CTFM, Feb 19, 2013, Tokyo Institute of Technology

Inductive Definitions in Bounded Arithmetic: A New Way to Approach P vs. PSPACE

Naohi Eguchi

Mathematical Institute, Tohoku University, Japan

Introduction 1/2

- Purpose in computational complexity: Find limits of realistic computations.
- Theoretically: Comparing different notions about computational complexity, e.g. P \neq ? NP

Introduction 1/2

- Purpose in computational complexity: Find limits of realistic computations.
- Theoretically: Comparing different notions about computational complexity, e.g. P \neq ? NP
- Difficult: to compare complexity classes directly.

 —> Machine-independent logical approaches.
- This talk: new Bounded Arithmetic characterisations of P and PSPACE.
 (P ⊆ NP ⊆ PSPACE, P ≠? PSPACE)

Introduction 2/2

In finite model theory (N. Immermann et al.)

- 1. P is captured by monotone inductive definitions.
- 2. PSPACE is captured by non-monotone inductive definitions.

Introduction 2/2

In finite model theory (N. Immermann et al.)

- 1. P is captured by monotone inductive definitions.
- 2. PSPACE is captured by non-monotone inductive definitions.

Can 1 or 2 be formalised in bounded arithmetic?

- to understand what is the most essential principle in P- or PSPACE-computations.
- to find new aspects of the relationship between P and PSPACE.

Overview 1/4 Inductive definition (monotone case)

Example of inductive definition: \mathbb{N} is the smallest set containing 0 closed under $x\mapsto x+1$.

Overview 1/4 Inductive definition (monotone case)

Example of inductive definition: \mathbb{N} is the smallest set containing 0 closed under $x \mapsto x + 1$. More precisely: Define an operator $F: V \to V$ by $x \in F(X) :\Leftrightarrow x = 0 \lor \exists y \in X (x = y + 1)$.

Overview 1/4 Inductive definition (monotone case)

Example of inductive definition: \mathbb{N} is the smallest set containing 0 closed under $x \mapsto x + 1$. More precisely: Define an operator $F: V \to V$ by $x \in F(X) :\Leftrightarrow x = 0 \lor \exists y \in X(x = y + 1)$. See:

- \mathbb{N} is the least fixed point of F: $F(\mathbb{N})\subseteq\mathbb{N},\,orall X\subseteq V[F(X)\subseteq X o\mathbb{N}\subseteq X]$
- The least fixed point exists since F is monotone: $X \subseteq Y \Rightarrow F(X) \subseteq F(Y).$

Inductive definition (general case) Overview 2/4 $F: V \to V$: $x\in F(X):\Leftrightarrow x=0ee \exists y\in X(x=y+1).$ $\left\{egin{array}{ccc} F^{arphi}&:=&\emptyset\ F^{lpha+1}&:=&F(F^{lpha})\ F^{\gamma}&:=&arphiarphi =&arphi &arphi \end{array}
ight.$

$$egin{array}{cccc} F & \cdot & \cdot & F^{\gamma} \ F^{\gamma} & \cdot & = & igcup_{lpha < \gamma} F^{lpha} & (\gamma : \operatorname{limit}) \end{array}$$

Overview 2/4 Inductive definition (general case)F:V o V; $x\in F(X):\Leftrightarrow x=0ee\exists y\in X(x=y+1).$

$$\left\{egin{array}{cccc} F^0 & := & \emptyset \ F^{lpha+1} & := & F(F^lpha) \ F^\gamma & := & igcup_{lpha<\gamma}F^lpha & (\gamma: {
m limit}) \end{array}
ight.$$

See:

- $\exists lpha_0 < \# \mathcal{P}(V)$ such that $F^{lpha_0+1} = F(F^{lpha_0}) = F^{lpha_0}.$
- $\mathbb{N} = F_{\alpha_0}$.

Overview 3/4 Inductive definition (finite case)

 $F:S
ightarrow S\ (\#S<\omega)$

- There does not always exist $m < \omega$ such that $F^{m+1} = F(F^m) = F^m.$
- However $\exists k \leq 2^{\#S}$, $\exists l > 0$ such that $\forall n \geq l, \ F^{k+n} = F^n$.

Overview 3/4 Inductive definition (finite case)

 $F:S
ightarrow S\ (\#S<\omega)$

- There does not always exist $m < \omega$ such that $F^{m+1} = F(F^m) = F^m.$
- However $\exists k \leq 2^{\#S}$, $\exists l > 0$ such that $\forall n \geq l, \; F^{k+n} = F^n.$

Overview 3/4 Inductive definition (finite case)

 $F:S
ightarrow S\ (\#S<\omega)$

- There does not always exist $m < \omega$ such that $F^{m+1} = F(F^m) = F^m.$
- However $\exists k \leq 2^{\#S}$, $\exists l > 0$ such that $\forall n \geq l, \; F^{k+n} = F^n.$

Note:

- Choice of k and l is not unique.
- But F^n plays a role similar to the least fixed point like in infinite case.

- 1. A function f(x) is computable in T(x) steps.
- 2. TAPE^l denotes the tape description at the lth

- 1. A function f(x) is computable in T(x) steps.
- 2. TAPE^{*l*} denotes the tape description at the *l*th step in computing f(x); TAPE⁰ = $\begin{array}{c|c} B & i_1 & \cdots & i_{|x|} & B & \cdots & B \\ (x = i_1 \cdots i_{|x|} & (\text{input}), i_1, \ldots, i_{|x|} \in \{0, 1\}) \end{array}$

- 1. A function f(x) is computable in T(x) steps.
- 2. TAPE^{*l*} denotes the tape description at the *l*th step in computing f(x); TAPE⁰ = $\begin{bmatrix} B & i_1 & \cdots & i_{|x|} & B & \cdots & B \end{bmatrix}$

$$(x = i_1 \cdots i_{|x|} \text{ (input), } i_1, \dots, i_{|x|} \in \{0, 1\})$$

Then

- $\mathsf{TAPE}^{T(x)+1} = \mathsf{TAPE}^{T(x)}$.
- This gives rise to (finite) inductive definition!

Formalising computations 1/2

This gives rise to:

Formalising computations 1/2

This gives rise to:

Def Let Φ : a set of formulas $\subseteq \Sigma_1^0 \& f$: a function. f is Φ -definable in T if $\exists A(\vec{x}, y) \in \Phi$ such that 1. All free variables in $A(\vec{x}, y)$ are indicated. 2. $n = f(\vec{m}) \Leftrightarrow \mathbb{N} \models A(\underline{\vec{m}}, \underline{n})$ for $\forall \vec{m}, n \in \mathbb{N}$. 3. $T \vdash \forall \vec{x} \exists ! y A(\vec{x}, y)$.

Formalising computations 2/2

Classical facts:

1. f: primitive recursive $\Leftrightarrow f$: Σ_1^0 -definable in $I\Sigma_1$. (Parsons '70, Mints '73, Buss '86 and Takeuti '87)

Formalising computations 2/2

Classical facts:

- 1. f: primitive recursive $\Leftrightarrow f$: Σ_1^0 -definable in $I\Sigma_1$. (Parsons '70, Mints '73, Buss '86 and Takeuti '87)
- 2. $f \in \mathsf{FP} \Leftrightarrow f$: Σ_1^{b} -definable in S_2^1 . (Buss '86)
 - The start of bounded-arithmetic characterisations of complexity classes.

Note: By Gödel's incompleteness theorem, not all the computable functions are definable in any reasonable system.

Inductive definitions in 2nd order arithmetic

- Inductive definition can be axiomatised in 2nd order arithmetic in the most natural way.
 Fact
 - 1. Π_0^1 -MID₀ = Π_1^1 -CA₀. (MID: Monotone Inductive definition) 2. Π_0^1 -MID₀ = Π_1^0 -MID₀ $\subsetneq \Pi_2^0$ -ID₀ \subsetneq Π_3^0 -ID₀ $\subsetneq \cdots$.

Inductive definitions in 2nd order arithmetic

- Inductive definition can be axiomatised in 2nd order arithmetic in the most natural way.
 Fact
 - 1. Π_0^1 -MID₀ = Π_1^1 -CA₀.

(MID: Monotone Inductive definition)

- 2. Π_0^1 -MID₀ = Π_1^0 -MID₀ $\subsetneq \Pi_2^0$ -ID₀ \subsetneq Π_3^0 -ID₀ $\subsetneq \cdots$.
- Finitary inductive definition can be axiomatised in 2nd order bounded arithmetic.

Foundations of 2nd order bounded arithmetic 1/3

Languages of 2nd order bounded arithmetic: 1. 0, S, + and \cdot . 2. $\lfloor \frac{x}{2} \rfloor$, $|x| = \lceil \log_2(x+1) \rceil$ and |X|.

Importantly $x \# y = 2^{|x| \cdot |y|}$ is not included.

Foundations of 2nd order bounded arithmetic 1/3

Languages of 2nd order bounded arithmetic: 1. 0, S, + and \cdot . 2. $\lfloor \frac{x}{2} \rfloor$, $|x| = \lceil \log_2(x+1) \rceil$ and |X|.

Importantly $x \# y = 2^{|x| \cdot |y|}$ is not included.

Intuition:

1. $X, Y, Z \dots \in {}^{<\mathbb{N}} \{0, 1\}.$ 2. |X| = l if $X \equiv i_0 i_1 \dots i_{l-1}$ & $i_j \in \{0, 1\}.$ 3. $j \in X \Leftrightarrow i_j = 1$ if $X \equiv i_0 i_1 \dots i_{l-1}.$

Foundations of 2nd order bounded arithmetic 2/3

$\mathsf{Def}\left(\Sigma_1^{\mathbf{B}}\mathsf{-}\mathsf{formulas}\right)$

Σ^B₀ = Π^B₀: the set of formulas containing only bounded number quantifiers ∃x ≤ t.
 ∃X̃(|X̃| ≤ t̃ ∧ φ(X̃)) ∈ Σ^B_{n+1} if φ ∈ Π^B_n.

Foundations of 2nd order bounded arithmetic 2/3

 $\mathsf{Def}\left(\Sigma_1^{\mathbf{B}}\text{-}\mathsf{formulas}
ight)$

Σ₀^B = Π₀^B: the set of formulas containing only bounded number quantifiers ∃x ≤ t.
 ∃X (|X| ≤ t ∧ φ(X)) ∈ Σ_{n+1}^B if φ ∈ Π_n^B.
 Def (Bit-comprehension axiom) ∀x∃X^{≤x} s.t. ∀j < x(j ∈ X ↔ φ(j))

 $(\exists X^{\leq x} \cdots \text{ denotes } \exists X(|X| \leq x \wedge \cdots))$

Note: $\bigcup_{n\in\mathbb{N}}\Sigma^{\mathrm{B}}_n\subseteq\Delta^0_1(\exp)\subseteq\Sigma^0_1$ by definition.

Foundations of 2nd order bounded arithmetic 3/3

	2nd order arith.	2nd order BA
1st order ob- jects	elements of $\mathbb N$	$\leq p(x)$
2nd order ob- jects	$f:\mathbb{N} o\mathbb{N}$	$f:p(x) ightarrow \{0,1\}$
typical classes of formulas	Σ^1_n	Σ_n^{B}

(p: polynomial)

Foundations of 2nd order bounded arithmetic 3/3

	2nd order arith.	2nd order BA
1st order ob-	elements of $\mathbb N$	$\leq p(x)$
jects		
2nd order ob-	$f:\mathbb{N} o\mathbb{N}$	$f:p(x) ightarrow \{0,1\}$
jects		
typical classes of formulas	Σ^1_n	$\Sigma_n^{ m B}$

(p: polynomial)

Def $V^n := BASIC + \Sigma_n^B$ -COMP. Σ_n^B -COMP: BCA with φ restricted to Σ_n^B . Thm (Zambella '96) $f \in FP^{\Sigma_n^P} \Leftrightarrow f$: Σ_{n+1}^B -definable in V^{n+1} .

Formalising inductive definitions

Def $\forall x, \exists X^{\leq x}, \exists Y^{\leq x} \text{ s.t. } Y \neq \emptyset \text{ and}$ 1. $\forall j < x(P_{\varphi}^{\emptyset}(j) \leftrightarrow j = 0) \text{ (i.e. } P_{\varphi}^{\emptyset} = \emptyset)$ 2. $\forall Z \forall j < |Z|(P_{\varphi}^{S(Z)}(j) \leftrightarrow \varphi(j, P_{\varphi}^{Z}) \land j < x)$ 3. $\forall j < x(P_{\varphi}^{X+Y}(j) \leftrightarrow P_{\varphi}^{Y}(j))$ $(P_{\varphi}^{X}: \text{ fresh predicate, } S: \text{ binary successor } X \mapsto X+1)$

Recall:

1. $F^{0} = \emptyset$

- 2. $F^{m+1} = F(F^m)$
- 3. $\exists k \leq 2^{\#S}$, $\exists l \neq 0$ s.t. $F^{k+l} = F^{l}$

Formalising inductive definitions

Def $\forall x, \exists X^{\leq x}, \exists Y^{\leq x} \text{ s.t. } Y \neq \emptyset \text{ and}$ 1. $\forall j < x(P_{\varphi}^{\emptyset}(j) \leftrightarrow j = 0) \text{ (i.e. } P_{\varphi}^{\emptyset} = \emptyset)$ 2. $\forall Z \forall j < |Z|(P_{\varphi}^{S(Z)}(j) \leftrightarrow \varphi(j, P_{\varphi}^{Z}) \wedge j < x)$ 3. $\forall j < x(P_{\varphi}^{X+Y}(j) \leftrightarrow P_{\varphi}^{Y}(j))$ $(P_{\varphi}^{X}: \text{ fresh predicate, } S: \text{ binary successor } X \mapsto X+1)$

Recall:

- 1. $F^0 = \emptyset$
- 2. $F^{m+1} = F(F^m)$

3. $\exists k \leq 2^{\#S}$, $\exists l \neq 0$ s.t. $F^{k+l} = F^{l}$

Formalising inductive definitions

Def
$$\forall x, \exists X^{\leq x}, \exists Y^{\leq x} \text{ s.t. } Y \neq \emptyset \text{ and}$$

1. $\forall j < x(P_{\varphi}^{\emptyset}(j) \leftrightarrow j = 0) \text{ (i.e. } P_{\varphi}^{\emptyset} = \emptyset)$
2. $\forall Z \forall j < |Z|(P_{\varphi}^{S(Z)}(j) \leftrightarrow \varphi(j, P_{\varphi}^{Z}) \land j < x)$
3. $\forall j < x(P_{\varphi}^{X+Y}(j) \leftrightarrow P_{\varphi}^{Y}(j))$
 $(P_{\varphi}^{X}: \text{ fresh predicate, } S: \text{ binary successor } X \mapsto X+1)$
Recall:

- 1. $F^{0} = \emptyset$
- 2. $F^{m+1} = F(F^m)$
- 3. $\exists k \leq 2^{\#S}$, $\exists l \neq 0$ s.t. $F^{k+l} = F^{l}$

Capturing P and PSPACE

 $\begin{array}{l} \operatorname{Def}\,\Sigma_0^{\mathrm{B}}\text{-}\operatorname{IDEF}:\\ \operatorname{Axiom of inductive definition for }\varphi\in\Sigma_0^{\mathrm{B}}. \end{array}$

$\begin{array}{l} {\sf Thm}\; 1\\ {\sf Every}\; f\in {\sf FP}\; {\sf is}\; \Sigma^{\rm B}_1 {\sf .definable}\; {\sf in}\; {\rm V}^0+\Sigma^{\rm B}_0 {\sf .lDEF}. \end{array}$

Thm 2

Every $f \in \text{FPSPACE}$ is Σ_1^B -definable in $V^0 + \Sigma_0^B$ -IDEF.

- 1. A function f(x) is computable in T(x) steps.
- 2. TAPE^{*l*} denotes the tape description at the *l*th step in computing f(x);

Then

- $\mathsf{TAPE}^{T(x)+1} = \mathsf{TAPE}^{T(x)}$.
- This gives rise to (finite) inductive definition!

Suppose: $f \in FPSPACE$. $\exists p: \mathsf{poly} \left\{ egin{array}{c} f(x) ext{ is computable in } 2^{p(|x|)} \mathsf{steps} \ |\mathsf{TAPE}^X| \leq p(|x|) \end{array}
ight.$ See: TAPE^X \mapsto TAPE^{X+1}: Σ_{0}^{B} . By $(\Sigma_0^{\mathrm{B}}\text{-}\mathsf{IDEF}) \exists K, \exists L \text{ s.t. } \mathsf{TAPE}^{K+L} = \mathsf{TAPE}^L.$ See: $TAPE^{L}$ must be in the accepting state. So $f(x) = y \Leftrightarrow \exists X^{\leq p(|x|)}, \exists Y^{\leq p(|x|)}$ $\mathsf{TAPE}^{X+Y} = \mathsf{TAPE}^Y \land y = \mathsf{output}(\mathsf{TAPE}^Y)$ Hence f is $\Sigma_1^{\rm B}$ -definable in $V^0 + \Sigma_0^{\rm B}$ -IDEF.

Suppose: $f \in FPSPACE$. $\exists p: \text{ poly } \left\{ \begin{array}{l} f(x) \text{ is computable in } 2^{p(|x|)} \text{steps} \\ |\mathsf{TAPE}^X| \leq p(|x|) \end{array} \right.$ See: TAPE^X \mapsto TAPE^{X+1}: Σ_0^B . By $(\Sigma_0^{\mathrm{B}}\text{-}\mathsf{IDEF}) \exists K, \exists L \text{ s.t. } \mathsf{TAPE}^{K+L} = \mathsf{TAPE}^L.$ See: $TAPE^{L}$ must be in the accepting state. So $f(x) = y \Leftrightarrow \exists X^{\leq p(|x|)}, \exists Y^{\leq p(|x|)}$ $\mathsf{TAPE}^{X+Y} = \mathsf{TAPE}^Y \land y = \mathsf{output}(\mathsf{TAPE}^Y)$ Hence f is $\Sigma_1^{\rm B}$ -definable in $V^0 + \Sigma_0^{\rm B}$ -IDEF.

Suppose: $f \in FPSPACE$. $\exists p$: poly $\left\{egin{array}{c} f(x) ext{ is computable in } 2^{p(|x|)} ext{steps} \ |\mathsf{TAPE}^X| \leq p(|x|) \end{array}
ight.$ See: TAPE^X \mapsto TAPE^{X+1}: Σ_0^B . By $(\Sigma_0^{B} - \mathsf{IDEF}) \exists K, \exists L \text{ s.t. } \mathsf{TAPE}^{K+L} = \mathsf{TAPE}^{L}.$ See: $TAPE^{L}$ must be in the accepting state. So $f(x) = y \Leftrightarrow \exists X^{\leq p(|x|)}, \exists Y^{\leq p(|x|)}$ $\mathsf{TAPE}^{X+Y} = \mathsf{TAPE}^Y \land y = \mathsf{output}(\mathsf{TAPE}^Y)$ Hence f is $\Sigma_1^{\rm B}$ -definable in $V^0 + \Sigma_0^{\rm B}$ -IDEF.

Suppose: $f \in FPSPACE$. $\exists p$: poly $\left\{egin{array}{c} f(x) ext{ is computable in } 2^{p(|x|)} ext{steps} \ |\mathsf{TAPE}^X| \leq p(|x|) \end{array}
ight.$ See: TAPE^X \mapsto TAPE^{X+1}: Σ_0^B . By $(\Sigma_0^{\mathrm{B}}\text{-}\mathsf{IDEF}) \exists K, \exists L \text{ s.t. } \mathsf{TAPE}^{K+L} = \mathsf{TAPE}^L.$ See: $TAPE^{L}$ must be in the accepting state. So $f(x) = y \Leftrightarrow \exists X^{\leq p(|x|)}, \exists Y^{\leq p(|x|)}$ $TAPE^{X+Y} = TAPE^Y \land y = output(TAPE^Y)$ Hence f is $\Sigma_1^{\rm B}$ -definable in $V^0 + \Sigma_0^{\rm B}$ -IDEF.

Inflationary inductive definition

Can Theorem 1 be sharpen?: Thm 1 Every $f \in FP$ is Σ_1^B -definable in $V^0 + \Sigma_0^B$ -IDEF.

Inflationary inductive definition

Can Theorem 1 be sharpen?:

Thm 1 Every $f \in FP$ is Σ_1^B -definable in $V^0 + \Sigma_0^B$ -IDEF.

Def An operator F is inflationary if $X \subseteq F(X)$. Note: Inflationary inductive definition can be reduced monotone one over FOL. (Gurevich-Shelah '86)

Inflationary inductive definition

Can Theorem 1 be sharpen?:

Thm 1 Every $f \in$ FP is Σ_1^B -definable in $V^0 + \Sigma_0^B$ -IDEF.

Def An operator F is inflationary if $X \subseteq F(X)$.

Note: Inflationary inductive definition can be

reduced monotone one over FOL. (Gurevich-Shelah '86)

We can define:

Def Σ_0^{B} -IIDEF: a restriction of Σ_0^{B} -IDEF to

inflationary inductive definition.

Results

Thm 1 (sharpened) $f \in FP$ if and only if Σ_1^B -definable in $V^0 + \Sigma_0^B$ -IIDEF.

(\Longleftrightarrow) Reduce $\Sigma_0^{\rm B}\text{-}{\sf IIDEF}$ to $V^0+\Sigma_1^{\rm B}\text{-}{\sf IND}=V^1.$

Recall: Thm (Zambella '96) $f \in FP \Leftrightarrow f: \Sigma_1^B$ -definable in V^1 .

Conjecture

Conjecture Σ_0^{B} -IDEF can be reduced to W_1^{1} . (W_1^{1} : 3rd order extension of V^{1})

 $\begin{array}{l} \mathsf{Thm} \ (\mathsf{Skelley} \ '\mathsf{06}) \\ f \in \mathsf{FPSPACE} \Leftrightarrow f \ \mathsf{is} \ \Sigma_1^{\mathcal{B}} \mathsf{-definable} \ \mathsf{in} \ \mathbf{W}_1^1. \\ (\Sigma_1^{\mathcal{B}} \colon \mathsf{3rd} \ \mathsf{order} \ \mathsf{extension} \ \mathsf{of} \ \Sigma_1^{\mathbf{B}}) \end{array}$

Conjecture Σ_0^B -IDEF can be reduced to W_1^1 . (W_1^1 : 3rd order extension of V^1)

Thm (Skelley '06) $f \in \mathsf{FPSPACE} \Leftrightarrow f \text{ is } \Sigma_1^{\mathcal{B}} \text{-definable in } \mathbf{W}_1^1.$ $(\Sigma_1^{\mathcal{B}}: \text{ 3rd order extension of } \Sigma_1^{\mathbf{B}})$

 $\begin{array}{l} \mbox{Corollary of Conjecture} \\ f\in {\sf FPSPACE} \Leftrightarrow f \mbox{ is } \Sigma_1^{\rm B} \mbox{-definable in} \\ {\rm V}^0 + \Sigma_0^{\rm B} \mbox{-lDEF}. \end{array}$

Conclusion

- Finite model-theoretic characterisations of P and PSPACE can be reformulated by inductive definitions in bounded arithmetic.
- P vs. PSPACE can be reduced to inflationary vs. non inflationary inductive definitions.
- PSPACE can be discussed about without using 3rd order notions.
 - V^1 (2nd order) corresponds to P.
 - W_1^1 (3rd order) corresponds to PSPACE.

Thank you for your attention!

Speaker is generously supported by the John Templeton Foundation.