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Purpose in computational complexity:

Find limits of realistic computations.
Theoretically: Comparing different notions about
computational complexity, e.g. P 27 NP
Difficult: to compare complexity classes directly.
— Machine-independent logical approaches.
This talk: new Bounded Arithmetic
characterisations of P and PSPACE.

(P C NP C PSPACE, P #7? PSPACE)
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In finite model theory (N. Immermann et al.)

1. P is captured by monotone inductive definitions.

2. PSPACE is captured by non-monotone inductive
definitions.

Can 1 or 2 be formalised in bounded arithmetic?

e to understand what is the most essential principle
in P- or PSPACE-computations.

e to find new aspects of the relationship between P
and PSPACE.
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Overview 1/4 Inductive definition (monotone case)

Example of inductive definition: N is the smallest
set containing O closed under x — x + 1.
More precisely: Define an operator ' : V — V by
rece F(X):xrxr=0vdye X(x=9y+1).
See:
e N is the least fixed point of F':
F(NNCN, VX CV[F(X)C X — NC X]
e T[he least fixed point exists since F' is monotone:
X CY = F(X)CF(Y).
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Overview 2/4 Inductive definition (general case)

F:V —V,;
r€e F(X):x=0vdye X(x=y+1).

F° = 0
F7 = Uy F (v ¢ limit)

See:

e Jdaop < #P(V) such that
Footl — F(F®0) = Fo

o N = F,,.
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Overview 3/4 Inductive definition (finite case)

F:58—85(#S <w)

e [here does not always exist . < w such that
Fmtl = F(F™) = F™,

e However 3k < 27°, 31 > 0 such that
Vn > 1, FFT" = F™.

Note:

e Choice of k and [ is not unique.

e But F' plays a role similar to the least fixed

point like in infinite case.
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Overview 4/4 Connection to time-complexity

Suppose:

1. A function f(a) is computable in T'(x) steps.
2. TAPE! denotes the tape description at the Ilth

step in computing f(x);

TAPE® =| B |4y | -+ | ijq

Bl|!... | B

(¢ = 21+ -2z (input), 21,...

Then
o TAPET(®)+1 — TAPET(®)

77:|a:| c {Oa 1})

e This gives rise to (finite) inductive definition!
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f i1s computable <« d program to compute f
N —

ch)—formula

This gives rise to:

Def Let ®: a set of formulas C X9 & f: a function.
f is ®-definable in T if A(&, y) € ® such that
1. All free variables in A(&, y) are indicated.

2. n= f(m) & Nk A(m,n) for "m,n € N.
3. T = VEIlyA(x,y).
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Formalising computations 2/2

Classical facts:
1. f: primitive recursive < f: 37-definable in IX;.
(Parsons '70, Mints '73, Buss '86 and Takeuti '87)
2. f € FP < f: XP-definable in S3. (Buss '86)
e T[he start of bounded-arithmetic

characterisations of complexity classes.

Note: By Godel's incompleteness theorem, not all
the computable functions are definable in any

reasonable system.



Inductive definitions in 2nd order arithmetic

e Inductive definition can be axiomatised in 2nd
order arithmetic in the most natural way.
Fact
1. TI3-MIDo = II7-CAo.

(MID: Monotone Inductive definition)
2. II5-MIDg = II9-MIDg C II2-1Dg C
I13-1Dg C - -+



Inductive definitions in 2nd order arithmetic

e Inductive definition can be axiomatised in 2nd
order arithmetic in the most natural way.
Fact
1. TI3-MIDo = II7-CAo.
(MID: Monotone Inductive definition)
2. II5-MIDg = II9-MIDg C II2-1Dg C
I13-1Dg C - -+
e Finitary inductive definition can be axiomatised in

2nd order bounded arithmetic.
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Languages of 2nd order bounded arithmetic:
1. 0, S, + and -.
2. 3], |2| = [logy (= +1)] and | X,

Importantly z#y = 2!®I'1¥l is not included.

Intuition:

1. X,Y,Z--- € <N{o,1}.

2. |X|=1if X =igi1---t1—1 & 3; € {0,1}.
3. j€EX o i; =1if X =gty t1—1.
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Foundations of 2nd order bounded arithmetic 2/3

Def (X7 -formulas)

1. X5 = II5: the set of formulas containing only

bounded number quantifiers dx < t.
2. AX(|X| <tAp(X)) € =B, if p € TIS.

Def (Bit-comprehension axiom)
VeaX ST st. Vj < z(j € X < »(4))

(3X=%... denotes IX(|X| <z A--))
Note: |,,c v 2n C Af(exp) C X? by definition.
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2nd order arith.

2nd order BA

1st order ob-
jects

elements of N

< p(|z|)

2nd order ob- f:N—N f :p(lxe|) —» {0,1}
jects
typical classes E,}L ZE

of formulas

(p: polynomial)

Def V™ := BASIC 4+ ZB-COMP.
> B5_-COMP: BCA with ¢ restricted to X5

hm (Zambella '96)
f € FPEn & f: > 1-definable in V™1,
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1. Vj < 2(P2(5) < j = 0) (i.e. P =0)
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Formalising inductive definitions

Def Va, IX S, Y ST st Y # @ and

1. Vj < 2(P2(5) < j = 0) (i.e. P =0)

2. VZVj < |Z|(PFP () ¢ (4, PF) N j < z)
3. Vj < (P (j) P, (j))

(ng(: fresh predicate, S: binary successor X — X + 1)
Recall:

1. F° =0

2. Ftl = F(F™)

3. 3k < 2%5 31 £ 0s.t. F*T' = F!




Capturing P and PSPACE

Def X5-1DEF:
Axiom of inductive definition for ¢ € X5 .

Thm 1
Every f € FP is X7 -definable in V° 4+ X5 -IDEF.

Thm 2
Every f € FPSPACE is X7 -definable in

VO + Z5-IDEF.
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Suppose:

1. A function f(a) is computable in T'(x) steps.
2. TAPE' denotes the tape description at the Ilth

step in computing f(x);

TAPE® =| B |4y | -+ | ijq

Bl|!... | B

(¢ = 21+ -2z (input), 21,...

Then
o TAPET(®)+1 — TAPET(®)

77:|a:| c {Oa 1})

e This gives rise to (finite) inductive definition!
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Proof of Theorem 2

Suppose: f € FPSPACE.
f(x) is computable in 2PU®Dsteps
dp: poly

ITAPE® | < p(|])
See: TAPEX — TAPEXT!. 5.
By (£¢-IDEF) 3K, 3L s.t. TAPERTL = TAPE".
See: TAPE" must be in the accepting state.
So f(z) =y < gx spelz) gy sp(=z)
TAPEXTY = TAPEY Ay = output(TAPEY)
Hence f is X7 -definable in V° + X5-IDEF.
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Inflationary inductive definition

Can Theorem 1 be sharpen?:

hm 1 Every f € FP is X T-definable in

VO + Z5-IDEF.

Def An operator F' is inflationary if X C F(X).

Note: Inflationary inductive definition can be

reduced monotone one over FOL. (Gurevich-Shelah '86)
We can define:
Def 5-IIDEF: a restriction of X5-IDEF to

inflationary inductive definition.



Results

Thm 1 (sharpened) f € FP if and only if
> P-definable in V® 4+ X5-1IDEF.

(+—) Reduce ZE-IIDEF to V® + BF-IND = V1

Recall:
Thm (Zambella '96)
f € FP & f: XP-definable in V.
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Conjecture

Conjecture E(];D’—IDEF can be reduced to Wéll
(W71: 3rd order extension of V')

Thm (Skelley '06)
f € FPSPACE < f is $7-definable in W7.
(X¥P: 3rd order extension of 3T7)

Corollary of Conjecture
f € FPSPACE < f is X T-definable in
VO 4+ Z5-IDEF.



Conclusion

e Finite model-theoretic characterisations of P and
PSPACE can be reformulated by inductive
definitions in bounded arithmetic.

e P vs. PSPACE can be reduced to inflationary vs.
non inflationary inductive definitions.

e PSPACE can be discussed about without using
3rd order notions.

— V! (2nd order) corresponds to P.
— W71 (3rd order) corresponds to PSPACE.



Thank you for your attention!
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