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Recursion Theory and Ml-ness

m (Spector) x € 2 is ‘re” over L cx < xis ni.

m (Spector and Gandy) A C 2¥ is ! « there is a o-formula
¢ suchthat x € A< Lx!x] = 3zp(z, X).
Or equivalently, A is M1 iff there is an e such that

x € A< {e}*Xis a well-ordering.



Notions of Higher Randomness

Randomness over Lw1c1(:



Notions of Higher Randomness

Randomness over Lw1c1(:

m x is M}-random (Al-random) if x is not in any M (Al)-null
subset of 2v.



Notions of Higher Randomness

Randomness over Lw1c1(:

m x is M}-random (Al-random) if x is not in any M (Al)-null
subset of 2v.

m x is ] Martin-L6f random (Al Martin-L6f random) if
x & N, Va for any N} (Al)-collection of open sets { V,,}
such that p(V,) <27
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Higher Randomness Notions

m (Hjorth and Nies) Every hyperdegree above the degree of
Kleene’s O is the degree of a ] ML-random real. Hence
I'I] ML-random reals are cofinal in the hyperdegrees.

m (Chong, Nies and Yu)

m No x >, O is N}-random. Hence if x is M]-random, then

wX = wCK
1= W

m Al-randomness = Al ML-randomness

B If wf = w§X, then for x,
M} -random = M! ML-random = A! -random

m In general, N}-random = M} ML-random = Al-random,
and the arrows do not reverse.
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Hyperdegrees of Random Reals

Letwf = w?K.
If x is Al-random, then there is a y >p, x whose
hyperdegree contains no A] -random real.
If x is random (in any sense defined), then every

non-hyperarithmetic hyperdegree below deg(x) contains a
random real.
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Definition. A real y is low for M} ML-randomness if for any
NIML-random x, x ¢ (N, V, for any M1(y)-collection of open
sets {Vj} such that p(V,) <27

m (Hjorth and Nies) If y is low for I‘I} ML-randomness, then y
is hyperrarithmetic.
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Lowness for Randomness

Definition. A real y is low for N} (Al)-randomness if no N}
(Al)-random real x belongs to a MI(y) (Al(y))-null set.

Theorem

There is an uncountable ¥1-set of reals that are low for
Al-randomness.

Corollary. “Low for M! ML-randomness” is not equivalent to “low
for Al-randomness”.

m Problem: Characterize the set of reals that are low for
MN}-randomness. In particular, is there a
non-hyperarithmetic real that is low for Ml-randomness?
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m (Martin: Proof of Friedman’s conjecture) Let A be an
uncountable Al-set of reals. Then

{deg(x) : x € A} > {z:z >deg(O)}.

Theorem
Let Ay and Ay be 1 and uncountable. Then

{deg(xo ® x1) : Xo € Ap A X1 € A1} D {z:2 > deg(O)}.
Proof. Given z >, O, construct xg € Ag, X; € Ay so that xg

codes zand a zy =, O as well as a Z] witness for x4, and xq
codes a ] witness for x.
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Separating Low For Randomness Between Al And 11!

Corollary. There is an x which is low for Al-randomness but not
low for M}-randomness.

Proof. Harrington, Nies and Slaman showed that a real x is low
for M]-randomness if and only if it is low for Al-randomness
and there is no I'I]-random ysuchthatx ey >4, O.

There are uncountable Z}—sets Ap and A; such that every real
in Ag is Ml-random and every real in Ay is low for Al-random.
Then O is the hyperdegree of the joint of some xp € Ag and xq
in Ay. Then x; its low for A]—randomness but not low for
M}-randomness.
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A Notion Stronger Than M} ML-Randomness

Definition. x is strongly I'I] ML-random if for any { V}n<., such
that lim, 1(Vsh) =0, x ¢ N, Vh.

In the literature (for first-order randomness), x is known as a
weakly 2-random real.

Theorem

(Also by Bievenu, Greenberg and Monin) There is an x which is I'I]
ML-random but not strongly N} ML-random.

Proof. There is a £]-closed tree T C 2<% such that [T] is
uncountable consisting only of I'I] ML-random reals. The
leftmost path of T (which is >, O) is not strongly !
ML-random.
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Theorem

Ifz > deg(0O), then z contains a real that is N} ML-random but
not strongly N1 ML-random.

Proof. Construct an O-recursive perfect tree T (over Lw1c1<) such

that each path on the tree w?K—recursiver computes O and is
M} ML-random but not strongly M1 ML-random.

Conjecture. No real >, O is strongly M} ML-random.
Question. Is N}-randomness different from strong !
ML-randomness?



