Inequality

Josef Berger

University of Greifswald, Germany

CTFM, 18 February 2013

Consider the following axioms.

(A)
$$x \neq y \Rightarrow x \neq z \lor y \neq z$$

(B)¹ $x \leq y \land x \neq y \Rightarrow x \leq z \lor z \leq y$
(C) $x \neq y \Rightarrow x \leq y \lor y \leq x$

¹This axiom was suggested by Douglas S. Bridges.

Minimalistic setting

Let < a binary relation on a set X such that

$$\neg (x < x)$$
(irreflexive) $x < y \land y < z \Rightarrow x < z$ (transitive) $x < y \Rightarrow x < z \lor z < y$ (approximate splitting)

Set

$$\begin{aligned} x &\leq y \stackrel{\text{def}}{\Leftrightarrow} \neg (y < x) \\ x &= y \stackrel{\text{def}}{\Leftrightarrow} x \leq y \land y \leq x \\ x &\neq y \stackrel{\text{def}}{\Leftrightarrow} \neg (x = y) \end{aligned}$$

Minimalistic setting

With classical logic, (A), (B), and (C) are true.

What can be said with intuitionistic logic?

Minimalistic setting, (A) \land (C) \Rightarrow (B)

Fix x, y, z and assume that $x \neq y$ and $x \leq y$.

By (A) we either have $x \neq z$ or $y \neq z$.

Considering the first case, (C) gives us either $x \le z$, which is fine, or $z \le x$, which implies $z \le y$.

The second case is treated analogously.

Group setting

Suppose that there exist an element 0 of X, and a functions +, max from $X \times X$ into X such that

- (X, +, 0) is an Abelian group
- $\blacktriangleright x < y \Rightarrow x + z < y + z$

▶
$$0 \leq \max(x, -x)$$

 $\blacktriangleright x < y \Rightarrow max(x, y) = max(y, x) = y$

 $\begin{array}{l} \mathsf{Proposition} \\ (A) \iff (B) \Longrightarrow (\mathcal{C}) \end{array}$

Group setting, $(A) \Rightarrow (C)$

Fix x, y and assume that $x \neq y$. Set $z = \max(x, y)$. By (A) we have either $x \neq z$ or $y \neq z$. Suppose that $x \neq z$. Then $x \leq y$, because y < x would imply x = zThe case $y \neq z$ is treated analogously.

This implies $(A) \Rightarrow (B)$ as well.

Group setting, $(B) \Rightarrow (A)$

Fix x, y with $x \neq y$. We show that either $x \neq 0$ or $y \neq 0$. Set $a = -\max(x, -x)$ $b = \max(y, -y)$ c = a + a + b + bWe have $a \leq b$ and $a \neq b$. If $a + a + b + b \leq b$, then $b \leq -a - a$ and therefore $x \neq 0$. If $a \leq a + a + b + b$, then $-a \leq b + b$ and therefore $y \neq 0$. The set \mathbb{R} of the **Cauchy reals** \mathbb{R} is the set of all rational sequences $x = (x_n)$ such that

$$\forall m, n \left(|x_m - x_n| \leq 2^{-m} + 2^{-n} \right).$$

For two reals x, y we define

$$x < y \stackrel{def}{\Leftrightarrow} \exists n \left(x_n + 2^{-n+1} < y_n
ight).$$

Real number setting

Proposition (A) \Leftrightarrow (B) \Leftrightarrow (C) \Leftrightarrow Π_1^0 -DML

Where Π_1^0 -DML says that

$$\neg (\Phi \land \Psi) \Rightarrow \neg \Phi \lor \neg \Psi$$

for $\Pi^0_1\text{-}\text{formulas}\;\Phi$ and $\Psi.^2$

 $^2\mathsf{A}$ formula Φ is a $\Pi^0_1\text{-}\textit{formula}$ if there exists a binary sequence α such that

 $\Phi \leftrightarrow \forall n (\alpha n = 0).$

Real number setting

The proof of Π_1^0 -DML \Rightarrow (A) is simple.

We show $(C) \Rightarrow \Pi_1^0$ -DML.

Real number setting, $(C) \Rightarrow \Pi_1^0$ -DML

Fix binary sequences α,β such that

$$\neg$$
 ($\forall n (\alpha n = 0) \land \forall n (\beta n = 0)$).

We have to show that

$$eg \forall n (\alpha n = 0) \lor \neg \forall n (\beta n = 0).$$

Define binary sequences α' and β' by

$$\alpha' n = 1 \stackrel{\text{def}}{\Leftrightarrow} \alpha n = 1 \land \forall k < n (\alpha k = 0 \land \beta k = 0)$$

$$\beta' n = 1 \stackrel{\text{def}}{\Leftrightarrow} \beta n = 1 \land \forall k < n (\alpha k = 0 \land \beta k = 0) \land \alpha n = 0$$

Real number setting, $(C) \Rightarrow \Pi_1^0$ -DML

Define sequences $x = (x_n)$ and $y = (y_n)$ by

$$x_0=y_0=0,$$

and for positive n,

$$x_n = \begin{cases} 2^{-k} & \text{if there exists } k \le n \text{ with } \alpha' k = 1\\ 0 & \text{else} \end{cases}$$
$$y_n = \begin{cases} 2^{-k} & \text{if there exists } k \le n \text{ with } \beta' k = 1\\ 0 & \text{else} \end{cases}$$

Real number setting, $(C) \Rightarrow \Pi_1^0$ -DML

Note that

- x and y are real numbers
- $\blacktriangleright x = 0 \Leftrightarrow \forall n (\alpha' n = 0)$
- $y = 0 \Leftrightarrow \forall n (\beta' n = 0)$

$$x = y \Rightarrow x = 0 \land y = 0$$

$$\blacktriangleright \neg (\forall n (\alpha' n = 0) \land \forall n (\beta' n = 0))$$

So x and y are real numbers with $x \neq y$. By (C), we obtain

$$x \leq y \lor y \leq x.$$

The case $x \le y$ implies $\neg \forall n (\beta' n = 0)$, which in turn implies $\neg \forall n (\beta n = 0)$. The case $y \le x$ implies $\neg \forall n (\alpha n = 0)$.