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We need a good theory of proofs.
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Soundness and completeness theorem(s)

» Usual soundness and completeness theorems in logic
state that

F is provable if and only if F is true.

» The aim of this talk is to show soundness and
completeness theorems for proofs: roughly speaking,

m is a proof of F if and only if **********,

» | will use tools originally developed for the analysis of
linear logic proofs in a different context.

» More specifically, the main inspiration is Girard’s ludics:
Fremmrrrr* is a property determined by interaction.
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» A purely logical approach to (first order, classical)
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» All the relevant results also hold for the finitary restriction.



Logic

» Logic = classical logic.

» Language = infinitary formulas.

» Proof—system = (a variant of) Tait’s calculus.
Why this kind of logic?

» A purely logical approach to (first order, classical)
arithmetic.

» All the relevant results also hold for the finitary restriction.
» The delicate point is . .. Contraction rule.



Contraction

Different “degrees” of contraction:

» Implicit contraction

FIA FI[A FI,B FI,C
FILAVBVC FILAABAC
“No” contraction “No” contraction

FILBVCA FIA FI,B FI,C
FILAVBVC FILAABAC
Backtracking Backtracking

FILAVBVC,A FT,AANBAC,A T, AANBAC,B FT,AABAC,C

FILAVBVC FILAABAC
Full contraction Full contraction



Main system

v

Formulas: F,G, H, ... generated in the usual way,
using connectives \V, A,* . . ..

Sequents : ©,9, ... = finite non—empty sequences of
formulas F Fy, ... ,F,_1.
Rules for deriving sequents.
{ea}aes
S]

Derivations = well-founded trees labeled by sequent
(which are “locally correct”).

v

v

(n

v

System A = (F,S,R,D)



Auxiliary system

v

Formulas: as in A;

» Sequents ’: ©,® ... = unary sequences of formulas
. F.
» Rules ’ for deriving sequents.
{ga}aes )

v

Derivations ° = well-founded trees labeled by sequent
(which are “locally correct”).

SystemB = (F,S’,R’,D)

v

Every sequent of B is derivable.



Interaction (I)

» Cut-elimination = an operation from trees labeled by
sequents to trees labeled by sequents.

» Closed cuts = cuts of the form
T 0 Tn—1
FFo,....,Fp_4 hﬂFoL F*F#1

cut

where 7 is a derivation of - Fy,...,F,_1 in. A4, and 7; is a
derivation of i, Fi- in B, for each i < n.

» Cut elimination of closed cuts does not produce any
cut—free sequent . ..



Interaction (ll)

» ...but the procedure of cut—elimination still makes sense:
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FFVGF HF-  HGh
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Interaction (ll)

» ...but the procedure of cut—elimination still makes sense:
T 0 Uy
FFVGF HF-  HGh
FFVG o FEAGH

cut
reduces to

: o LT
- - F- H Gt 1 o
HFVG,F F FEAGH F. F-

cut
» We can study the properties of this procedure.



Generalization (I)

» We can also consider a more general version of closed

cuts
l_ FO,...,Fn_‘] l_* GO o e l_* Gn_1
cut
where 7 is a derivation of - Fp, ... ,F,_1 in A and =, is a

derivation of -, G; in B, for each j < n.

There are new situations to consider:

» Error:
X
HFy VFa, Fy Lo
FF{VF F. G1 VG
1 2 1 2 cut

reduces to an “error.”



Generalization (II)

» Reduction:
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Generalization (II)

» Reduction:

o T : Mo D 3
FFyVv F2, F, . Gy . Go Fy G3
FFyVvFs F. Gy AGo A G3 c

ut
reduces to
U T2 T3

s Fu G1 Fy G2 F. G3 7T
|—F1\/F2,F1 ey G1/\G2/\G3 . G1

» We can study the properties of this procedure.

cut



Generalization (+)

» Instead of considering derivations in A, we shall consider
proof-terms, that we call tests 7,4/, V...

» Intuition:

Tests : derivationsin . A

Untyped lambda terms : derivations in minimal logic
(natural deduction)

» A test does not contain all the information of a derivation.
But we can consider closed cuts of the form

7. l_* GO P }_* Gn7‘|
cut

and define a procedure of reduction (interaction).



TREES



Notation

v

N* = {s,t,u,...} = the set of finite sequences of natural
numbers.

v

Some sequences:

() = the empty sequence;
a = unary sequence;
apas = Dbinary sequence;
apa;---ax_1 = k—ary sequence.

st = the concatenation of s and t.

In particular, if sis a k—ary sequence and a € N, then sais
(k + 1)—ary sequence.

v

v

Prefix order: sC t &~ there is u € N* such that t = su.

v



Trees

v

A tree T is a non—empty subset of N* such that

ifte TandsC t,thensec T.
Since T is non—empty, () € T. () is called the root of T.
An infinite branch in T is a infinite subset S C T of the
foomS=1{(), a, @ai, ..., @ai---an-1, ...}

A tree is said to be well-founded if it does not contain an
infinite branch.

A labeled tree is a pair L = (T, ¢) consisting of atree T
and a function ¢ defined on T.

v is called the labeling function of L. The codomain of ¢
is called the set of labels.

We write tree(L) and lab(L) for the underlying tree of L

and its labeling function respectively, i.e., if L = (T, ), then
tree(L) = T and lab(L) = .



SYSTEM A



System A

System A is a variant of Tait’s calculus (1968).
» Finite sequences instead of finite sets.
» No propositional variables in this talk.
» Only subsets of natural numbers as index sets.



Formulas

The formulas of our language are inductively defined as
follows:

if forsome S C N, {Gg},cs is a family of formulas,
then\/ s Ga and \ g G, are formulas.

Some terminology and notation:

> \/s G, = ;
» AsGa = conjunction;
» 0 \/(Z) Gg;

> 1= Ay Ga



Negation and sequents

The negation of a formula F, noted by F*, is the formula
recursively defined as follows:

(VsGa)* = As (Ga"): (AsGa)* = Vs (Ga®).
In particular, 0- =1, and 1+ = 0.
The negation is involutive:

FLL=F.

A sequent ©,9, ... of A is a non—empty finite sequence
+ Fo,...,Fn_q of formulas (n > 0).



Rules

The following derive sequents. They have to be read
bottom—up, in the sense of proof-search.

rule :
» j<nanda € S:

+ FO?"'>FI'—1 ) VSGaa FI'+1,"'7FH713G30
- FO:"'vFI'—‘I ) \/SGav Fi+17--an—1

(V)

Conjunctive rule :
» | < n, one premise for each member of S:

l_ F077F171 5 /\3Ga7 F,‘+17...7Fn_17Ga a”aES
F FO)"'aFi—'I ) /\SGa7 Fi+17"'7Fn—1

(n)



Derivations

A derivation is a well-founded tree labeled by sequents
which is “locally correct.” Formally,

A derivation is a well-founded tree w labeled by
sequents such that for all s € tree(w) one of the
following two conditions holds:

(Der,) :

(Der>) :

(i)

lab(r)(s) is a sequent + Fy,...,F,_4 and
there are i < nand ag € N such that
Fi=VsGaand g € S,

sa € tree(r) if and only if a =0,
|ab(7[')(50) =+ Fg,...,Fp_1, Gao.

lab(7)(s) is a sequent + Fo,...,F,_y and
there is i < nsuch that F; = A5 Ga,

sac tree(r) ifand only if a € S,

lab(r)(sa) =+ Fo,...,Fn_1,Ga, forallac S.



Some derivable sequents

» A derivation with no premises is

(n)
H FOa"'vFi—1 ) 1 ) F/+17'--5Fn71

» Every leaf of a derivation is labeled by a sequent of this
form.

» Sequents of this form are derivable:
- Fo,....Fi.1, G, Fiyq,...,Fi_1, G5, Fipq,...,Fpy
» Novikoff’s law of complete induction is the formula
(FAA(Ft = F)AN(Fo = Fe)A--) > Ff AFo AFg A= .
In our system, we can consider the sequent
F (FfV(FiAF3)V(FaAF3) Vo), FyAFoAFgA--- .
and show that it is derivable.



TESTS



Actions

» A is a triple (n, i, a) where n, i, a are
natural numbers such that 0 </ < n.

» A conjunctive action is a triple [n, i, S] where n, i are
natural numbers such that 0 <j < n,and S C N.
Some terminology:

» (n,i,a) = ( base , address , name );
» [n,i,S] = [ base , address , set of names |;



Tests

A test is a tree T labeled by actions such that for all
s € tree(T) one of the following two conditions holds:

(iy lab(T)(s)={n,i,ao),
(T1): ¢ (i) sae tree(T) if and only if a =0,
(i) the base of lab(7)(s0) is n+ 1.

(iy lab(T)(s) = [n,i,S],

(i) sactree(T)ifandonlyifac S,

(i) the base of lab(7)(sa) is n+ 1,
forallae S.

We use letters 7,U, V), ... to range over tests.

» Tests are not necessarily well-founded.



Terminology and notation

Let 7 be a test.

» If the action Iab(T)(( )) has base n, we say that 7 is on
base n.

» Iflab(7)(()) = (n,i,a0), then T has a unique immediate
subtree /. We denote 7 by (n,i,aq).U.

» Iflab(7)(0) = [n, i, S], then T has an immediate subtree
Us for each a € S. We denote T by [n, i, S].Us .
If S = (), then we simply write [n, i, 0].



T > 0O

Let = be a derivation of © in A.

We define the relation 7 > © between tests and sequents of A
inductively as follows:

Z/{l> F FO,"'aFI’—‘I ) VsGa ) Fi+17"°7an1 ) Gao
<n,i,ao>.U|> F Fo,...,Fi_1 , VSGa 5 Fi+1,...,Fn_1

Z/[a|> FFO,,F,_‘] 5 AsGa’ F,‘+1,...,Fn_1,Ga a”aes

[n,i,S].Z/laD |—Fo,...,F,'_1 . /\sGa, F/+1,...,Fn,1

(N



Propertiesof T > ©

v

Bijective correspondence between

{T:Tr>©} and {r:misaderivationof® in A}.
If 7> ©,then T is well-founded.
The relation 7 > © is defined syntactically, i.e., using
derivations.
Later on, we shall define a relation 7 » © interactively,
i.e., using a kind of cut—elimination procedure.

v

v

v



COUNTER-TESTS



System B

We now consider another proof—-system, that we call system 5:

» Formulas : asin A

» Sequents ’ : A sequent of B is a unary sequence of
formulas . F.

» Rules’:
> rule: one premise for each a € S:
F Gy ...allae S
)
F VsGa

» Conjunctive rule: one premise for each a € S:

G, ...allae$S
F AsGa
» Derivations * : well-founded trees labeled by sequents of
B which are “locally correct.”

()



Remarks and terminology

» For every formula F there is one (and only one) derivation
of -, F in B. By an abuse of notation we write I, F for the
derivation of this sequent in B.

» For any formula F, we call the derivation of -, Fin 5 a
counter—test.

» A derivation of -, F in B can be seen as the subformula
tree (in the sense of Gentzen) of F.

» For the formulas we are considering,
subformula a’la Gentzen = literal subformula.




INTERACTION, SOUNDNESS AND COMPLETENESS



Configurations

A configuration is either

» apair (T, ks Go, ..., Gh_1) Where:
» 7T is a test of base n,
» . Go,...,F« Gp_1 is a n—ary sequence of counter—tests,

for some n > 0;
» or the symbol 1} (error).

C denotes the set of all configurations.

» Intuition:

FFo,...,Fo_ F. oo F.GH
(T, F. Go, ..., s Gn—1) ~ 0y--+5n—1 Go G_1 cut




Reduction relation (1)

The reduction relation — is the subset of C x C defined as
follows.

1t —1

» Intuition: “ error reduces to error.”



Reduction relation (I1)
(2) Let C = (<n, i, ao>.u o [Fo Go T Gn_1).
o lfG; = AgGzand ay € S, then
C—> (U, l_* GO '_* Gn_1 }_* Gao).

e C — 1, otherwise.
» Intuition (case n=2and i =1):

i 1T

FFo, V7 Ha, Ha ) * o F. Gy ...allae S
- FO ) \/THa '7* GO F* /\sGa
cut
reduces to
Eﬂ—a .
i 'm0 F,Gy...allae S 90 P Tay
F FO ) VTHa ) Hag l_* GO F* /\SGa l_* Gao

(A)

cut



Reduction relation (lll)

(3) LetC:([n,i, T].Ua, o Go N Gn_1).

o lfG;=\gGzand S =T, then
C— (Ua, |—*G0
e C — 1, otherwise.
» Intuition (case n=2and i =1):

e

L Tg

F« Gpot F« Ga) , forallae S.

FFo, AsHa, Ha W : o .G, ...alaeS
FF07 /\sHa '7* GO F* VSGa
cut
reduces to
Eﬂ-a
ST 'm0 F.Gy...allae S ) 1Ta
I_F()7 /\SHaa Ha l_* GO '7* \/SGa l_* Ga

cut

(V)



Some properties of — (I)

Let A be a set and let R be a binary relation of A.

» Ris total &= forall ac Athereis b c Asuchthata R b;

» Ris deterministic &= a R band a R cimply b = c;
» Ris terminating <= there is no infinite sequence
ayg —ay — .

The relation — is not total:
([1,0,8].Ua, k. \/gGa) does not reduce to anything, if S = 0.
The relation — is not deterministic:

([1,0,{c,d}] Ua, I \/{c,d}Ga) reduces to
(Z/lc 5 l_* \/{C,d} Ga l_* Gc) al’ld (Z/[d P }_* \/{C7d} Ga l_* Gd)



Some properties of — (lI)
The relation — is not terminating:

A more interesting example is the following:
DEF

» 7 = (1,0,a).(2,0,a)...(n,0,a).(n+1,0,a) .. ;

DEF

> F [EF /\{aO} Ga, Where Gao — 0

(T, F.F) — ((2,0,a)... , - FF,0)
e

— ((n,0,a).({n+1,0,a)... , HF+,0...+,0)
— ((n+1,0,a)... , F,FF,0...-,0F,0)

-



D» ©

We now define the relation 7 » ©, the semantical counterpart
of the relation 7 > ©.

T» +Fo,...,F,1 &5 every sequence of reductions
starting from (T , . Fy ...+ F}_,) terminates.

Soundness and completeness :

T>0 < T » O.



VARIANTS



T > 6

Let 7 be a derivation of © in .A. The relation 7 >’ © is defined
inductively as follows:

u[>, l— F077FI—1 B VSGa B F,+1,,Fn_1 , Gao (\/)
<n,i,ao>.u >/ Fo,...,Fi_1 , VSGa : F,'+1,...,Fn_1

UaD/ I—FO,...,F,',1 R /\SGaa F,'+1,...,Fn_1, Ga...aIIaGS ")
[n,i, T].Ua{>/ FFo,...,Fi_1, /\SGa, F,'+1,...,Fn_1

where S C T and Uy, is an arbitrary test, foreach b e T\ S.
» If 7>’ ©, then T is not necessarily well-founded.
» {T:T> 0} G {T:Tv' 6}.



Reduction relation —'

The reduction relation —' is the subset of C x C defined as
follows.

(1) —"1.
(2) Let C = (<n, i, a0>.u o [Po Go R Gn_1).
o lfG; = AgGazand ay € S, then
c —/ (U, |—* Go |—* Gn_1 |—* Gao).
e C —' 1, otherwise.

(3) LetC:([n,i, T].Ua, % Go 00 [P Gn_1).

C—' (Ua, F+Go ... F.Gr1F:Gy) , forallac S.
e C —' 1), otherwise.



D »' ©

We now define the relation 7 »’ ©, the semantical
counterpart of the relation 7 >’ ©.

Tw»' +Fo,...,Fn_1 <= every sequence of —»'
reductions starting from (T , F. Fy ... - Fi_y)
terminates.

Soundness and completeness :

T 6« T » 6.



FURTHER WORK



Further work

» Propositional variables and second order quantifiers.

» Girard’s g—logic (the logic underlying the theory of
dilators).



Thank you!
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Answers?
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