Π_n^1 -indescribabilities in proof theory

Toshiyasu Arai(Chiba)

In this talk let us report a recent proof-theoretic reduction on indescribable cardinals.

It is shown that over $\mathsf{ZF} + (V = L)$, the existence of a Π_1^1 indescribable cardinal is proof-theoretically reducible to iterations of Mostowski collapsings and Mahlo operations. The same holds for Π_{n+1}^1 -indescribable cardinals and Π_n^1 -indescribabilities.

PLAN of the talk

- 1. Indescribable cardinals, pp. 4-10
- 2. Reduction of Π^1_{N+1} -indescribability, pp. 11-23

1 Indescribable cardinals

Consider the language $\{\in, R\}$ with a unary predicate symbol R. Π_0^1 denotes the set of first-order formulas in the language $\{\in, R\}$, and Π_n^1 the set of second-order formulas $\forall X_1 \exists X_2 \cdots QX_n \varphi$.

Definition 1.1 [Hanf-Scott61]

For $n \geq 0$, a cardinal κ is said to be Π_n^1 -indescribable iff for any $A \subset V_{\kappa}$ and any Π_n^1 -sentence $\varphi(R)$, if $V_{\kappa} \models \varphi[A]$, then $V_{\alpha} \models \varphi[A \cap V_{\alpha}]$ for some $\alpha < \kappa$.

Definition 1.2 $S \subset Ord$ is said to be Π_n^1 -indescribable in κ iff for any $A \subset V_{\kappa}$ and any Π_n^1 -sentence $\varphi(R)$, if $V_{\kappa} \models \varphi[A]$, then $V_{\alpha} \models \varphi[A \cap V_{\alpha}]$ for some $\alpha \in S \cap \kappa$.

Facts.

- 1. A cardinal is inaccessible (, i.e., regular and strong limit) iff it is Π_0^1 -indescribable.
- 2. For regular uncountable κ , S is Π_0^1 -indescribable in κ iff S is stationary in κ , i.e., S meets every club (closed and unbounded) subset of κ .
- 3. [Hanf-Scott61] A cardinal is Π¹₁-indescribable iff it is weakly compact, i.e., inaccessible and has the tree property.
 By definition, κ has the tree property if every tree of height κ whose levels have size less than κ has a branch of length κ.

Let Rg denote the class of regular uncountable cardinals, and $S \subset Ord$.

Definition 1.3 (Mahlo operation)

$$M_0(S) := \{ \sigma \in Rg : S \text{ is stationary in } \sigma \}$$
$$= \{ \sigma \in Rg : S \text{ is } \Pi_0^1 \text{-indescribable in } \sigma \}$$

Definition 1.4 For $n \ge 0$,

 $M_n(S) := \{ \sigma \in Rg : S \text{ is } \Pi_n^1 \text{-indescribable in } \sigma \}.$

Lemma 1.5

$$M_{n+1}(Ord) \cap M_n(S) \subset M_n(M_n(S)).$$

Namely if κ is a Π_{n+1}^1 -indescribable cardinal and $S \subset Ord$ is Π_n^1 -indescribable in κ , then $M_n(S)$ is Π_n^1 -indescribable in κ .

Proof. This follows from the fact that there exists a Π_{n+1}^1 -sentence $m_n(S)$ such that $\kappa \in M_n(S)$ iff $V_{\kappa} \models m_n(S)$, which in turn follows from the existence of a universal Π_n^1 -formula. \Box Hence if $\kappa \in M_{n+1}(Ord) = M_{n+1}^1$, then

 $\kappa \in M_n(M_n(Ord)) = M_n^2, M_n^3, \dots, M_n^{\alpha} (\alpha < \kappa), M_n^{\Delta}, \dots$ where $\kappa \in M_n^{\Delta} :\Leftrightarrow \kappa \in \bigcap_{\alpha < \kappa} M_n^{\alpha}$. Actually Lemma 1.5 characterizes, over V = L, the weak compactness of regular uncountable cardinals κ .

Theorem 1.6 [Jensen72] Assume V = L. For regular uncountable cardinals κ ,

$$\kappa \in M_1^1 \iff \forall S \subset \kappa[\kappa \in M_0(S) \to Rg \cap M_0(S) \cap \kappa \neq \emptyset]$$
$$\Leftrightarrow \forall S \subset \kappa[\kappa \in M_0(S) \to \kappa \in M_0(M_0(S))]$$

Theorem 1.7 [Bagaria-Magidor-Sakai ∞] Assume V = L. For Π_n^1 -indescribable cardinals $\kappa \in M_n^1$,

$$\kappa \in M_{n+1}^1 \iff \forall S \subset \kappa[\kappa \in M_n(S) \to M_n^1 \cap M_n(S) \cap \kappa \neq \emptyset]$$
$$\Leftrightarrow \forall S \subset \kappa[\kappa \in M_n(S) \to \kappa \in M_n(M_n(S))]$$

Definition 1.8 Let κ be a regular uncountable cardinal.

- 1. S is (-1)-stationary in κ iff $S \cap \kappa$ is unbounded in κ .
- 2. λ is Π^1_{-1} -indescribable iff λ is a limit ordinal.
- 3. For $n \ge 0$, S is *n*-stationary in κ iff S meets every *n*-club subset of κ .
- 4. C is (n+1)-club in κ iff
 - (a) C is n-stationary in κ , and (b) if C is n-stationary in Π_n^1 -indescribable $\lambda < \kappa$, then $\lambda \in C$.

Let M_0^1 denotes the class of inaccessible cardinals.

Proposition 1.9 [Bagaria-Magidor-Sakai ∞] For $n \ge 0$ and $\kappa \in M_n^1$,

 $\kappa \in M_n(S)$ iff S is *n*-stationary in κ .

Corollary 1.10 [Bagaria-Magidor-Sakai ∞] Assume V = L. For $n \ge 0$ and $\kappa \in M_n^1$, $\kappa \in M_{n+1}^1$ iff

 $\forall S \subset \kappa[S \text{ is } n\text{-stationary in } \kappa \Rightarrow \\ \exists \lambda \in M_n^1 \cap \kappa(S \text{ is } n\text{-stationary in } \lambda)]$

2 Reduction of Π^1_{N+1} -indescribability

We now ask:

How far can we iterate the operation M_n of Π_n^1 -indescribability in Π_{n+1}^1 -indescribable cardinals?

Or proof-theoretically:

Over $\mathsf{ZF}(\mathsf{ZF}+(V=L))$, the existence of a Π_{n+1}^1 -indescribable cardinal is reducible to iterations of M_n ?

Let $<^{\varepsilon}$ be a Δ -predicate such that for any transitive and wellfounded model V of $\mathsf{KP}\omega$, $<^{\varepsilon}$ is a canonical well ordering of type ε_{I+1} for the order type I of the class *Ord* of ordinals in V.

I will show that the assumption of the Π_{N+1}^1 -indescribability is proof-theoretically reducible to iterations of an operation along initial segments of $<^{\varepsilon}$ over $\mathsf{ZF}+(V=L)$. The operation is a mixture $Mh_{N,n}^{\alpha}[\Theta]$ of the operation M_N of Π_N^1 -indescribability and Mostowski collapsings.

To define the class $Mh_{N,n}^{\alpha}[\Theta]$, we need first to introduce ordinals for analyzing $\mathsf{ZF}+(V=L)$ proof-theoretically in $[A\infty 1]$.

Let I be a weakly inaccessible cardinal, and L_I the set of constructible sets of L-rank < I. 2.1 Skolem hulls and ZF+(V=L)-provable countable ordinals

Definition 2.1 For $X \subset L_I$, $\operatorname{Hull}_{\Sigma_n}(X)$ denotes the Σ_n -Skolem hull of X in L_I . $a \in \operatorname{Hull}_{\Sigma_n}(X) \Leftrightarrow \{a\} \in \Sigma_n^{L_I}(X) \ (a \in L_I)$.

Definition 2.2 (Mostowski collapsing function F) By the Condensation Lemma we have an isomorphism (Mostowski collapsing function)

 $F: \operatorname{Hull}_{\Sigma_n}(X) \leftrightarrow L_{\gamma}$

for an ordinal $\gamma \leq I$ such that $F \upharpoonright Y = id \upharpoonright Y$ for any transitive $Y \subset \operatorname{Hull}_{\Sigma_n}(X)$.

Though $I \notin dom(F) = \operatorname{Hull}_{\Sigma_n}(X)$ write $F(I) := \gamma.$

Let us denote the isomorphism F on $\operatorname{Hull}_{\Sigma_n}(X) \leftrightarrow L_{\gamma}$ by $F_X^{\Sigma_n}$.

Given an integer n, let us define a Skolem hull $\mathcal{H}_{\alpha,n}(X)$ and ordinals $\Psi_{\kappa,n}\alpha$ (regular $\kappa \leq I$) simultaneously by recursion on $\alpha < \varepsilon_{I+1}$, the next ε -number above I. **Definition 2.3** $\mathcal{H}_{\alpha,n}(X)$ is a Skolem hull of $\{0, I\} \cup X$ under the functions $+, \alpha \mapsto \omega^{\alpha}, \Psi_{\kappa,n} \upharpoonright \alpha$ (regular $\kappa \leq I$), the Σ_n -definability:

 $Y \mapsto \operatorname{Hull}_{\Sigma_n}(Y \cap I)$

and the Mostowski collapsing functions

$$(x = \Psi_{\kappa, \mathbf{n}} \gamma, \delta) \mapsto F_{x \cup \{\kappa\}}^{\Sigma_1}(\delta) \ (\kappa \in Rg \cap I), (x = \Psi_{I, \mathbf{n}} \gamma, \delta) \mapsto F_x^{\Sigma_n}(\delta).$$

For $\kappa \leq I$

 $\Psi_{\kappa,n}\alpha := \min\{\beta \le \kappa : \kappa \in \mathcal{H}_{\alpha,n}(\beta) \& \mathcal{H}_{\alpha,n}(\beta) \cap \kappa \subset \beta\}.$ For each $\alpha < \varepsilon_{I+1}, \mathsf{ZF} + (V = L) \vdash \Psi_{\kappa,n}\alpha < \kappa.$

Theorem 2.4 ([A ∞ 1]) For a sentence $\exists x < \omega_1 \varphi(x)$ with a first-order formula $\varphi(x)$, if $\mathsf{ZF} + (V = L) \vdash \exists x < \omega_1 \varphi(x)$

then

$$\exists n < \omega [\mathsf{ZF} + (V = L) \vdash \exists x < \Psi_{\omega_1, n} \omega_n (I + 1) \varphi(x)].$$

Thus the countable ordinal

$$\Psi_{\omega_1}\varepsilon_{I+1} := \sup\{\Psi_{\omega_1,n}\omega_n(I+1) : n < \omega\}$$

is the limit of ZF + (V = L)-provably countable ordinals.

Our proof of Theorem 2.4 is based on ordinal analysis(cutelimination in terms of operator controlled derivations in [Buchholz92]) and the following observation.

Proposition 2.5 Let $\omega \leq \alpha < \kappa < I$ with α a multiplicative principal number. Then $L_I \models \alpha < cf(\kappa)$ iff there exists an ordinal β between α and κ such that $\operatorname{Hull}_{\Sigma_1}(\beta \cup \{\kappa\}) \cap \kappa \subset \beta(\Leftrightarrow \beta = F_{\beta \cup \{\kappa\}}^{\Sigma_1}(\kappa))$ and $F_{\beta \cup \{\kappa\}}^{\Sigma_1}(I) < \kappa$.

2.2 The class $Mh_{N,n}^{\alpha}[\Theta]$

In what follows \mathcal{K} denotes a Π^1_{N+1} -indescribable cardinal, and I the least weakly inaccessible cardinal above \mathcal{K} . The operator $\mathcal{H}_{\alpha,n}(X)$ is defined as above augmented with $\mathcal{K} \in \mathcal{H}_{\alpha,n}(X)$.

In the following definition, α can be much larger than π .

Definition 2.6 Let $\alpha < \varepsilon_{I+1}$, $\Theta \subset_{fin} (\mathcal{K} + 1)$ and $\mathcal{K} \geq \pi$ be regular uncountable. Then $\pi \in Mh_{N,n}^{\alpha}[\Theta]$ iff

 $\mathcal{H}_{\alpha,n}(\pi) \cap \mathcal{K} \subset \pi \& \alpha \in \mathcal{H}_{\alpha,n}[\Theta](\pi)$

 $\& \quad \forall \xi \in \mathcal{H}_{\xi,n}[\Theta \cup \{\pi\}](\pi) \cap \alpha[\pi \in M_N(Mh_{N,n}^{\xi}[\Theta \cup \{\pi\}])]$

Roughly $\{\pi\}$ in $\xi \in \mathcal{H}_{\xi,n}[\Theta \cup \{\pi\}](\pi)$ allows to define ξ from the point π .

For the case N = 1, i.e., Π_1^1 -indescribable cardinal \mathcal{K} , let us examine the strength of the assumptions $\mathcal{K} \in Mh_{0,n}^{\mathcal{K}+1}[\emptyset]$.

 $M^{\alpha}(\alpha < \mathcal{K}^{+})$ denotes the set of α -weakly Mahlo cardinals defined as follows. $M^{0} := Rg \cap \mathcal{K}, \ M^{\alpha+1} = M_{0}(M^{\alpha}), \ M^{\lambda} = \bigcap\{M_{0}(M^{\alpha}) : \alpha < \lambda\}$ for limit ordinals λ with $cf(\lambda) < \mathcal{K}$, and $M^{\lambda} := \Delta\{M_{0}(M^{\lambda_{i}}) : i < \mathcal{K}\}$ for limit ordinals λ with $cf(\lambda) = \mathcal{K}$, where $\sup_{i < \mathcal{K}} \lambda_{i} = \lambda$ and the sequence $\{\lambda_{i}\}_{i < \mathcal{K}}$ is chosen so that it is the $<_{L}$ -minimal such sequence.

In the last case for $\pi < \mathcal{K}, \pi \in M^{\lambda} \Leftrightarrow \forall i < \pi(\pi \in M_0(M^{\lambda_i})).$

Proposition 2.7 For $n \ge 1$ and $\sigma \le \mathcal{K}$, the followings are provable in $\mathsf{ZF} + (V = L)$.

- 1. If $\sigma \in \Theta$, $\pi \in Mh_{0,n}^{\alpha}[\Theta] \cap \sigma$, and $\alpha \in \operatorname{Hull}_{\Sigma_1}(\{\sigma, \sigma^+\} \cup \pi) \cap \sigma^+$, then $\pi \in M^{\alpha}$.
- 2. If $\sigma \in Mh_{0,n}^{\sigma^+}[\Theta]$, then $\forall \alpha < \sigma^+(\sigma \in M_0(M^{\alpha}))$, i.e., σ is a greatly Mahlo cardinal in the sense of [Baumgartner-Taylor-Wagon77].
- 3. The class of the greatly Mahlo cardinals below \mathcal{K} is stationary in \mathcal{K} if $\mathcal{K} \in Mh_{0,n}^{\mathcal{K}+1}[\emptyset]$.

Proof. 2.7.3 follows from 2.7.2.

Proof.

2.7.1 by induction on $\alpha < \sigma^+$, show

If $\sigma \in \Theta$, $\pi \in Mh_{0,n}^{\alpha}[\Theta] \cap \sigma$, and $\alpha \in \operatorname{Hull}_{\Sigma_1}(\{\sigma, \sigma^+\} \cup \pi) \cap \sigma^+$, then $\pi \in M^{\alpha}$.

2.7.2. If $\sigma \in Mh_{0,n}^{\sigma^+}[\Theta]$, then $\forall \alpha < \sigma^+(\sigma \in M_0(M^{\alpha}))$.

Suppose $\exists \alpha < \sigma^+(\sigma \notin M_0(M^{\alpha}))$. Let $\alpha < \sigma^+$ be the minimal such ordinal, and C be a club subset of σ such that $C \cap M^{\alpha} = \emptyset$. $\alpha \in \operatorname{Hull}_{\Sigma_1}(\{\sigma, \sigma^+\}) \cap \sigma^+ \subset \mathcal{H}_{\alpha,n}[\Theta \cup \{\sigma\}](\sigma) \cap \sigma^+$. By $\sigma \in Mh_{0,n}^{\sigma^+}[\Theta]$ we have $\sigma \in M_0(Mh_{0,n}^{\alpha}[\Theta \cup \{\sigma\}])$. Pick a $\pi \in C \cap Mh_{0,n}^{\alpha}[\Theta \cup \{\sigma\}] \cap \sigma$. Proposition 2.7.1 yields $\pi \in M^{\alpha}$. A contradiction.

Theorem 2.8 ($[A \infty 3], [A \infty 4]$)

1. For each $n < \omega$,

 $\mathsf{ZF}+(V=L)+(\mathcal{K} \text{ is } \Pi^1_{N+1}\text{-indescribable}) \vdash \mathcal{K} \in Mh_{N,n}^{\omega_n(I+1)}[\emptyset].$

2. For any Σ_{N+2}^1 -sentences φ , if

$$\mathsf{ZF} + (V = L) + (\mathcal{K} \text{ is } \Pi^1_{n+1} \text{-indescribable}) \vdash \varphi^{L_{\mathcal{K}}},$$

then we can find an $n < \omega$ such that

$$\mathsf{ZF} + (V = L) + (\mathcal{K} \in Mh_{N,n}^{\omega_n(I+1)}[\emptyset]) \vdash \varphi^{L_{\mathcal{K}}}.$$

Our proof of Theorem 2.8 is build on $[A\infty 1]$ with Corollary 1.10 and ordinal analysis in [Rathjen94].

Over $\mathsf{ZF} + (V = L)$ with $\mathcal{K} \in M_N$, the Π^1_{N+1} -indescribability of \mathcal{K} is codified using the *L*-least counter example $S \in \operatorname{Hull}_{\Sigma_1}(\{\mathcal{K}, \mathcal{K}^+\})$ to the Π^1_{N+1} -indescribability of \mathcal{K} .

$$\frac{\vdash \Gamma, \neg \tau^N(S, \mathcal{K}) \quad \vdash \Gamma, \forall \rho \in M_N \cap \mathcal{K}[\tau^N(S, \rho)]}{\vdash \Gamma} (\mathbf{Ref}_{\mathcal{K}})$$

where $\tau^N(S,\rho)$ says that S is N-thin(non-stationary) $\tau^N(S,\rho) :\Leftrightarrow \exists C \subset \rho[(C \text{ is } N \text{-club})^{\rho} \land (S \cap C = \emptyset)]$ **Proposition 2.0** Let A be a Π^1 contense and $\neg \in M$. (V)

Proposition 2.9 Let A be a Π^1_{N+1} -sentence, and $\pi \in M_N(X)$. If $\forall \lambda \in X \cap \pi[L_\lambda \models A]$, then $L_\pi \models A$.

References

- $[{\rm A}\infty1]\,$ T. Arai, Lifting up the proof theory to the countables: Zermelo-Fraenkel's set theory, submitted. arXiv: 1101.5660.
- $[A\infty 2]$ T. Arai, Conservations of first-order reflections, submitted. arXiv 1204.0205.
- $[A\infty 3]$ T. Arai, Proof theory of weak compactness, submitted. arXiv:1111.0462.
- $[\mathbf{A}\infty 4]\,$ T. Arai, Proof theory of Π^1_n -indescribability, in preparation.
- $[Bagaria-Magidor-Sakai\infty]$ J. Bagaria, M. Magidor and H. Sakai, private communication.
- [Baumgartner-Taylor-Wagon77] J. Baumgartner, A. Taylor and S. Wagon, On splitting stationary subsets of large cardinals, JSL 42(1977), 203-214.
- [Buchholz92] W. Buchholz, A simplified version of local predicativity, P. H. G. Aczel, H. Simmons and S. S. Wainer(eds.), Proof Theory, Cambridge UP, 1992, pp. 115-147.
- [Hanf-Scott61] W. Hanf and D. Scott, Classifying inaccessible cardinals, Notices AMS 8(1961), 445.
- [Jensen72] R. Jensen, The fine structure of the constructible hierarchy, AML 4(1972), 229-308.
- [Rathjen94] M. Rathjen, Proof theory of reflection, APAL 68 (1994), 181-224.