
AN INTERACTIVE SEMANTICS FOR CLASSICAL

PROOFS

Michele Basaldella

JAIST

February 19, 2013

INTRODUCTION

General motivations

I Model theory
I Recursion theory
I Lambda calculus
I Set theory
I Lattice theory
I Domain theory
I . . .

I Proof theory

We need a good theory of proofs.

General motivations

I Model theory
I Recursion theory
I Lambda calculus
I Set theory
I Lattice theory
I Domain theory
I . . .
I Proof theory

We need a good theory of proofs.

General motivations

I Model theory
I Recursion theory
I Lambda calculus
I Set theory
I Lattice theory
I Domain theory
I . . .
I Proof theory

We need a good theory of proofs.

Soundness and completeness theorem(s)

I Usual soundness and completeness theorems in logic
state that

F is provable if and only if F is true.

I The aim of this talk is to show soundness and
completeness theorems for proofs: roughly speaking,

π is a proof of F if and only if **********.
I I will use tools originally developed for the analysis of

linear logic proofs in a different context.
I More specifically, the main inspiration is Girard’s ludics:

********** is a property determined by interaction.

Soundness and completeness theorem(s)

I Usual soundness and completeness theorems in logic
state that

F is provable if and only if F is true.
I The aim of this talk is to show soundness and

completeness theorems for proofs: roughly speaking,
π is a proof of F if and only if **********.

I I will use tools originally developed for the analysis of
linear logic proofs in a different context.

I More specifically, the main inspiration is Girard’s ludics:
********** is a property determined by interaction.

Soundness and completeness theorem(s)

I Usual soundness and completeness theorems in logic
state that

F is provable if and only if F is true.
I The aim of this talk is to show soundness and

completeness theorems for proofs: roughly speaking,
π is a proof of F if and only if **********.

I I will use tools originally developed for the analysis of
linear logic proofs in a different context.

I More specifically, the main inspiration is Girard’s ludics:
********** is a property determined by interaction.

Soundness and completeness theorem(s)

I Usual soundness and completeness theorems in logic
state that

F is provable if and only if F is true.
I The aim of this talk is to show soundness and

completeness theorems for proofs: roughly speaking,
π is a proof of F if and only if **********.

I I will use tools originally developed for the analysis of
linear logic proofs in a different context.

I More specifically, the main inspiration is Girard’s ludics:
********** is a property determined by interaction.

Logic

I Logic = classical logic.
I Language = infinitary formulas.
I Proof–system = (a variant of) Tait’s calculus.

Why this kind of logic?
I A purely logical approach to (first order, classical)

arithmetic.
I All the relevant results also hold for the finitary restriction.

I The delicate point is . . . Contraction rule.

Logic

I Logic = classical logic.
I Language = infinitary formulas.
I Proof–system = (a variant of) Tait’s calculus.

Why this kind of logic?
I A purely logical approach to (first order, classical)

arithmetic.
I All the relevant results also hold for the finitary restriction.
I The delicate point is . . . Contraction rule.

Contraction

Different “degrees” of contraction:

I Implicit contraction

` ΓΓΓ,A
` ΓΓΓ,A ∨ B ∨ C

“No” contraction

` ΓΓΓ,A ` ΓΓΓ,B ` ΓΓΓ,C
` ΓΓΓ,A ∧ B ∧ C

“No” contraction

` ΓΓΓ,B ∨ C,A
` ΓΓΓ,A ∨ B ∨ C
Backtracking

` ΓΓΓ,A ` ΓΓΓ,B ` ΓΓΓ,C
` ΓΓΓ,A ∧ B ∧ C
Backtracking

` ΓΓΓ,A ∨ B ∨ C,A
` ΓΓΓ,A ∨ B ∨ C
Full contraction

` ΓΓΓ,A ∧ B ∧ C,A ` ΓΓΓ,A ∧ B ∧ C,B ` ΓΓΓ,A ∧ B ∧ C,C
` ΓΓΓ,A ∧ B ∧ C
Full contraction

Main system

I Formulas: F,G,H, . . . generated in the usual way,
using connectives ∨,∧,⊥

I Sequents : ΘΘΘ,ΦΦΦ, . . . = finite non–empty sequences of
formulas ` F0, . . . ,Fn−1.

I Rules for deriving sequents.

{ΘΘΘa}a∈S
(r)

ΘΘΘ
I Derivations = well–founded trees labeled by sequent

(which are “locally correct”).

System A DEF
=
(
F, S , R , D

)

Auxiliary system

I Formulas: as in A;
I Sequents ’ : ΘΘΘ,ΦΦΦ, . . . = unary sequences of formulas

`∗ F.
I Rules ’ for deriving sequents.

{ΘΘΘa}a∈S
(r)

ΘΘΘ
I Derivations ’ = well–founded trees labeled by sequent

(which are “locally correct”).

System B DEF
=
(
F, S’ , R’ , D’

)
I Every sequent of B is derivable.

Interaction (I)

I Cut–elimination = an operation from trees labeled by
sequents to trees labeled by sequents.

I Closed cuts = cuts of the form

... π
` F0, . . . ,Fn−1

... π0
... πn−1

`∗ F⊥0 . . . `∗ F⊥n−1 cut

where π is a derivation of ` F0, . . . ,Fn−1 in A, and πi is a
derivation of `∗ F⊥i in B, for each i < n.

I Cut elimination of closed cuts does not produce any
cut–free sequent . . .

Interaction (II)

I . . . but the procedure of cut–elimination still makes sense:

... π
` F ∨G,F
` F ∨G

... π0

`∗ F⊥

... π1

`∗ G⊥

`∗ F⊥ ∧G⊥
cut

reduces to

... π
` F ∨G,F

... π0

`∗ F⊥

... π1

`∗ G⊥

`∗ F⊥ ∧G⊥

... π0

`∗ F⊥
cut

I We can study the properties of this procedure.

Interaction (II)

I . . . but the procedure of cut–elimination still makes sense:

... π
` F ∨G,F
` F ∨G

... π0

`∗ F⊥

... π1

`∗ G⊥

`∗ F⊥ ∧G⊥
cut

reduces to

... π
` F ∨G,F

... π0

`∗ F⊥

... π1

`∗ G⊥

`∗ F⊥ ∧G⊥

... π0

`∗ F⊥
cut

I We can study the properties of this procedure.

Generalization (I)

I We can also consider a more general version of closed
cuts

... π
` F0, . . . ,Fn−1

... π0
... πn−1

`∗ G0 . . . `∗ Gn−1 cut

where π is a derivation of ` F0, . . . ,Fn−1 in A and πi is a
derivation of `∗ Gi in B, for each i < n.

There are new situations to consider:
I Error:

... π
` F1 ∨ F2,F1

` F1 ∨ F2

... π′

`∗ G1 ∨G2 cut
reduces to an “error.”

Generalization (II)

I Reduction:

... π
` F1 ∨ F2,F1

` F1 ∨ F2

...π1

`∗ G1

... π2

`∗ G2

... π3

`∗ G3

`∗ G1 ∧G2 ∧G3 cut

reduces to

... π
` F1 ∨ F2,F1

... π1

`∗ G1

... π2

`∗ G2

... π3

`∗ G3

`∗ G1 ∧G2 ∧G3

... π1

`∗ G1 cut

I We can study the properties of this procedure.

Generalization (II)

I Reduction:

... π
` F1 ∨ F2,F1

` F1 ∨ F2

...π1

`∗ G1

... π2

`∗ G2

... π3

`∗ G3

`∗ G1 ∧G2 ∧G3 cut

reduces to

... π
` F1 ∨ F2,F1

... π1

`∗ G1

... π2

`∗ G2

... π3

`∗ G3

`∗ G1 ∧G2 ∧G3

... π1

`∗ G1 cut

I We can study the properties of this procedure.

Generalization (+)

I Instead of considering derivations in A, we shall consider
proof–terms, that we call tests T ,U ,V, . . .

I Intuition:

Tests : derivations in A
=

Untyped lambda terms : derivations in minimal logic
(natural deduction)

I A test does not contain all the information of a derivation.
But we can consider closed cuts of the form

T `∗ G0 . . . `∗ Gn−1 cut
and define a procedure of reduction (interaction).

TREES

Notation

I N∗ = {s, t ,u, . . .} = the set of finite sequences of natural
numbers.

I Some sequences:

() = the empty sequence;
a = unary sequence;

a0a1 = binary sequence;
a0a1 · · · ak−1 = k–ary sequence.

I st = the concatenation of s and t .
I In particular, if s is a k–ary sequence and a ∈ N, then sa is

(k + 1)–ary sequence.

I Prefix order: s v t DEF⇐⇒ there is u ∈ N∗ such that t = su.

Trees

I A tree T is a non–empty subset of N∗ such that
if t ∈ T and s v t , then s ∈ T .

I Since T is non–empty, () ∈ T . () is called the root of T .
I An infinite branch in T is a infinite subset S ⊆ T of the

form S = {() , a0 , a0a1 , . . . , a0a1 · · · an−1 , . . .}.
I A tree is said to be well–founded if it does not contain an

infinite branch.
I A labeled tree is a pair L = (T , ϕ) consisting of a tree T

and a function ϕ defined on T .
I ϕ is called the labeling function of L. The codomain of ϕ

is called the set of labels.
I We write tree

(
L
)

and lab
(
L
)

for the underlying tree of L
and its labeling function respectively, i.e., if L = (T , ϕ), then
tree

(
L
)

= T and lab
(
L
)

= ϕ.

SYSTEM A

System A

System A is a variant of Tait’s calculus (1968).
I Finite sequences instead of finite sets.
I No propositional variables in this talk.
I Only subsets of natural numbers as index sets.

Formulas

The formulas of our language are inductively defined as
follows:

if for some S ⊆ N, {Ga}a∈S is a family of formulas,
then

∨
S Ga and

∧
S Ga are formulas.

Some terminology and notation:
I
∨

S Ga = disjunction;
I
∧

S Ga = conjunction;

I 0 DEF
=
∨
∅Ga;

I 1 DEF
=
∧
∅Ga.

Negation and sequents

The negation of a formula F, noted by F⊥, is the formula
recursively defined as follows:(∨

S Ga
)⊥ DEF

=
∧

S
(
Ga
⊥); (∧

S Ga
)⊥ DEF

=
∨

S
(
Ga
⊥).

In particular, 0⊥ = 1, and 1⊥ = 0.

The negation is involutive:

F⊥⊥ = F.

A sequent ΘΘΘ,ΦΦΦ, . . . of A is a non–empty finite sequence
` F0, . . . ,Fn−1 of formulas (n > 0).

Rules

The following rules derive sequents. They have to be read
bottom–up, in the sense of proof–search.

Disjunctive rule :
I i < n and a0 ∈ S:

` F0, . . . ,Fi−1 ,
∨

S Ga , Fi+1, . . . ,Fn−1 , Ga0
(∨)

` F0, . . . ,Fi−1 ,
∨

S Ga , Fi+1, . . . ,Fn−1

Conjunctive rule :
I i < n, one premise for each member of S:

` F0, . . . ,Fi−1 ,
∧

S Ga , Fi+1, . . . ,Fn−1 , Ga . . . all a ∈ S
(∧)

` F0, . . . ,Fi−1 ,
∧

S Ga , Fi+1, . . . ,Fn−1

Derivations

A derivation is a well–founded tree labeled by sequents
which is “locally correct.” Formally,

A derivation is a well–founded tree π labeled by
sequents such that for all s ∈ tree

(
π
)

one of the
following two conditions holds:

(Der1) :


(i) lab

(
π
)
(s) is a sequent ` F0, . . . ,Fn−1 and

there are i < n and a0 ∈ N such that
Fi =

∨
S Ga and a0 ∈ S,

(ii) sa ∈ tree
(
π
)

if and only if a = 0,
(iii) lab

(
π
)
(s0) = ` F0, . . . ,Fn−1,Ga0 .

(Der2) :


(i) lab

(
π
)
(s) is a sequent ` F0, . . . ,Fn−1 and

there is i < n such that Fi =
∧

S Ga,
(ii) sa ∈ tree

(
π
)

if and only if a ∈ S,
(iii) lab

(
π
)
(sa) = ` F0, . . . ,Fn−1,Ga, for all a ∈ S.

Some derivable sequents

I A derivation with no premises is
(∧)

` F0, . . . ,Fi−1 , 1 , Fi+1, . . . ,Fn−1

I Every leaf of a derivation is labeled by a sequent of this
form.

I Sequents of this form are derivable:
` F0, . . . ,Fi−1 , G , Fi+1, . . . ,Fj−1 , G⊥ , Fj+1, . . . ,Fn−1

I Novikoff’s law of complete induction is the formula(
F1 ∧ (F1 → F2) ∧ (F2 → F3) ∧ · · ·

)
→ F1 ∧ F2 ∧ F3 ∧ · · · .

In our system, we can consider the sequent

`
(
F⊥1 ∨ (F1 ∧ F⊥2) ∨ (F2 ∧ F⊥3) ∨ · · ·

)
, F1 ∧ F2 ∧ F3 ∧ · · · .

and show that it is derivable.

TESTS

Actions

I A disjunctive action is a triple
〈
n, i ,a

〉
where n, i ,a are

natural numbers such that 0 ≤ i < n.
I A conjunctive action is a triple

[
n, i ,S

]
where n, i are

natural numbers such that 0 ≤ i < n, and S ⊆ N.

Some terminology:

I
〈
n, i ,a

〉
=
〈

base , address , name
〉
;

I
[
n, i ,S

]
=
[

base , address , set of names
]
;

Tests

A test is a tree T labeled by actions such that for all
s ∈ tree

(
T
)

one of the following two conditions holds:

(T1) :


(i) lab

(
T
)
(s) =

〈
n, i ,a0

〉
,

(ii) sa ∈ tree
(
T
)

if and only if a = 0,
(iii) the base of lab

(
T
)
(s0) is n + 1.

(T2) :


(i) lab

(
T
)
(s) =

[
n, i ,S

]
,

(ii) sa ∈ tree
(
T
)

if and only if a ∈ S,
(iii) the base of lab

(
T
)
(sa) is n + 1,

for all a ∈ S.

We use letters T ,U ,V, . . . to range over tests.

I Tests are not necessarily well–founded.

Terminology and notation

Let T be a test.
I If the action lab

(
T
)
(()) has base n, we say that T is on

base n.
I If lab

(
T
)
(()) =

〈
n, i ,a0

〉
, then T has a unique immediate

subtree U . We denote T by
〈
n, i ,a0

〉
.U .

I If lab
(
T
)
(()) =

[
n, i ,S

]
, then T has an immediate subtree

Ua for each a ∈ S. We denote T by
[
n, i ,S

]
.Ua .

If S = ∅, then we simply write
[
n, i , ∅

]
.

T � ΘΘΘ

Let π be a derivation of ΘΘΘ in A.
We define the relation T � ΘΘΘ between tests and sequents of A
inductively as follows:

U � ` F0, . . . ,Fi−1 ,
∨

S Ga , Fi+1, . . . ,Fn−1 , Ga0
(∨)〈

n, i ,a0
〉
.U � ` F0, . . . ,Fi−1 ,

∨
S Ga , Fi+1, . . . ,Fn−1

Ua� ` F0, . . . ,Fi−1 ,
∧

S Ga , Fi+1, . . . ,Fn−1,Ga . . . all a ∈ S
(∧)[

n, i ,S
]
.Ua� ` F0, . . . ,Fi−1 ,

∧
S Ga , Fi+1, . . . ,Fn−1

Properties of T � ΘΘΘ

I Bijective correspondence between
{T : T � ΘΘΘ} and {π : π is a derivation of ΘΘΘ in A}.

I If T � ΘΘΘ, then T is well–founded.
I The relation T � ΘΘΘ is defined syntactically, i.e., using

derivations.
I Later on, we shall define a relation T � ΘΘΘ interactively,

i.e., using a kind of cut–elimination procedure.

COUNTER–TESTS

System B

We now consider another proof–system, that we call system B:

I Formulas : as in A
I Sequents ’ : A sequent of B is a unary sequence of

formulas `∗ F.
I Rules ’ :

I Disjunctive rule: one premise for each a ∈ S:

` Ga . . . all a ∈ S
(∨′)

`
∨

S Ga

I Conjunctive rule: one premise for each a ∈ S:

` Ga . . . all a ∈ S
(∧′)

`
∧

S Ga

I Derivations ’ : well–founded trees labeled by sequents of
B which are “locally correct.”

Remarks and terminology

I For every formula F there is one (and only one) derivation
of `∗ F in B. By an abuse of notation we write `∗ F for the
derivation of this sequent in B.

I For any formula F, we call the derivation of `∗ F in B a
counter–test.

I A derivation of `∗ F in B can be seen as the subformula
tree (in the sense of Gentzen) of F.

I For the formulas we are considering,
subformula a’la Gentzen = literal subformula.

INTERACTION, SOUNDNESS AND COMPLETENESS

Configurations

A configuration is either
I a pair

(
T , `∗ G0, . . . ,`∗ Gn−1

)
where:

I T is a test of base n,
I `∗ G0, . . . ,`∗ Gn−1 is a n–ary sequence of counter–tests,

for some n > 0;
I or the symbol ⇑ (error).

C denotes the set of all configurations.

I Intuition:

(
T , `∗ G0, . . . ,`∗ Gn−1

)
≈ ` F0, . . . ,Fn−1 `∗ G0 . . . `∗ Gn−1

cut

Reduction relation (I)

The reduction relation −→ is the subset of C× C defined as
follows.

(1) ⇑ −→ ⇑.
I Intuition: “ error reduces to error.”

Reduction relation (II)

(2) Let C =
(〈

n, i ,a0
〉
.U , `∗ G0 . . . `∗ Gn−1

)
.

• If Gi =
∧

S Ga and a0 ∈ S, then
C −→

(
U , `∗ G0 . . . `∗ Gn−1 `∗ Ga0

)
.

• C −→ ⇑, otherwise.
I Intuition (case n = 2 and i = 1):

... π
` F0 ,

∨
T Ha , Ha0

(∨)
` F0 ,

∨
T Ha

... π0

`∗ G0

... πa

`∗ Ga . . . all a ∈ S
(∧′)

`∗
∧

S Ga
cut

reduces to

... π
` F0 ,

∨
T Ha , Ha0

... π0

`∗ G0

... πa

`∗ Ga . . . all a ∈ S
(∧′)

`∗
∧

S Ga

... πa0

`∗ Ga0
cut

Reduction relation (III)

(3) Let C =
([

n, i ,T
]
.Ua , `∗ G0 . . . `∗ Gn−1

)
.

• If Gi =
∨

S Ga and S = T , then
C −→

(
Ua , `∗ G0 . . . `∗ Gn−1 `∗ Ga

)
, for all a ∈ S.

• C −→ ⇑, otherwise.
I Intuition (case n = 2 and i = 1):

... π
` F0 ,

∧
S Ha , Ha0

(∧)
` F0 ,

∧
S Ha

... π0

`∗ G0

... πa

`∗ Ga . . . all a ∈ S
(∨′)

`∗
∨

S Ga
cut

reduces to

... π
` F0 ,

∧
S Ha , Ha

... π0

`∗ G0

... πa

`∗ Ga . . . all a ∈ S
(∨′)

`∗
∨

S Ga

... πa

`∗ Ga
cut

Some properties of −→ (I)

Let A be a set and let R be a binary relation of A.
I R is total DEF⇐⇒ for all a ∈ A there is b ∈ A such that a R b;
I R is deterministic DEF⇐⇒ a R b and a R c imply b = c;
I R is terminating DEF⇐⇒ there is no infinite sequence

a0 −→ a1 −→ · · · .
The relation −→ is not total:([

1,0,S
]
.Ua , `∗

∨
S Ga

)
does not reduce to anything, if S = ∅.

The relation −→ is not deterministic:([
1,0, {c,d}

]
.Ua , `∗

∨
{c,d}Ga

)
reduces to(

Uc , `∗
∨
{c,d}Ga `∗ Gc

)
and

(
Ud , `∗

∨
{c,d}Ga `∗ Gd

)

Some properties of −→ (II)
The relation −→ is not terminating:

⇑ −→ ⇑ −→ · · ·

A more interesting example is the following:
I T DEF

=
〈
1,0,a0

〉
.
〈
2,0,a0

〉
. . .
〈
n,0,a0

〉
.
〈
n + 1,0,a0

〉
. . .;

I F DEF
=
∧
{a0}Ga, where Ga0

DEF
= 0.

(
T , `∗ F

)
−→

(〈
2,0,a0

〉
. . . , `∗ F `∗ 0

)
−→

...
−→

(〈
n,0,a0

〉
.
〈
n + 1,0,a0

〉
. . . , `∗ F `∗ 0 . . . `∗ 0

)
−→

(〈
n + 1,0,a0

〉
. . . , `∗ F `∗ 0 . . . `∗ 0 `∗ 0

)
−→

...

D � ΘΘΘ

We now define the relation T � ΘΘΘ, the semantical counterpart
of the relation T � ΘΘΘ.

T � ` F0, . . . ,Fn−1
DEF⇐⇒ every sequence of reductions

starting from
(
T , `∗ F⊥0 . . . `∗ F⊥n−1

)
terminates.

Soundness and completeness :

T � ΘΘΘ ⇐⇒ T � ΘΘΘ.

VARIANTS

T �′ ΘΘΘ

Let π be a derivation of ΘΘΘ in A. The relation T �′ ΘΘΘ is defined
inductively as follows:

U �′ ` F0, . . . ,Fi−1 ,
∨

S Ga , Fi+1, . . . ,Fn−1 , Ga0
(∨)〈

n, i ,a0
〉
.U �′ ` F0, . . . ,Fi−1 ,

∨
S Ga , Fi+1, . . . ,Fn−1

Ua�′ ` F0, . . . ,Fi−1 ,
∧

S Ga , Fi+1, . . . ,Fn−1, Ga. . . all a ∈ S
(∧)[

n, i ,T
]
.Ua�′ ` F0, . . . ,Fi−1 ,

∧
S Ga , Fi+1, . . . ,Fn−1

where S ⊆ T and Ub is an arbitrary test, for each b ∈ T \ S.

I If T �′ ΘΘΘ, then T is not necessarily well–founded.
I {T : T � ΘΘΘ} $ {T : T �′ ΘΘΘ}.

Reduction relation −→′

The reduction relation −→′ is the subset of C× C defined as
follows.

(1) ⇑ −→′ ⇑.
(2) Let C =

(〈
n, i ,a0

〉
.U , `∗ G0 . . . `∗ Gn−1

)
.

• If Gi =
∧

S Ga and a0 ∈ S, then
C −→′

(
U , `∗ G0 . . . `∗ Gn−1 `∗ Ga0

)
.

• C −→′ ⇑, otherwise.
(3) Let C =

([
n, i ,T

]
.Ua , `∗ G0 . . . `∗ Gn−1

)
.

• If Gi =
∨

S Ga and S⊆T , then
C −→′

(
Ua , `∗ G0 . . . `∗ Gn−1 `∗ Ga

)
, for all a ∈ S.

• C −→′ ⇑, otherwise.

D �′ ΘΘΘ

We now define the relation T �′ ΘΘΘ, the semantical
counterpart of the relation T �′ΘΘΘ.

T �′ ` F0, . . . ,Fn−1
DEF⇐⇒ every sequence of −→′

reductions starting from
(
T , `∗ F⊥0 . . . `∗ F⊥n−1

)
terminates.

Soundness and completeness :

T �′ ΘΘΘ ⇐⇒ T �′ ΘΘΘ.

FURTHER WORK

Further work

I Propositional variables and second order quantifiers.
I Girard’s β–logic (the logic underlying the theory of

dilators).
I . . .

Thank you!

Questions?

Answers?

Thank you!
Questions?

Answers?

Thank you!
Questions?

Answers?

	Introduction
	Trees
	System A
	Tests
	Counter–tests
	Interaction, soundness and completeness
	Variants
	Further work

