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Or equivalently, A is Π1
1 iff there is an e such that

x ∈ A⇔ {e}X is a well-ordering.



Recursion Theory and Π1
1-ness

(Spector) x ∈ 2ω is “r.e.” over LωCK
1
⇔ x is Π1

1.

(Spector and Gandy) A ⊆ 2ω is Π1
1 ⇔ there is a Σ0-formula

ϕ such that x ∈ A⇔ Lωx
1
!x ] |= ∃zϕ(z, x).

Or equivalently, A is Π1
1 iff there is an e such that

x ∈ A⇔ {e}X is a well-ordering.



Recursion Theory and Π1
1-ness

(Spector) x ∈ 2ω is “r.e.” over LωCK
1
⇔ x is Π1

1.

(Spector and Gandy) A ⊆ 2ω is Π1
1 ⇔ there is a Σ0-formula

ϕ such that x ∈ A⇔ Lωx
1
!x ] |= ∃zϕ(z, x).

Or equivalently, A is Π1
1 iff there is an e such that

x ∈ A⇔ {e}X is a well-ordering.



Notions of Higher Randomness

Randomness over LωCK
1

:

x is Π1
1-random (∆1

1-random) if x is not in any Π1
1 (∆1

1)-null
subset of 2ω.
x is Π1

1 Martin-Löf random (∆1
1 Martin-Löf random) if

x /∈
⋂

n Vn for any Π1
1 (∆1

1)-collection of open sets {Vn}
such that µ(Vn) ≤ 2−n.



Notions of Higher Randomness

Randomness over LωCK
1

:

x is Π1
1-random (∆1

1-random) if x is not in any Π1
1 (∆1

1)-null
subset of 2ω.
x is Π1

1 Martin-Löf random (∆1
1 Martin-Löf random) if

x /∈
⋂

n Vn for any Π1
1 (∆1

1)-collection of open sets {Vn}
such that µ(Vn) ≤ 2−n.



Notions of Higher Randomness

Randomness over LωCK
1

:

x is Π1
1-random (∆1

1-random) if x is not in any Π1
1 (∆1

1)-null
subset of 2ω.
x is Π1

1 Martin-Löf random (∆1
1 Martin-Löf random) if

x /∈
⋂

n Vn for any Π1
1 (∆1

1)-collection of open sets {Vn}
such that µ(Vn) ≤ 2−n.



Higher Randomness Notions

(Hjorth and Nies) Every hyperdegree above the degree of
Kleene’s O is the degree of a Π1

1 ML-random real. Hence
Π1

1 ML-random reals are cofinal in the hyperdegrees.
(Chong, Nies and Yu)

No x ≥h O is Π1
1-random. Hence if x is Π1

1-random, then
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1 = ωCK
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1 ML-random = ∆1
1 -random

In general, Π1
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1 ML-random⇒ ∆1
1-random,
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1

(Martin: Proof of Friedman’s conjecture) Let A be an
uncountable ∆1

1-set of reals. Then
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Let A0 and A1 be Σ1
1 and uncountable. Then
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codes z and a z0 ≡h O as well as a Σ1

1 witness for x1, and x1
codes a Σ1

1 witness for x0.
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Proof. Harrington, Nies and Slaman showed that a real x is low
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There are uncountable Σ1
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in A0 is Π1
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in A1. Then x1 its low for ∆1

1-randomness but not low for
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