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• Purpose in computational complexity:

Find limits of realistic computations.

• Theoretically: Comparing different notions about

computational complexity, e.g. P ̸=? NP

• Difficult: to compare complexity classes directly.

=⇒ Machine-independent logical approaches.

• This talk: new Bounded Arithmetic

characterisations of P and PSPACE.

(P ⊆ NP ⊆ PSPACE, P ̸=? PSPACE)
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In finite model theory (N. Immermann et al.)

1. P is captured by monotone inductive definitions.

2. PSPACE is captured by non-monotone inductive

definitions.

Can 1 or 2 be formalised in bounded arithmetic?

• to understand what is the most essential principle

in P- or PSPACE-computations.

• to find new aspects of the relationship between P

and PSPACE.
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Example of inductive definition: N is the smallest

set containing 0 closed under x 7→ x + 1.

More precisely: Define an operator F : V → V by

x ∈ F (X) :⇔ x = 0 ∨ ∃y ∈ X(x = y + 1).

See:

• N is the least fixed point of F :

F (N) ⊆ N, ∀X ⊆ V [F (X) ⊆ X → N ⊆ X]

• The least fixed point exists since F is monotone:

X ⊆ Y ⇒ F (X) ⊆ F (Y ).
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F 0 := ∅

Fα+1 := F (Fα)
F γ :=

∪
α<γ Fα (γ : limit)
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F : V → V ;

x ∈ F (X) :⇔ x = 0 ∨ ∃y ∈ X(x = y + 1).
F 0 := ∅

Fα+1 := F (Fα)
F γ :=

∪
α<γ Fα (γ : limit)

See:

• ∃α0 < #P(V ) such that

Fα0+1 = F (Fα0) = Fα0 .

• N = Fα0 .
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• There does not always exist m < ω such that
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• However ∃k ≤ 2#S , ∃l > 0 such that
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Overview 3/4 Inductive definition (finite case)

F : S → S (#S < ω)

• There does not always exist m < ω such that

Fm+1 = F (Fm) = Fm.

• However ∃k ≤ 2#S , ∃l > 0 such that

∀n ≥ l, F k+n = Fn.

Note:

• Choice of k and l is not unique.

• But Fn plays a role similar to the least fixed

point like in infinite case.
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Suppose:

1. A function f(x) is computable in T (x) steps.

2. TAPEl denotes the tape description at the lth

step in computing f(x);

TAPE0 = B i1 · · · i|x| B · · · B

(x = i1 · · · i|x| (input), i1, . . . , i|x| ∈ {0, 1})
Then

• TAPET (x)+1 = TAPET (x).

• This gives rise to (finite) inductive definition!
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f is computable ⇔ ∃ program to compute f︸ ︷︷ ︸
Σ0

1-formula

This gives rise to:

Def Let Φ: a set of formulas ⊆ Σ0
1 & f : a function.

f is Φ-definable in T if ∃A(x⃗, y) ∈ Φ such that

1. All free variables in A(x⃗, y) are indicated.

2. n = f(m⃗) ⇔ N |= A(m⃗, n) for ∀m⃗, n ∈ N.
3. T ⊢ ∀x⃗∃!yA(x⃗, y).
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Formalising computations 2/2

Classical facts:

1. f : primitive recursive ⇔ f : Σ0
1-definable in IΣ1.

(Parsons ’70, Mints ’73, Buss ’86 and Takeuti ’87)

2. f ∈ FP ⇔ f : Σb
1 -definable in S1

2. (Buss ’86)

• The start of bounded-arithmetic

characterisations of complexity classes.

Note: By Gödel’s incompleteness theorem, not all

the computable functions are definable in any

reasonable system.
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Fact
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Inductive definitions in 2nd order arithmetic

• Inductive definition can be axiomatised in 2nd

order arithmetic in the most natural way.

Fact

1. Π1
0-MID0 = Π1

1-CA0.

(MID: Monotone Inductive definition)

2. Π1
0-MID0 = Π0

1-MID0 ⊊ Π0
2-ID0 ⊊

Π0
3-ID0 ⊊ · · · .

• Finitary inductive definition can be axiomatised in

2nd order bounded arithmetic.
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⌋, |x| = ⌈log2(x + 1)⌉ and |X|.

Importantly x#y = 2|x|·|y| is not included.

Intuition:

1. X,Y, Z · · · ∈ <N{0, 1}.
2. |X| = l if X ≡ i0i1 · · · il−1 & ij ∈ {0, 1}.
3. j ∈ X ⇔ ij = 1 if X ≡ i0i1 · · · il−1.
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Def (ΣB
1 -formulas)

1. ΣB
0 = ΠB

0 : the set of formulas containing only

bounded number quantifiers ∃x ≤ t.

2. ∃X⃗(|X⃗| ≤ t⃗ ∧ φ(X⃗)) ∈ ΣB
n+1 if φ ∈ ΠB

n .

Def (Bit-comprehension axiom)

∀x∃X≤x s.t. ∀j < x(j ∈ X ↔ φ(j))

(∃X≤x · · · denotes ∃X(|X| ≤ x ∧ · · · ))

Note:
∪

n∈N ΣB
n ⊆ ∆0

1(exp) ⊆ Σ0
1 by definition.
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(p: polynomial)
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2nd order arith. 2nd order BA
1st order ob-
jects

elements of N ≤ p(|x|)

2nd order ob-
jects

f : N → N f : p(|x|) → {0, 1}

typical classes
of formulas

Σ1
n ΣB

n

(p: polynomial)

Def Vn := BASIC + ΣB
n -COMP.

ΣB
n -COMP: BCA with φ restricted to ΣB

n .

Thm (Zambella ’96)

f ∈ FPΣP
n ⇔ f : ΣB

n+1-definable in Vn+1.
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Def ∀x, ∃X≤x, ∃Y ≤x s.t. Y ̸= ∅ and

1. ∀j < x(P ∅
φ(j) ↔ j = 0) (i.e. P ∅

φ = ∅)
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φ (j) ↔ φ(j, PZ
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3. ∀j < x(PX+Y
φ (j) ↔ P Y

φ (j))

(PX
φ : fresh predicate, S: binary successor X 7→ X +1)

Recall:

1. F 0 = ∅
2. Fm+1 = F (Fm)

3. ∃k ≤ 2#S , ∃l ̸= 0 s.t. F k+l = F l
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Capturing P and PSPACE

Def ΣB
0 -IDEF:

Axiom of inductive definition for φ ∈ ΣB
0 .

Thm 1

Every f ∈ FP is ΣB
1 -definable in V0 + ΣB

0 -IDEF.

Thm 2

Every f ∈ FPSPACE is ΣB
1 -definable in

V0 + ΣB
0 -IDEF.
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Proof of Theorem 2

Suppose: f ∈ FPSPACE.

∃p: poly
{

f(x) is computable in 2p(|x|)steps

|TAPEX | ≤ p(|x|)
See: TAPEX 7→ TAPEX+1: ΣB

0 .

By (ΣB
0 -IDEF) ∃K, ∃L s.t. TAPEK+L = TAPEL.

See: TAPEL must be in the accepting state.

So f(x) = y ⇔ ∃X≤p(|x|), ∃Y ≤p(|x|)

TAPEX+Y = TAPEY ∧ y = output(TAPEY )

Hence f is ΣB
1 -definable in V0 + ΣB
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Inflationary inductive definition

Can Theorem 1 be sharpen?:

Thm 1 Every f ∈ FP is ΣB
1 -definable in

V0 + ΣB
0 -IDEF.

Def An operator F is inflationary if X ⊆ F (X).

Note: Inflationary inductive definition can be

reduced monotone one over FOL. (Gurevich-Shelah ’86)

We can define:

Def ΣB
0 -IIDEF: a restriction of ΣB

0 -IDEF to

inflationary inductive definition.



Results

Thm 1 (sharpened) f ∈ FP if and only if

ΣB
1 -definable in V0 + ΣB

0 -IIDEF.

(⇐=) Reduce ΣB
0 -IIDEF to V0 + ΣB

1 -IND = V1.

Recall:

Thm (Zambella ’96)

f ∈ FP ⇔ f : ΣB
1 -definable in V1.
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1.

(W1
1: 3rd order extension of V1)

Thm (Skelley ’06)

f ∈ FPSPACE ⇔ f is ΣB
1 -definable in W1

1.

(ΣB
1 : 3rd order extension of ΣB

1 )

Corollary of Conjecture

f ∈ FPSPACE ⇔ f is ΣB
1 -definable in

V0 + ΣB
0 -IDEF.



Conjecture

Conjecture ΣB
0 -IDEF can be reduced to W1

1.

(W1
1: 3rd order extension of V1)

Thm (Skelley ’06)

f ∈ FPSPACE ⇔ f is ΣB
1 -definable in W1

1.

(ΣB
1 : 3rd order extension of ΣB

1 )

Corollary of Conjecture

f ∈ FPSPACE ⇔ f is ΣB
1 -definable in

V0 + ΣB
0 -IDEF.



Conclusion

• Finite model-theoretic characterisations of P and

PSPACE can be reformulated by inductive

definitions in bounded arithmetic.

• P vs. PSPACE can be reduced to inflationary vs.

non inflationary inductive definitions.

• PSPACE can be discussed about without using

3rd order notions.

– V1 (2nd order) corresponds to P.

– W1
1 (3rd order) corresponds to PSPACE.
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