granted by John Templeton Foundation; Joint Research Projects between Tohoku Uni-
versity and Ghent University; JSPS-FWO Bilateral Programs; Tohoku University, Chiba
University, Japan Advanced Institute of Science and Technology, and Tokyo Institute of
Technology.

February 2013

Kazuyuki Tanaka
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Conference venue

Ookayama campus of Tokyo Institute of Technology, Tokyo, Japan.

Meeting room

Multi-Purpose Digital Hall (West building 9)

Banquet

Buffet dinner. February 19th, Tuesday. The Centennial Hall.

  

Meeting Room

Multi-Purpose Degital Hall

Banquet

The Centennial Hall 
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Program

February 18 (Monday)

9:30. Reception.

Session 1. Reverse Mathematics and Unprovability. (chair: Keita Yokoyama)

Contributed talk 1. 10:00 – 10:30. Takeshi Yamazaki.
Reverse Mathematics and Commutative Ring Theory.

Contributed talk 2. 10:30 – 11:00. Florian Pelupessy.
A short proof of two Ramsey like independence results.

11:00 – 11:15. Short break.

Invited talk 1. 11:15 – 12:00. (chair: Keita Yokoyama) Yang Yue.
Ramsey Theorem for Pairs and Reverse Mathematics.

12:00 – 13:30. Lunch break.

Invited talk 2. 13:30 – 14:15. (chair: Takeshi Yamazaki) Wu Guohua.
On a theorem of Seetapun on locally noncappable degrees.

14:15 – 14:30. Short break.

Session 2. Degree Theory. (chair: Takeshi Yamazaki)

Contributed talk 3. 14:30 – 15:00. Takayuki Kihara.
An application of Turing degree theory to the ω-decomposability problem on Borel
functions.

Contributed talk 4. 15:00 – 15:30. Kojiro Higuchi.
The Muchnik degrees of Π0

1 and Σ1
1 classes.

15:30 – 16:00. Coffee break.

Session 3. Constructive Mathematics. (chair: Hajime Ishihara)

Contributed talk 5. 16:00 – 16:30. Kazuto Yoshimura.
A Categorical Description of Relativization.

Contributed talk 6. 16:30 – 17:00. Josef Berger.
Inequality of Reals.

Contributed talk 7. 17:00 – 17:30. Sam Sanders.
Reuniting the antipodes, bringing together Nonstandard and Constructive Analy-
sis.

v



February 19 (Tuesday)

Session 4. Proof Theory and Semantics. (chair: Ryo Kashima)

Contributed talk 8. 9:30 – 10:00. Ken-Etsu Fujita.
Decidability for type-related problems of 2nd-order lambda-calculi and negative
translations.

Contributed talk 9. 10:00 – 10:30. Gyesik Lee.
Subsystems of arithmetic as type theories with inductive definitions.

Contributed talk 10. 10:30 – 11:00. Michele Basaldella.
An interactive semantics for classical proofs.

11:00 – 11:15. Short break.

Invited talk 3. 11:15 – 12:00. (chair: Ryo Kashima) Helmut Schwichtenberg
Proofs, computations and analysis.

12:00 – 13:30. Lunch break.

Invited talk 4. 13:30 – 14:15. (chair: Kazushige Terui) Toshiyasu Arai
Π1

n-indescribabilities in proof theory.

14:15 – 14:30. Short break.

Session 5. Ordinals and Weak Arithmetic. (chair: Toshiyasu Arai)

Contributed talk 11. 14:30 – 15:00. Jeroen Van der Meeren.
Recursively defined trees and their maximal order types.

Contributed talk 12. 15:00 – 15:30. Naohi Eguchi.
Inductive Definitions in Bounded Arithmetic: A New Way to Approach P vs.
PSPACE.

Contributed talk 13. 15:30 – 16:00. Yoshihiro Horihata.
Theories of concatenation, arithmetic, and undecidability.

16:00 – 16:30. Coffee break.

Invited talk 5. 16:30 – 17:15. (chair: Kazuyuki Tanaka) Stephen G. Simpson.
A survey of basis theorems.

18:00. Banquet.
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February 20 (Wednesday)

Session 6. Algorithmic Randomness. (chair: Takayuki Kihara)

Contributed talk 14. 9:30 – 10:00. Kenshi Miyabe.
Computably measurable sets and computably measurable functions in terms of
algorithmic randomness.

Contributed talk 15. 10:00 – 10:30. Ningning Peng.
On the Notions of Relative Randomness.

Contributed talk 16. 10:30 – 11:00. Kohtaro Tadaki and Norihisa Doi.
The Generic Group Model and Algorithmic Randomness.

11:00 – 11:15. Short break.

Invited talk 6. 11:15 – 12:00. (chair: Takayuki Kihara) Chi Tat Chong.
Randomness in the Higher Setting.

12:00 – 13:30. Lunch break.

Session 7. Nonstandard Models. (chair: Sam Sanders)

Contributed talk 17. 13:30 – 14:00. Tin Lok Wong.
Where closure under Turing jumps can replace elementarity between structures.

Contributed talk 18. 14:00 – 14:30. Keita Yokoyama.
Several versions of Friedman’s self-embedding theorem.

14:30 – 15:00. Coffee break.

Session 8. Complexity and Probability. (chair: Naohi Eguchi)

Contributed talk 19. 15:00 – 15:30. Akitoshi Kawamura, Norbert Müller, Carsten
Rösnick and Martin Ziegler.
Parameterized Uniform Complexity in Numerics: from Smooth to Analytic, from
NP-hard to Polytime.

Contributed talk 20. 15:30 – 16:00. Yoriyuki Yamagata.
Bounded Arithmetic in Free Logic.

Contributed talk 21. 16:00 – 16:30. Cameron E. Freer.
Computability and Conditional Probability.

16:30. Closing.
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Ramsey Theorem for Pairs and Reverse
Mathmetics

Yang Yue

Department of Mathematics, National University of Singapore
Block S17, 10 Lower Kent Ridge Road, Singapore 119076

matyangy@nus.edu.sg

Ramsey Theorem is a well-known theorem in combinatorics. However, a spe-
cial weak form of it (Ramsey Theorem for Pairs) has been a hot topic in Re-
cursion Theory and Reverse Mathematics. In this talk I will give a survey on
some recent progresses related to combinatoric principles weaker than Ramsey’s
Theorem for Pairs. In particular, I will speak about some results obtained by
Chitat Chong, Ted Slaman and me.
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On a theorem of Seetapun on locally
noncappable degrees

Wu Guohua

Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

guohua@ntu.edu.sg

In his thesis, Seetapun proved that any nonzero incomplete c.e. degree, a say,
can have a c.e. degree c above it, witnessing that a is locally noncappable, i.e.
no nonzero c.e. degree below c can form a minimal pair with a. As Seetapun
pointed out there, his theorem implies that there is no maximal nonbounding
degree (bounding no minimal pairs). In this talk, I will show how to make the
degree c in Seetapun’s theorem high2, a joint work with Frank Stephan. Our
theorem implies that some well-known results of Downey, Lempp and Shore
(high2 nonbounding degrees), and Li (high2 plus-cupping degrees), and others.
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Proofs, computations and analysis

Helmut Schwichtenberg

Mathematisches Institut der Universität München, Germany
schwicht@math.lmu.de

Algorithms are viewed as one aspect of proofs in (constructive) analysis. Data
for such algorithms are finite or infinite lists of signed digits -1, 0, 1 (i.e., reals
as streams), or possibly non well-founded labelled (by lists of signed digits -1,
0, 1) ternary trees (representing uniformly continuous functions). A theory of
computable functionals (TCF) suitable for this setting is described. The main
tools are (i) a distiction between computationally relevant and irrelevant logical
connectives and (ii) simultaneous inductively/coinductively defined predicates.
A realizability interpretation of proofs in TCF can be given, and a soundness
theorem holds.
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Π1
n-indescribabilities in proof theory

Toshiyasu Arai

Graduate School of Science, Chiba University, Japan
tosarai@faculty.chiba-u.jp

It is well known that the least Π1
1 -indescribable cardinal(weakly compact

cardinal) κ is much bigger than the least weakly Mahlo cardinal: the set of
Mahlo cardinals below κ is stationary in κ. Moreover for any stationary subset
S of κ, there exists an inaccessible cardinal λ < κ such that S∩λ is stationary in
λ. For inaccessible cardinals λ < κ, let λ ∈ M(S) iff S∩λ is stationary in λ. Then
if S is stationary in κ, then so is M(S). This means that in Π1

1 -indescribable
cardinal κ one can iterate the Mahlo operation M . How far can one iterate M
in κ?

It is shown that over ZF + (V = L), the existence of a Π1
1 -indescribable

cardinal is proof-theoretically reducible to iterations of Mostowski collapsings
and Mahlo operations. The same holds for Π1

n+1-indescribable cardinals and
Π1

n-indescribabilities.
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A survey of basis theorems

Stephen G. Simpson

Department of Mathematics, Pennsylvania State University
http://www.math.psu.edu/simpson/

simpson@math.psu.edu

This is my abstract for the Workshop on Computability Theory and Foundations
of Mathematics, to be held in Tokyo, February 18–20, 2013.

A basis theorem is a theorem of the form “Every nonempty effectively closed
set in an effectively compact metric space contains at least one point which is,
in some specific sense, close to being computable.” Some well known basis the-
orems are the Low Basis Theorem, the Hyperimmune-Free Basis Theorem, the
R.E. Basis Theorem, the Cone Avoidance Basis Theorem, and the Randomness
Preservation Basis Theorem. Less well known is a recent basis theorem due to
Higuchi/Hudelson/Simpson/Yokoyama concerning preservation of partial ran-
domness. In this talk we shall state these basis theorems, sketch some of their
proofs, and discuss the possibilities for combining them in various ways. We shall
present some new results and open problems.



7

Randomness in the Higher Setting

Chi Tat Chong

Department of Mathematics, National University of Singapore, Singapore 119076
chongct@math.nus.edu.sg

The study of algorithmic randomness in first-order arithmetic is an active
area of current research in recursion theory. There is a natural extension of
ideas and notions of randomness to higher order arithmetic, known as Higher
randomness.

In this talk we give a survey of some of the work done in higher randomness
by various authors, and discuss several open problems.
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Reverse Mathematics and Commutative Ring

Theory

Takeshi Yamazaki
Mathematical Institute, Tohoku University

Abstract.
The goal of Reverse Mathematics is to classify specific mathematical the-

orems according to which set existence axioms are needed to prove them. In
this talk, we will introduce some new reverse mathematical results on countable
commutative ring theory, including some fields which have not been treated as
far, such as modules, tensor product, p-adic number theory and so on.

References

[1] H. M. Friedman, S. G. Simpson, R. L. Smith, Countable algebra and set
existence axioms, Ann. Pure Appl. Logic 25 (1983), 141–181.

[2] K. Hatzikiriakou, Algebraic disguises of Σ0
1 induction, Archives of Mathe-

matical Logic 29, pp.47–51, 1989.

[3] Stephen G. Simpson, Subsystems of Second Order Arithmetic, Springer-
Verlag, 1999.

[4] Dodney G. Downey, Steffen Lempp and Joseph R. Mileti, Ideals In Com-
putable Rings, J. Algebra 314 (2007), 872–887.
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A short proof of two Ramsey like independence
results.

Florian Pelupessy
pelupessy@cage.ugent.be

Department of Mathematics, Ghent University

This is joint work with Harvey Friedman. We will examine two Ramsey like
independence results. The first one is Friedman’s adjacent Ramsey theorem (AR)
from [1] and the second one is the Paris–Harrington theorem (PH) from [2]. In
[1] Friedman proves that an infinite version of AR implies the well-ordering of
ε0. We adapt this proof to show that AR with fixed k is unprovable in IΣk.
We use the tools from this proof to also show PH with fixed dimension d+ 1 is
unprovable in IΣd. The remarkable feature of these proofs is that they are much
less complicated than earlier proofs of independence of Ramsey like theorems.

For r-tuples we use ≤ to indicate the coordinatewise order. A multivariate
function C: {0, . . . , R}k → Nr is limited if maxC(x) ≤ maxx.

Theorem 1 (adjacent Ramsey, AR). For every k, r there exists R such that
for every limited function C: {0, . . . , R}k → Nr there are x1 < . . . < xk+1 < R
with C(x1, . . . , xk) ≤ C(x2, . . . , xk+1).

We use [X]k to denote the set of k-element subsets of X, [a, b]k to denote the
set of k-element subsets of the interval [a, b]. We call sets H for which colouring
C limited to [H]d is constant homogeneous for C.

Theorem 2 (Paris–Harrington, PH). For every d, c,m there exists an R
such that for every colouring C: [m,R]d → [0, c] there exists an H ⊆ [m,R] of
size minH which is homogeneous for C.

References

1. Friedman, H. Adjacent Ramsey theory,
http://www.math.osu.edu/∼friedman.8/pdf/PA%20incomp082910.pdf

2. Paris, J. and Harrington, L. A Mathematical Incompleteness in Peano Arithmetic.
In Handbook for Mathematical Logic (Ed. J. Barwise). Amsterdam, Netherlands:
North-Holland, 1977.
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An Application of Turing Degree Theory to the
ω-Decomposability Problem on Borel Functions

Takayuki Kihara

Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
kihara.takayuki.logic@gmail.com

Almost 100 years ago, Nikolai Luzin asked whether every Borel function on
R can be decomposed into countably many continuous functions. Nowadays the
Luzin problem is known to be negative. But then, which Borel functions are
decomposable into countably many continuous functions? Jayne and Rogers [3]
proved that, for every function from an analytic space into a separable metric
space, the preimage of each Fσ set under it is again Fσ if and only if it is
decomposable into countably many continuous functions with closed domains
(in real analysis, such a real-valued function is also extensively studied under
the name of a Baire star one function). Subsequently, a number of set-theoretic
results on the decomposability problem have also been established, e.g., [2, 6, 8,
9], and several authors [1, 4, 5] have conjectured that the Jayne-Rogers Theorem
can be generalized to all finite levels of Borel functions.

In this talk, by using the Shore-Slaman Join Theorem [7] on the Turing
degrees, we show the following variant of the Jayne-Rogers Theorem, which can
be viewed as a partial solution to the generalization conjecture [1, 4, 5].

Theorem 1. Assume ξ ≤ ζ < ξ · 2 < ω1. For any function F : X → Y with X
and Y Polish, the following conditions are equivalent:

1. From any Borel code of each Σ0
ξ+1 set S ⊆ Y, one can continuously find a

Borel code of its Σ0
ζ+1 preimage F−1(S) ⊆ X .

2. F is decomposable into a collection {Fn}n∈ω of Σ0
η(n)+1-measurable functions

with Π0
ζ domains, for some ordinals {η(n)}n∈ω with η(n) + ξ ≤ ζ.

Further, even if ζ ≥ ξ · 2, the implication (2)⇒(1)⇒(2’) always holds, where
2’. F is decomposable into Σ0

η(n)+1-measurable functions with η(n) + ξ ≤ ζ.

Keywords: Descriptive Set Theory, Real Analysis, Turing degrees

References

1. A. Andretta. in Foundations of the formal sciences V. 1–38, 2007.
2. J. Cichoń, et al., J. Symb. Log. 56: 1273–1283, 1991.
3. J. E. Jayne and C. A. Rogers. J. Math. Pure Appl., 61:177–205, 1982.
4. L. Motto Ros. 2012. preprint.
5. J. Pawlikowskia and M. Sabok. Ann. Pure Appl. Log., 163:1748–1764, 2012.
6. S. Shelah and J. Steprāns. Fund. Math., 145:171–180, 1994.
7. R. A. Shore and T. A. Slaman. Math. Res. Lett., 6:711–722, 1999.
8. S. Solecki. J. Amer. Math. Soc., 11:521–550, 1998.
9. J. Zapletal, Descriptive Set Theory and Definable Forcing, 2004.
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The Muchnik degrees of Π0
1 and Σ1

1 classes

Kojiro Higuchi

Tohoku University

Abstract. In this talk, we investigate the Muchnik degree structures
of Π0

1 subsets of Cantor space. It is demonstrated that the Muchnik
degrees of Σ1

1 subsets of Cantor space or Baire space play an important
role when we study the Muchnik degrees of Π0

1 sets. In particular, we
see that an open interval between two Muchnik degrees of nonempty Π0

1

sets contains the Muchnik degree of a Π0
1 set if and only if it contains

the Muchnik degree of a Σ1
1 set.
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A Categorical Description of Relativization

Kazuto Yoshimura

k.yoshimura@jaist.ac.jp

Japan Advanced Institute of Science and Technology

The aim of this research is to give an effectivity-independent foundation
for computable analysis. In type-2 theory of effectivity [Wei00], a framework of
computable analysis, each computational structure is understood as compatible
with a topological structure. As a fragment of our reasoning for such cognition,
it is well-known that for every subset of a given computable topological space,
oracle co-r.e. closedness is coinside with topological closedness.

Recently, a categorical foundation for general topology, known as a functional
approach to general topology, came up [PT03]. On that foundation, even though
many analogous results to general topology can be obtained, we can treat not
only usual topological structures, but also other types of structures, for example,
computational one.

Using this, we give a pure categorical description of “relativization to ora-
cles” and generalize that well-known fact showing an equivalence between oracle
co-r.e. closedness and topological closedness. As a result, we obtain a gener-
alized statement which doesn’t depend on a particular effectivity concept e.g.
computability.

We work on a well-powered large category E with an equipped proper factor-
ization system (S ,T ). Assume that E is finitely complete, S is stable under
pullback and E has T -intersection. A subclass of T is said to be a fundamental
class if it contains all isomorphisms, is closed under composition and is stable
under pullback. Each fundamental class can be thought as defining a topology-
like structure on E. Each object α ∈ E is said to be an imaginary if the unique
morphism from α to a terminal object is monic and belongs to S . For each funda-
mental class F , we denote by L F the smallest intersection closed fundamental
class containing F , and define I F = {t ∈ T : ∃α: imaginary s.t. idα × t ∈ F}.

Our main result is stated as follows. For every fundamental class F , the
following two statements are equivalent: (i) I F ⊆ L F ; (ii) all imaginaries
are L F -compact. Statement (i) corresponds to say “oracle co-r.e. closedness
implies topological closedness” if we suitably define E, S , T and F . One can
see that statement (ii), and thus also statement (i), always holds when E satisfies
an additional condition. The other direction of inclusion L F ⊆ I F can also
be shown under a sufficiently strong assumption.

References

[Wei00] K. Weihrauch. Computable Analysis. Springer. 2000.
[PT03] M.C. Pedicchio and W. Tholen. Categorical Foundations: Special Topics in

Order, Topology, Algebra, and Sheaf Theory. Cambridge University Press.
2003.
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Inequality of Reals

Josef Berger

Ernst Moritz Arndt Universität Greifswald
Institut für Mathematik und Informatik

Walther-Rathenau-Straße 47
17487 Greifswald, Germany
bergerj@uni-greifswald.de

Working in the intuitionistic formal system Elementary Analysis, we show that
the following statements are equivalent:

– ∀x, y, z ∈ R (x 6= y → x 6= z ∨ y 6= z)
– ∀x, y ∈ R (x 6= y → x ≤ y ∨ y ≤ x)
– The De Morgan law for Π0

1 -statements

R is the set of Cauchy reals. A Cauchy real is a sequence (xn) of rationals such
that

∀m,n
(
|xm − xn| ≤ m−1 + n−1

)
.

The De Morgan law for Π0
1 -statements is the following axiom: For all Π0

1 -
formulas Φ and Ψ , ¬ (Φ ∧ Ψ) ⇒ ¬Φ ∨ ¬Ψ . A formula Φ is called a Π0

1 -formula
if there exists a binary sequence α such that

Φ⇔ ∀n (αn = 0) .
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REUNITING THE ANTIPODES: BRINGING TOGETHER

NONSTANDARD ANALYSIS AND CONSTRUCTIVE ANALYSIS

SAM SANDERS

Abstract. Recently, Sanders introduced an interpretation of Errett Bishop’s
Constructive Analysis (BISH) inside a particular system of classical Nonstan-

dard Analysis called NSA ([7, 9]). The role of ‘algorithm’ is played by the

notion Ω-invariance ([6–9]); Intuitively, an object is Ω-invariant if it does not
depend on the choice of infinitesimal used in its definition. The role of ‘proof’

is played by the Transfer Principle of Nonstandard Analysis ([4,5]) as follows:

In the same way as the Brouwer-Heyting-Kolmogorov -interpretation is limited
to provable formulas, we only consider formulas A such that A↔ ∗A in NSA,

i.e. formulas which ‘satisfy Transfer’. As NSA does not include non-trivial

Transfer Principles, only some formulas A satisfy A↔ ∗A.

This interpretation from BISH into Nonstandard Analysis can be called

‘natural’ and ‘faithful’ in the following threefold way:
(i) Non-constructive principles (LPO, LLPO, MP, etc.) are interpreted as

Transfer Principles which are not available in the system NSA.

(ii) The interpretation preserves the equivalences of Constructive Reverse
Mathematics ([2, 3]).

(iii) The interpretation preserves the property that the BISH-notion of algo-

rithm is weaker than that of recursive function (See [1]).
We discuss the interpretation from BISH into NSA, and related topics.

References

[1] Errett A. Bishop, Schizophrenia in contemporary mathematics, Errett Bishop: reflections on

him and his research, Contemp. Math., vol. 39, Amer. Math. Soc., 1985, pp. 1–32.

[2] Hajime Ishihara, Reverse mathematics in Bishop’s constructive mathematics, Philosophia Sci-
entiae (Cahier Spécial) 6 (2006), 43-59.

[3] , Constructive reverse mathematics: compactness properties, From sets and types to
topology and analysis, Oxford Logic Guides, vol. 48, 2005.

[4] Vladimir Kanovei and Michael Reeken, Nonstandard analysis, axiomatically, Springer, 2004.

[5] Abraham Robinson, Non-standard analysis, North-Holland, Amsterdam, 1966.
[6] Sam Sanders, A tale of three Reverse Mathematics, Submitted (2012).

[7] , Reuniting the antipodes: Bringing together Nonstandard and Constructive Analysis,

Submitted to JSL (2012), pp. 49. Available from http://cage.ugent.be/~sasander/papers/

SALGO.pdf.

[8] , On algorithm and robustness in a Non-standard sense (Hanne Andersen, Dennis

Dieks, Wenceslao Gonzalez, Thomas Übel, and Gregory Wheeler, eds.), The Philosophy of

Science in a European Perspective, Springer, 2013.

[9] , Algorithm and Proof as Ω-invariance and Transfer: A new model of computation in
Nonstandard Analysis, Electronic Proceedings in Computer Science, DCM (2012), In Press.
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Decidability for type-related problems of
2nd-order λ-calculi and negative translations
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We provide a framework that enables systematic proofs of the undecidability
for type-related problems of λ∃ (minimal logic with negation, conjunction and
2nd order existential types) from the corresponding undecidability results for
those of λ2 (intuitionistic logic with implication and 2nd order universal types),
see Fig 1. This framework is applicable to various styles of the system λ∃, e.g.,

Problems \ Styles Church Hole-application Domain-free Type-free Curry

Type checking Yes Yes No No No

Typability No No No No No
“Yes” means that the problem is decidable, and “No” means undecidable.
Fig. 1. Decidability for type-related problems of λ2 and styles of λ-terms

Church, hole-application, domain-free, type-free, and Curry styles, see Fig 2.

λ2 : Church
| |ch

df−−−−−−−−−−→ DF
| |df

tf−−−−−−−−−−→ TF
| |tfcu−−−−−−−−−−→ Curryy∗ch

x♯ch

y∗df
x♯df

y∗tf
x♯tf

y∗cu
x♯cu

λ∃ : Church
| |ch

df−−−−−−−−−−→ DF
| |df

tf−−−−−−−−−−→ TF
| |tfcu−−−−−−−−−−→ Curry

Fig. 2. Overview of the framework

The framework essentially relies on two properties: (1) the commutativity of
type-forgetful (type-erasing) mappings | · | and translations ∗, ♯ between λ2 and

λ∃ such that |N∗s |st = (|N |st )∗
t

and |Q♯s |st = (|Q|st )♯
t

; and (2) the lifting | |−1 of
terms to increasingly well-defined terms having the proper type information. The
translations ∗ are so called negative translations or CPS-translations [1], and the
definitions are lifted to derivations from terms. In this way, ∗t-translation can
be implemented by means of | | and ∗s, see Fig 3. Based on this approach, the

Γ ⊢ N : A for some N in s-style λ2 s.t. |N | = M
lifting | |−1

←−−−−−−−−−− Γ ⊢M : A in t-style λ2yNegative translation∗s
yM∗t=|N|∗

t
=|N∗s |

¬Γ ∗, a :A∗ ⊢ N∗ : ⊥ in s-style λ∃ erasing | |
−−−−−−−−−−→ ¬Γ ∗, a :A∗ ⊢ |N∗| : ⊥ in t-style λ∃

Fig. 3. Soundness of t-style λ2

following problems of λ∃ are shown to be undecidable: (i) the typability and type
checking problems in the type-free style, and (ii) the type checking problem in
the Curry style. Finally, we observe an interesting correspondence to a negative
translation of semi-unification problems [2].
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Subsystems of arithmetic as type theories with
inductive definitions

Gyesik Lee
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Abstract. This talk is about a project called “Reverse Mathematics in
Coq”.
The program called reverse mathematics is a foundation of mathematics
that focuses on the analysis of the logical force of the most standard
mathematical theorems. The logical framework in which mathematics is
put down is one of the subsystems of second-order arithmetic, including
the so-called big five: RCA0, WKL0, ACA0, ATR0, Π1

1 -CA1. The best
reference is Simpson [2010].
On the other hand, the past 40 years have seen the link between logic and
computing, and more specifically between proofs and programs. The link
got more intimate with the development of type theory by P. Martin-Löf
in the course of 80 years which is both a logic system and a programming
language and by the development of linear logic by J.-Y. Girard whose
associated concept of polarity allows a detailed analysis of computational
properties of the basic concepts of mathematical logic.
Since its introduction by H. Friedman in 1975, the research program of
reverse mathematics has been extremely productive. It has in particular
shown that the big five are sufficient for the formalization of the majority
of standard mathematical theorems. However, the framework remained
that of classical logic. Moreover, reverse mathematics has confined itself
to the language of arithmetic which is not so efficient in practice.
Our work aims at providing a concrete framework based on a uniform
type which is finer and more useful in practice than the big five, so that
any logician or mathematician interested in formalizing the results of
reverse mathematics can use it.

Keywords: Reverse mathematics, subsystems of arithmetic, type the-
ories, Coq
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An interactive semantics for classical proofs
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The aim of this talk is to present a semantics for proofs in classical logic.
Classical logic. We use a variant of the proof–system introduced by Tait

[5] (see also [4, 3, 1]), a system which is often used for analyzing the proof–
theory of first–order classical arithmetic and its fragments. The language of this
logic consists of infinitary propositional formulas, and the proof–system for this
language is a sequent calculus with infinitary rules of inferences.

Proofs. The target of our analysis is not the provability predicate “the for-
mula A is provable”, but the relation “π is a proof of the formula A”, which we
abbreviate as π � A. In order to define this relation, we need to introduce the
concept of “formula–free proofs”, i.e., proofs that does not depend (too much) on
the formulas they prove. To understand the idea behind this concept, consider
the untyped lambda calculus. By the Curry–Howard correspondence, untyped
lambda terms can be seen as a “formula–free” formalization of natural deduction
proofs for the implicational fragment of intuitionistic propositional logic. In this
context, π � A can be read as “the untyped lambda term π has (simple) type
A in the Curry–style type assignment.” Here we use a similar idea: we define
a class of objects that we call tests which play the role of the untyped lambda
terms, and we define π � A by using Tait’s normal rules as type assignment.

Semantics. Our semantics is deeply inspired by Girard’s ludics [2]. As in
untyped lambda calculus β–reduction can be seen as the natural deduction nor-
malization procedure “without types”, we similarly define a “formula–free” cut–
elimination procedure which involves tests, that we call interaction. Using the
notion of interaction, we define a relation π � A which essentially states that
the interaction between π and any counter–test for A successfully terminates.
The relation π � A is the semantical counterpart of π � A. We finally show a
soundness–and–completeness theorem: π � A if and only if π � A.
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Recursively defined trees and their maximal
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Well-partial-orderings (hereafter wpo) play an important role in for example
logic, computer science and mathematics. They are the essential ingredient of
famous theorems like Higman’s lemma, Kruskal’s theorem, Friedman’s version
of Kruskal’s theorem ([2]) and the graph minor relation. In logic, wpo’s are quite
often related with the proof-theoretical ordinal of an axiomatic system and with
ordinal notation systems. Hence, wpo’s are important things to investigate.
A well-partial-ordering is a well-founded partial ordering (X,≤X) with no in-
finite antichains. Hence, wpo’s are the natural generalizations of the normal
well-orderings. There is a natural connection between these two notions: every
linear extension of a wpo is a well-ordering. Furthermore, De Jongh and Parikh
[1] proved the following theorem: for every wpo (X,≤X), there is a linear exten-
sion ≤+ of ≤X such that the order type of the well-ordering (X,≤+) is maximal.
The order type of this maximal extension ≤+ is denoted as o(X) and is called
the maximal order type of the wpo (X,≤X). The maximal order type captures
a lot of information about the wpo itself. Additionally, the maximal order type
of a wpo is quite often equal to the proof-theoretical ordinal of a specific theory
T . Hence, maximal order types, and therefore wpo’s, are crucial things to study.

In [3], Weiermann introduced a specific class of trees depending on a mapping
W such that ∀X(WPO(X)→WPO(W (X))). That class of recursively defined
trees is introduced to study the class of trees with a Friedman-style gap-condition
for embeddability [2]. In this talk, I will give the definition of those recursively
defined trees and talk about a general principle to compute their maximal order
types. Furthermore, I want to discuss the natural question: ‘Which theories T can
(and which cannot) prove the well-partial-orderedness of a given partial ordering
X’, and more specifically with X equal to that class of recursively defined trees.
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Inductive Definitions in Bounded Arithmetic:
A New Way to Approach P vs. PSPACE⋆
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Cook-Nguyen style second order bounded arithmetic has been developed
mainly to deal with computational complexity classes smaller than P, the class
of polynomial-time computable predicates, cf. [1]. It can be shown that a system
V1 of second order bounded arithmetic captures P in the following sense.

1. A (string) function is polytime computable if and only if it is ΣB
1 -definable

in V1.
2. This implies that a predicates is polytime computable if and only if it is

∆B
1 -definable in V1.

(For the definition of the system Vn (n ∈ N) or ΣB
n -formulas, see [1].) In [3]

Alan Skelley has extended the system V1 to a system W1
1 of third order bounded

arithmetic, capturing the class PSPACE of polynomial-space computable pred-
icates. On the other hand, in finite model theory, it is known that polytime-
computations can be captured by the least fixed points of monotone operators,
while polyspace-computations can be captured by certain fixed points of non-
monotone operators, cf. Ebbinghaus and Flum [2].

Motivated by those facts mentioned above we propose a principle LFP that
formalise the existence of the least fixed point of a monotone operator, which is
quite common in usual second order arithmetic. We show that a string function
is polytime computable if and only if it is ΣB

1 -definable in V0 +ΣB
0 -LFP. Further

we will generalise the least fixed principle LFP to non-monotone inductive defi-
nitions. The approach proposed in this talk will make it possible to discuss about
polyspace-computations without using any third order notion, and hence would
enable us to find a new aspect of the relationship between P and PSPACE.
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Theories of concatenation, arithmetic, and
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Abstract. In 2005, Grzegorczyk introduced a theory TC of concatena-
tion and proved its undecidability. In 2009, Visser, Švejdar, and Ganea
independently proved that TC and Robinson’s arithmetic Q are mutually
interpretable. In this talk, we introduce a much weaker subtheory WTC
of TC, and show that WTC and Mostowski-Robinson-Tarski’s arithmetic
R are mutually interpretable. Since R is essentially undecidable, so is
WTC. We also show that some versions of WTC are to be minimal the-
ories which are essentially undecidable.

Keywords: Theories of concatenation, First-order arithmetic, essen-
tially undecidability
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measurable functions in terms of algorithmic

randomness
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Measure theory has been used in many fields in mathematics such as proba-
bility theory, statistics and dynamical systems. Furthermore, their results have
been used in many proprams running on computers. Thus, the relation with
computation should not be unvalued.

One big problem of measure theory is that almost all theorems are equipped
with the word “almost everywhere”. By considering computability, we will be
able to replace it with “all sufficiently random points”. This is a big improvement.

There were some study of a computable version of measure theory in com-
putable analysis. The research by Hoyrup and Rojas [2] was the first one that
studied computable measure theory in terms of algorithmic randomness, that
is, Martin-Löf randomness. However, it turned out that Schnorr randomness is
more natural in the study of computable measure theory [4, 3]. Thus, we restart
it again in terms of Schnorr randomness.

The notion of computable measurable set has been studied in the literature
and there are two major approaches, the approximation approach [6, 1, 2] and
the approach via regularity [1, 2]. However, we can show that they induce exactly
the same notion up to Schnorr null. Similarly, we can show that the notion of
computable measurable functions is equivalent to Schnorr layerwise computabil-
ity. By combining with my previous work [3], a computable measurable function
has a computable integral iff it is an effective L

1-computable function [5, 4, 3].
Thus, two computable measurable functions are equal almost everywhere iff they
are equal at all Schnorr random points.
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Abstract

Let Γ be a set of (Turing) oracles. A set Z is called Γ-random if Z
is ML-random relative to A for all A ∈ Γ. We use L and G to denote
the set of low sets and the set of 1-generic sets, respectively. In [1],
Yu proved that L-randomness is equivalent to ∅′-Schnorr randomness,
where ∅′ denotes the halting problem. In this talk, we show that (G∩
L)-randomness is still equivalent to ∅′-Schnorr randomness. On the
other hand, we study the lowness and highness properties for certain
randomness notions.
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Notes in Computer Science, vol.7318, pp 581-588 (2012).



23

The Generic Group Model and Algorithmic
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Abstract. In modern cryptography, the generic group model [6] is widely
used as an imaginary framework in which the security of a cryptographic
scheme is discussed. In particular, the generic group model is often used
to discuss the computational hardness of problems, such as the discrete
logarithm problem and the Diffie-Hellman problem, which are used as
a computational hardness assumption to prove the security of a cryp-
tographic scheme. In this talk, we apply the concepts and methods of
algorithmic randomness to the generic group model, and consider the
secure instantiation of the generic group, i.e., a random encoding of the
group elements. In particular we show that the generic group can be
instantiated by a specific computable function while keeping the compu-
tational hardness of the problems originally proved in the generic group
model.

Key words: cryptography, provable security, generic group model, in-
stantiation, discrete logarithms, Diffie-Hellman problem, lower bounds,
algorithmic randomness
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Structures of the form (M, I), where I is an initial segment of a nonstandard
model of arithmetic M , have long been of interest to nonstandard analysts.
These structures recently gained interests amongst model theorists working on
nonstandard arithmetic too. Surprisingly, such pairs (M, I) were rarely studied
in the context of model theory. One of the two notable exceptions is Vladimir
Kanovei’s 1996 paper on external Scott algebras.

In Kanovei’s paper, he observed that if M is a proper elementary extension
of the natural numbers N, then the external Scott algebra of M contains a real
from the Turing degree 0(ω). This talk is about some variants of this observation
from my joint work with Richard Kaye (University of Birmingham, UK) and
Roman Kossak (City University of New York, USA). Amongst other things, we
showed that Kanovei’s elementarity condition can be replaced by M being a
nonstandard model of Peano arithmetic whose standard system is closed under
the Turing jump operation. Results of this kind open new lines of research in
the model theory of nonstandard arithmetic.
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In [1], H. Friedman showed the famous self-embedding theorem for PA which
asserts that every countable model of PA has an initial segment which is isomor-
phic to itself. Actually, it can be generalize to the following (see e.g., [2, Section
12]): for every countable model of IΣn, (†) there exists a Σn-elementary initial
segment which is isomorphic to itself.

However, this statement is not strong enough to characterize countable mod-
els of IΣn, i.e., there exists a countable model M which satisfies (†) but M 6|=
IΣn. In fact, (†) characterizes BΣn in the following sense.

Theorem 1. Let n ≥ 0, and let M be a countable recursively saturated model
of IΣ0 + exp. Then, M is a model of BΣn+1 if and only if there exists a Σn-
elementary self-embedding f : M → M such that f(M) (e M .

Then, can we characterize countable models of IΣn by a self-embedding the-
orem? The answer is yes. Actually, (†) with the notion of semi-regular cut char-
acterizes IΣn.

Theorem 2. Let n ≥ 1, and let M be a countable model of IΣ0 + exp. Then,
M is a model of IΣn if and only if there exists a Σn-elementary self-embedding
f : M → M such that f(M) (e M is a semi-regular cut.

Using self-embedding theorems, we can also characterize subsystems of second-
order arithmetic. The most important example is Tanaka’s self-embedding the-
orem for WKL0 [3]. In this talk, I will introduce several notions of cuts, and
give several versions of self-embedding theorems which characterize important
subsystems of Peano arithmetic or second-order arithmetic.
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The synthesis of classical Computational Complexity Theory with Recursive Analysis [4, 7, 10]
provides a quantitative foundation to reliable numerics [1]. Here the operators of maximization
and integration are known to map (even smooth, i.e. infinitely often differentiable) polynomial-time
computable functions to instances which are ‘hard’ for classical complexity classes NP and #P [5];
but, restricted to analytic functions, map polynomial-time computable ones to polynomial-time
computable ones [8, 9] — non-uniformly! We investigate the uniform parameterized complexity of
the above operators in the setting of [2] when climbing up Gevrey’s hierarchy of functions from
analytic to smooth:

Definition 1 Write G`,A,K [−1; 1] for the class of C∞–functions f : [−1; 1]→ R satisfying

∀|x| ≤ 1, ∀j ∈ N : |f (j)(x)| ≤ A ·Kj · jj` ; (1)

G` :=
⋃

A,K≥1G`,A,K and G :=
⋃

`∈NG`. Let γ̃ denote the following second-order representation
of G[−1; 1]: A name of f satisfying Equation (1) is a length-monotone mapping

{0, 1}∗ 3 ~w 7→ 1logA+K+|~w|` 0ψ(~w) ∈ {0, 1}∗ ,

where ψ denotes a δ
�

–name of f according to [2, §4.3].

Note that G1 coincides with the class of analytic functions [6]. Our main result is

Theorem 2. Representation γ̃ renders evaluation, addition, multiplication, (iterated) differentia-
tion, integration, and maximization uniformly computable in time polynomial in K+logA+npoly `.
For fixed ` ∈ N, (δ

�
, ρsd)–computing f 7→ max(f) on G`+1,1,1[−1; 1] requires time at least Ω(n`).
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One of the central open questions in bounded arithmetic is whether Buss’
hierarchy S1

2 ⊆ T 1
2 ⊆ S2

2 ⊆ T 2
2 ⊆ · · · of theories of bounded arithmetic collapses

or not, since collapse of Buss’ hierarchy implies the collapse of the polynomial-
time hierarchy.

A natural way to demonstrate non-collapse of the theories in Buss’ hierarchy
would be to identify one of these theories that proves (some appropriate formu-
lation of) a statement of the consistency of some theory below it in the hierarchy.
Here, it is clear that we need a delicate notion of consistency since according to
previous research, it appears that Si

2 is not able to prove the consistency, unless
the system is very weak.

In this talk, we introduce the theory Si
2E (i = −1, 0, 1, 2 . . .), which for i ≥ 1

corresponds to Buss’ Si
2, and we show that the consistency of strictly i-normal

proofs that are carried out only in S−1
2 E, can be proved in Si+2

2 .
Si
2E is based on the following observation: The difficulty in proving the con-

sistency of bounded arithmetic inside S2 stems from the fact that inside S2

we cannot define the evaluation function which, given an assignment of natural
numbers to the variables, maps the terms of S2 to their values. For example, the
values of the terms 2, 2#2, 2#2#2, 2#2#2#2, . . . increase exponentially; there-
fore, we cannot define the function that maps these terms to their values, since
the rate of growth of every function which is definable in S2 is dominated by
some polynomial in the length of the input. With a leap of logic, we consider this
fact to mean that we cannot assume the existence of values of arbitrary terms in
bounded arithmetic. Therefore, we must explicitly prove the existence of values
of the terms that occur in any given proof.

Based on this observation, Si
2E is formulated by using free logic instead of

the ordinary predicate calculus. Free logic is a logic which is free from ontological
assumptions about the existence of the values of terms. Existence of such ob-
jects is explicitly stated by an existential predicate rather than being implicitly
assumed.

Using free logic, we can force each proof carried out within S−1
2 E to somehow

“contain” the values of the terms that occur in the proof. By extracting these
values from the proof, we can evaluate the terms and then determine the truth
value of Σb

i formulae. The standard argument using a truth predicate proves the
consistency of strictly i-normal proofs that are carried out only in S−1

2 . It is easy
to see that such a consistency proof can be carried out in Si+2

2 .
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Conditional probability is a key notion in probability theory and plays a central
role in Bayesian statistics and machine learning. I will present several results ob-
tained jointly with Nate Ackerman and Dan Roy, examining the computability of
conditional probability. This work makes use of techniques from computable anal-
ysis and algorithmic randomness, and has applications to nonparametric Bayesian
statistics and probabilistic programming languages.


