Randomness In The Higher Setting

(Joint Work With André Nies and Liang Yu)

Chi Tat Chong

National University of Singapore

chongct@math.nus.edu.sg

TIT CTFM Workshop, 20 February 2013

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Recursion Theory and Π_1^1 -ness

- (Spector) $x \in 2^{\omega}$ is "r.e." over $L_{\omega_{1}^{CK}} \Leftrightarrow x$ is Π_{1}^{1} .
- (Spector and Gandy) $A \subseteq 2^{\omega}$ is $\Pi_1^1 \Leftrightarrow$ there is a Σ_0 -formula φ such that $x \in A \Leftrightarrow L_{\omega_1^x}!x] \models \exists z \varphi(z, x)$. Or equivalently, A is Π_1^1 iff there is an e such that

 $x \in A \Leftrightarrow \{e\}^X$ is a well-ordering.

Recursion Theory and Π_1^1 -ness

• (Spector) $x \in 2^{\omega}$ is "r.e." over $L_{\omega_1^{CK}} \Leftrightarrow x$ is Π_1^1 .

• (Spector and Gandy) $A \subseteq 2^{\omega}$ is $\Pi_1^1 \Leftrightarrow$ there is a Σ_0 -formula φ such that $x \in A \Leftrightarrow L_{\omega_1^x}!x] \models \exists z \varphi(z, x)$. Or equivalently, A is Π_1^1 iff there is an e such that

 $x \in A \Leftrightarrow \{e\}^X$ is a well-ordering.

- (Spector) $x \in 2^{\omega}$ is "r.e." over $L_{\omega_1^{CK}} \Leftrightarrow x$ is Π_1^1 .
- (Spector and Gandy) $A \subseteq 2^{\omega}$ is $\Pi_1^1 \Leftrightarrow$ there is a Σ_0 -formula φ such that $x \in A \Leftrightarrow L_{\omega_1^X} [x] \models \exists z \varphi(z, x)$. Or equivalently, A is Π_1^1 iff there is an e such that

$$x \in A \Leftrightarrow \{e\}^X$$
 is a well-ordering.

Randomness over $L_{\omega_{1}^{CK}}$:

• x is Π_1^1 -random (Δ_1^1 -random) if x is not in any Π_1^1 (Δ_1^1)-null subset of 2^{ω} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

■ *x* is Π_1^1 Martin-Löf random (Δ_1^1 Martin-Löf random) if $x \notin \bigcap_n V_n$ for any Π_1^1 (Δ_1^1)-collection of open sets { V_n } such that $\mu(V_n) \le 2^{-n}$.

Randomness over $L_{\omega_1^{CK}}$:

x is Π¹₁-random (Δ¹₁-random) if x is not in any Π¹₁ (Δ¹₁)-null subset of 2^ω.

■ *x* is Π_1^1 Martin-Löf random (Δ_1^1 Martin-Löf random) if $x \notin \bigcap_n V_n$ for any Π_1^1 (Δ_1^1)-collection of open sets { V_n } such that $\mu(V_n) \le 2^{-n}$.

Randomness over $L_{\omega_1^{CK}}$:

x is Π¹₁-random (Δ¹₁-random) if x is not in any Π¹₁ (Δ¹₁)-null subset of 2^ω.

(日) (日) (日) (日) (日) (日) (日)

■ *x* is Π_1^1 Martin-Löf random (Δ_1^1 Martin-Löf random) if $x \notin \bigcap_n V_n$ for any Π_1^1 (Δ_1^1)-collection of open sets { V_n } such that $\mu(V_n) \le 2^{-n}$.

- (Hjorth and Nies) Every hyperdegree above the degree of Kleene's *O* is the degree of a Π¹₁ ML-random real. Hence Π¹₁ ML-random reals are cofinal in the hyperdegrees.
- (Chong, Nies and Yu)
 - No $x \ge_h \mathcal{O}$ is Π_1^1 -random. Hence if x is Π_1^1 -random, then $\omega_1^x = \omega_1^{CK}$.
 - Δ_1^1 -randomness = Δ_1^1 ML-randomness
 - If $\omega_1^x = \omega_1^{CK}$, then for x,
 - Π^1_1 -random = Π^1_1 ML-random = Δ^1_1 -random
 - In general, Π_1^1 -random $\Rightarrow \Pi_1^1$ ML-random $\Rightarrow \Delta_1^1$ -random, and the arrows do not reverse.

・ロト・日本・日本・日本・日本・日本

- (Hjorth and Nies) Every hyperdegree above the degree of Kleene's *O* is the degree of a Π¹₁ ML-random real. Hence Π¹₁ ML-random reals are cofinal in the hyperdegrees.
- (Chong, Nies and Yu)
 - No $x \ge_h \mathcal{O}$ is Π_1^1 -random. Hence if x is Π_1^1 -random, then $\omega_1^x = \omega_1^{CK}$.
 - Δ_1^1 -randomness = Δ_1^1 ML-randomness
 - If $\omega_1^x = \omega_1^{CK}$, then for x,
 - Π_1^1 -random = Π_1^1 ML-random = Δ_1^1 -random
 - In general, Π_1^1 -random $\Rightarrow \Pi_1^1$ ML-random $\Rightarrow \Delta_1^1$ -random, and the arrows do not reverse.

- (Hjorth and Nies) Every hyperdegree above the degree of Kleene's *O* is the degree of a Π¹₁ ML-random real. Hence Π¹₁ ML-random reals are cofinal in the hyperdegrees.
- (Chong, Nies and Yu)
 - No $x \ge_h O$ is Π_1^1 -random. Hence if x is Π_1^1 -random, then $\omega_1^x = \omega_1^{CK}$.
 - Δ_1^1 -randomness = Δ_1^1 ML-randomness
 - If $\omega_1^X = \omega_1^{CK}$, then for *x*,
 - Π_1^1 -random = Π_1^1 ML-random = Δ_1^1 -random
 - In general, Π_1^1 -random $\Rightarrow \Pi_1^1$ ML-random $\Rightarrow \Delta_1^1$ -random, and the arrows do not reverse.

- (Hjorth and Nies) Every hyperdegree above the degree of Kleene's *O* is the degree of a Π¹₁ ML-random real. Hence Π¹₁ ML-random reals are cofinal in the hyperdegrees.
- (Chong, Nies and Yu)
 - No $x \ge_h \mathcal{O}$ is Π_1^1 -random. Hence if x is Π_1^1 -random, then $\omega_1^x = \omega_1^{CK}$.
 - Δ_1^1 -randomness = Δ_1^1 ML-randomness
 - If $\omega_1^x = \omega_1^{CK}$, then for x,
 - Π_1^1 -random = Π_1^1 ML-random = Δ_1^1 -random
 - In general, Π_1^1 -random $\Rightarrow \Pi_1^1$ ML-random $\Rightarrow \Delta_1^1$ -random, and the arrows do not reverse.

- (Hjorth and Nies) Every hyperdegree above the degree of Kleene's *O* is the degree of a Π¹₁ ML-random real. Hence Π¹₁ ML-random reals are cofinal in the hyperdegrees.
- (Chong, Nies and Yu)
 - No $x \ge_h \mathcal{O}$ is Π_1^1 -random. Hence if x is Π_1^1 -random, then $\omega_1^x = \omega_1^{CK}$.
 - Δ_1^1 -randomness = Δ_1^1 ML-randomness
 - If $\omega_1^x = \omega_1^{CK}$, then for x,
 - Π_1^1 -random = Π_1^1 ML-random = Δ_1^1 -random
 - In general, Π_1^1 -random $\Rightarrow \Pi_1^1$ ML-random $\Rightarrow \Delta_1^1$ -random, and the arrows do not reverse.

- (Hjorth and Nies) Every hyperdegree above the degree of Kleene's *O* is the degree of a Π¹₁ ML-random real. Hence Π¹₁ ML-random reals are cofinal in the hyperdegrees.
- (Chong, Nies and Yu)
 - No $x \ge_h \mathcal{O}$ is Π_1^1 -random. Hence if x is Π_1^1 -random, then $\omega_1^x = \omega_1^{CK}$.
 - Δ_1^1 -randomness = Δ_1^1 ML-randomness
 - If $\omega_1^x = \omega_1^{CK}$, then for x,
 - Π_1^1 -random = Π_1^1 ML-random = Δ_1^1 -random
 - In general, Π_1^1 -random $\Rightarrow \Pi_1^1$ ML-random $\Rightarrow \Delta_1^1$ -random, and the arrows do not reverse.

Let $\omega_1^{\chi} = \omega_1^{CK}$.

- 1 If x is Δ_1^1 -random, then there is a $y >_h x$ whose hyperdegree contains no Δ_1^1 -random real.
- If x is random (in any sense defined), then every non-hyperarithmetic hyperdegree below deg(x) contains a random real.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Hyperdegrees of Random Reals

Theorem

Let $\omega_1^{\mathsf{X}} = \omega_1^{\mathsf{CK}}$.

- If x is Δ¹₁-random, then there is a y >_h x whose hyperdegree contains no Δ¹₁-random real.
- If x is random (in any sense defined), then every non-hyperarithmetic hyperdegree below deg(x) contains a random real.

Let $\omega_1^{\mathsf{X}} = \omega_1^{\mathsf{CK}}$.

- 1 If x is Δ_1^1 -random, then there is a $y >_h x$ whose hyperdegree contains no Δ_1^1 -random real.
- If x is random (in any sense defined), then every non-hyperarithmetic hyperdegree below deg(x) contains a random real.

Let $\omega_1^{\mathsf{X}} = \omega_1^{\mathsf{CK}}$.

- 1 If x is Δ_1^1 -random, then there is a $y >_h x$ whose hyperdegree contains no Δ_1^1 -random real.
- If x is random (in any sense defined), then every non-hyperarithmetic hyperdegree below deg(x) contains a random real.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definition. A real *y* is *low* for Π_1^1 ML-randomness if for any Π_1^1 ML-random *x*, $x \notin \bigcap_n V_n$ for any $\Pi_1^1(y)$ -collection of open sets $\{V_n\}$ such that $\mu(V_n) \leq 2^{-n}$.

• (Hjorth and Nies) If y is low for Π_1^1 ML-randomness, then y is hyperrarithmetic.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Definition. A real *y* is *low* for Π_1^1 ML-randomness if for any Π_1^1 ML-random *x*, $x \notin \bigcap_n V_n$ for any $\Pi_1^1(y)$ -collection of open sets $\{V_n\}$ such that $\mu(V_n) \le 2^{-n}$.

• (Hjorth and Nies) If y is low for Π_1^1 ML-randomness, then y is hyperrarithmetic.

Definition. A real *y* is *low* for Π_1^1 ML-randomness if for any Π_1^1 ML-random *x*, $x \notin \bigcap_n V_n$ for any $\Pi_1^1(y)$ -collection of open sets $\{V_n\}$ such that $\mu(V_n) \le 2^{-n}$.

 (Hjorth and Nies) If y is low for Π¹₁ ML-randomness, then y is hyperrarithmetic.

Theorem

There is an uncountable Σ_1^1 -set of reals that are low for Δ_1^1 -randomness.

Corollary. "Low for Π_1^1 ML-randomness" is not equivalent to "low for Δ_1^1 -randomness".

Problem: Characterize the set of reals that are low for Π¹₁-randomness. In particular, is there a non-hyperarithmetic real that is low for Π¹₁-randomness?

Theorem

There is an uncountable Σ_1^1 -set of reals that are low for Δ_1^1 -randomness.

Corollary. "Low for Π_1^1 ML-randomness" is not equivalent to "low for Δ_1^1 -randomness".

Theorem

There is an uncountable Σ_1^1 -set of reals that are low for Δ_1^1 -randomness.

Corollary. "Low for Π_1^1 ML-randomness" is not equivalent to "low for Δ_1^1 -randomness".

Theorem

There is an uncountable Σ_1^1 -set of reals that are low for Δ_1^1 -randomness.

Corollary. "Low for Π_1^1 ML-randomness" is not equivalent to "low for Δ_1^1 -randomness".

Theorem

There is an uncountable Σ_1^1 -set of reals that are low for Δ_1^1 -randomness.

Corollary. "Low for Π_1^1 ML-randomness" is not equivalent to "low for Δ_1^1 -randomness".

■ (Martin: Proof of Friedman's conjecture) Let A be an uncountable ∆¹₁-set of reals. Then

 $\{\deg(x): x \in A\} \supseteq \{\mathbf{z}: \mathbf{z} \ge \deg(\mathcal{O})\}.$

Theorem

Let A_0 and A_1 be Σ_1^1 and uncountable. Then

 $\{deg(x_0 \oplus x_1) : x_0 \in A_0 \land x_1 \in A_1\} \supseteq \{\mathbf{z} : \mathbf{z} \ge \deg(\mathcal{O})\}.$

Proof. Given $z \ge_h O$, construct $x_0 \in A_0, x_1 \in A_1$ so that x_0 codes z and a $z_0 \equiv_h O$ as well as a Σ_1^1 witness for x_1 , and x_1 codes a Σ_1^1 witness for x_0 .

 (Martin: Proof of Friedman's conjecture) Let A be an uncountable Δ¹₁-set of reals. Then

$$\{\deg(x): x \in A\} \supseteq \{z : z \ge \deg(\mathcal{O})\}.$$

Theorem

Let A_0 and A_1 be Σ_1^1 and uncountable. Then

 $\{deg(x_0 \oplus x_1) : x_0 \in A_0 \land x_1 \in A_1\} \supseteq \{\mathbf{z} : \mathbf{z} \ge \deg(\mathcal{O})\}.$

Proof. Given $z \ge_h O$, construct $x_0 \in A_0, x_1 \in A_1$ so that x_0 codes z and a $z_0 \equiv_h O$ as well as a Σ_1^1 witness for x_1 , and x_1 codes a Σ_1^1 witness for x_0 .

 (Martin: Proof of Friedman's conjecture) Let A be an uncountable Δ¹₁-set of reals. Then

$$\{\deg(x): x \in A\} \supseteq \{z : z \ge \deg(\mathcal{O})\}.$$

Theorem

Let A_0 and A_1 be Σ_1^1 and uncountable. Then

 $\{deg(x_0 \oplus x_1) : x_0 \in A_0 \land x_1 \in A_1\} \supseteq \{\mathbf{z} : \mathbf{z} \ge deg(\mathcal{O})\}.$

Proof. Given $z \ge_h O$, construct $x_0 \in A_0, x_1 \in A_1$ so that x_0 codes z and a $z_0 \equiv_h O$ as well as a Σ_1^1 witness for x_1 , and x_1 codes a Σ_1^1 witness for x_0 .

 (Martin: Proof of Friedman's conjecture) Let A be an uncountable Δ¹₁-set of reals. Then

$$\{\deg(x): x \in A\} \supseteq \{z : z \ge \deg(\mathcal{O})\}.$$

Theorem

Let A_0 and A_1 be Σ_1^1 and uncountable. Then

 $\{deg(x_0 \oplus x_1) : x_0 \in A_0 \land x_1 \in A_1\} \supseteq \{\mathbf{z} : \mathbf{z} \ge deg(\mathcal{O})\}.$

Proof. Given $z \ge_h \mathcal{O}$, construct $x_0 \in A_0, x_1 \in A_1$ so that x_0 codes z and a $z_0 \equiv_h \mathcal{O}$ as well as a Σ_1^1 witness for x_1 , and x_1 codes a Σ_1^1 witness for x_0 .

Proof. Harrington, Nies and Slaman showed that a real *x* is low for Π_1^1 -randomness if and only if it is low for Δ_1^1 -randomness and there is no Π_1^1 -random *y* such that $x \oplus y \ge_h O$.

There are uncountable Σ_1^1 -sets A_0 and A_1 such that every real in A_0 is Π_1^1 -random and every real in A_1 is low for Δ_1^1 -random. Then \mathcal{O} is the hyperdegree of the joint of some $x_0 \in A_0$ and x_1 in A_1 . Then x_1 its low for Δ_1^1 -randomness but not low for Π_1^1 -randomness.

・ロト・日本・日本・日本・日本・日本

Proof. Harrington, Nies and Slaman showed that a real *x* is low for Π_1^1 -randomness if and only if it is low for Δ_1^1 -randomness and there is no Π_1^1 -random *y* such that $x \oplus y \ge_h \mathcal{O}$. There are uncountable Σ_1^1 -sets A_0 and A_1 such that every real in A_0 is Π_1^1 -random and every real in A_1 is low for Δ_1^1 -random. Then \mathcal{O} is the hyperdegree of the joint of some $x_0 \in A_0$ and x_1 in A_1 . Then x_1 its low for Δ_1^1 -randomness but not low for Π_1^1 -randomness.

Proof. Harrington, Nies and Slaman showed that a real *x* is low for Π_1^1 -randomness if and only if it is low for Δ_1^1 -randomness and there is no Π_1^1 -random *y* such that $x \oplus y \ge_h O$.

There are uncountable Σ_1^1 -sets A_0 and A_1 such that every real in A_0 is Π_1^1 -random and every real in A_1 is low for Δ_1^1 -random. Then \mathcal{O} is the hyperdegree of the joint of some $x_0 \in A_0$ and x_1 in A_1 . Then x_1 its low for Δ_1^1 -randomness but not low for Π_1^1 -randomness.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Proof. Harrington, Nies and Slaman showed that a real *x* is low for Π_1^1 -randomness if and only if it is low for Δ_1^1 -randomness and there is no Π_1^1 -random *y* such that $x \oplus y \ge_h \mathcal{O}$.

There are uncountable Σ_1^1 -sets A_0 and A_1 such that every real in A_0 is Π_1^1 -random and every real in A_1 is low for Δ_1^1 -random. Then \mathcal{O} is the hyperdegree of the joint of some $x_0 \in A_0$ and x_1 in A_1 . Then x_1 its low for Δ_1^1 -randomness but not low for Π_1^1 -randomness.

Definition. *x* is *strongly* Π_1^1 ML-random if for any $\{V_n\}_{n < \omega}$ such that $\lim_n \mu(V_n) = 0, x \notin \bigcap_n V_n$.

In the literature (for first-order randomness), x is known as a weakly 2-random real.

Theorem

(Also by Bievenu, Greenberg and Monin)*There is an x which is* Π_1^1 *ML-random but not strongly* Π_1^1 *ML-random.*

Definition. *x* is *strongly* Π_1^1 ML-random if for any $\{V_n\}_{n < \omega}$ such that $\lim_n \mu(V_n) = 0, x \notin \bigcap_n V_n$. In the literature (for first-order randomness), *x* is known as a weakly 2-random real.

Theorem

(Also by Bievenu, Greenberg and Monin)*There is an x which is* Π_1^1 *ML-random but not strongly* Π_1^1 *ML-random.*

Definition. *x* is *strongly* Π_1^1 ML-random if for any $\{V_n\}_{n < \omega}$ such that $\lim_n \mu(V_n) = 0, x \notin \bigcap_n V_n$. In the literature (for first-order randomness), *x* is known as a weakly 2-random real.

Theorem

(Also by Bievenu, Greenberg and Monin)*There is an x which is* Π_1^1 *ML-random but not strongly* Π_1^1 *ML-random.*

Definition. *x* is *strongly* Π_1^1 ML-random if for any $\{V_n\}_{n < \omega}$ such that $\lim_n \mu(V_n) = 0, x \notin \bigcap_n V_n$. In the literature (for first-order randomness), *x* is known as a weakly 2-random real.

Theorem

(Also by Bievenu, Greenberg and Monin)*There is an x which is* Π_1^1 *ML-random but not strongly* Π_1^1 *ML-random.*

A Notion Stronger Than Π¹₁ ML-randomness

Theorem

If $z \ge \deg(\mathcal{O})$, then z contains a real that is Π_1^1 ML-random but not strongly Π_1^1 ML-random.

Proof. Construct an \mathcal{O} -recursive perfect tree T (over $L_{\omega_1^{CK}}$) such that each path on the tree ω_1^{CK} -recursively computes \mathcal{O} and is Π_1^1 ML-random but not strongly Π_1^1 ML-random.

・ロト・日本・日本・日本・日本

A Notion Stronger Than Π_1^1 ML-randomness

Theorem

If $z \ge \deg(\mathcal{O})$, then z contains a real that is Π_1^1 ML-random but not strongly Π_1^1 ML-random.

Proof. Construct an \mathcal{O} -recursive perfect tree T (over $L_{\omega_1^{CK}}$) such that each path on the tree ω_1^{CK} -recursively computes \mathcal{O} and is Π_1^1 ML-random but not strongly Π_1^1 ML-random.

If $z \ge \deg(\mathcal{O})$, then z contains a real that is Π_1^1 ML-random but not strongly Π_1^1 ML-random.

Proof. Construct an \mathcal{O} -recursive perfect tree T (over $L_{\omega_1^{CK}}$) such that each path on the tree ω_1^{CK} -recursively computes \mathcal{O} and is Π_1^1 ML-random but not strongly Π_1^1 ML-random.

シック・ 川 ・ 山 ・ 山 ・ ・ 山 ・ ・ 山 ・

If $z \ge \deg(\mathcal{O})$, then z contains a real that is Π_1^1 ML-random but not strongly Π_1^1 ML-random.

Proof. Construct an \mathcal{O} -recursive perfect tree T (over $L_{\omega_1^{CK}}$) such that each path on the tree ω_1^{CK} -recursively computes \mathcal{O} and is Π_1^1 ML-random but not strongly Π_1^1 ML-random.

シック・ 川 ・ 山 ・ 山 ・ ・ 山 ・ ・ 山 ・

If $z \ge \deg(\mathcal{O})$, then z contains a real that is Π_1^1 ML-random but not strongly Π_1^1 ML-random.

Proof. Construct an \mathcal{O} -recursive perfect tree T (over $L_{\omega_1^{CK}}$) such that each path on the tree ω_1^{CK} -recursively computes \mathcal{O} and is Π_1^1 ML-random but not strongly Π_1^1 ML-random.