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Back ground and known results

C? > < PA
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TC > < Q




TC : Theory of Concatenation I

In A. Grzegorczyk’s paper “Undecidability without arith-
metization”(2005), he defined &, &, a, 3)-theory TC of con-
catenation, whose axioms are:

(TC1) VX(X"e=¢€"X=X) Axiom for identity
(TC2) VXVW2z(X (Y 2) = (X"Yy)"2) Associativity
(TC3) Editors Axiom:

VXVYWUYV(XTYy =U"V —

AW(X“W=UAY=W V)V (X=U WAW Yy=V)))
(TC4) a #£eNVXVY(XYy=0a - X=EVY=¢&)
(TCS5) BHAEAVXVY(X Y= —>X=€EVYy=¢)
(TC6) a #f5




About (TC3); editors axiom I

If X y=u"v,




About (TC3); editors axiom I

If X y=u"v,




About (TC3); editors axiom I

If X y=u"v,

/X\Ty I
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TC : Theory of Concatenation I

~ Definition

\-

e XxCy=dkdl(k™x)"l =
o XCiiy=dl (X"l =y)
e XCopg Y= Ik(kXx=Yy)

y)

~




What can TC prove? I

-~ Proposition
TC proves the following assertions:
(1) VX(Xa # ENAXF €)
(2) VXVY(Xy=€ = X=EAY=¢€)

(3) VXVy(xa =yaVvax=ay—x=Y) Weakcancellation

~

\- J
r Proposition ~
TC cannot prove the following assertions:
o VXVWz(Xz=yz— x=Y) cancellation
\ /




TC and undecidability I

[Theorem [Grzegorczyk, 2005] j

TC iIs undecidable.

Moreover,
[Theorem [Grzegorczyk and Zdanowski, 2007}j

TC Is essentially undecidable.

Grzegorczyk and Zdanowski conjectured that
() TC and Q are mutually interpretable;
(i) TCis minimal essentially undecidable theory.
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Definition of interpretation

L1,Lo : languages of first order logic.
A relative translation 7: Ly — Lo is a pair (0,F) such that

e 0 IS an Ly-formula with one free variable.

e F maps each relation-symbolR of L1 to an L»-formula
F(R).

We translate L;-formulas to Ly-formulas as follows:

o (R(X1, -+ ,%n))" :=F(R)(X1," - ,%n);

e (-)' commutes with the propositional connectives;

(-
o (Wx@(x)" :=Vx(0(x) = ¢°);
(Fx¢ (x))" :=3I(d(x) A §7).
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Definition of interpretation '

~ Definition (relative interpretation ) ~

Li-theory T is (relatively) interpretable in Ly-theory S, de-
noted by S> T, Iff

there exists a relative translationt : L1 — L, such that

(i) SF 3xd(x) and

(ii) for each axiom o of T, S a’.

\ J

r Proposition ~

Let Sbe a consistent theory.
If S>T and T Is essentially undecidable, thersis also es-

sentially undecidable.
\ /

The interpretability conserves the essential undecidability.
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TCand Q

In 2009, the following results were proved by three ways

iIndependently: 5
Visser and Sterken,Svejdar, and Ganea.

Theorem [2009]
[TC Interprets Q. (HenceTCp> <Q.) j
Here, Q is Robinson’s arithmetic, whose language is+,-,0,9)
(Q1) VXvy(S(x) = Sly) — x=Yy) (Q2) VX(S(x) # 0)
(Q3) ¥X(x+0=X) (Q4) VXVy(x+S(y) = S(x+Y))
(Q5) Vx(x-0=0) (Q6) VXvy(X- Sy) = X-y+X)
(Q7) ¥X(x# 0 — Jy(x=§y)))

D)

IS essentially undecidableand finitely axiomatizable.
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Theory C? and Peano arithmeticPA I

The theory C? of concatenation consists ofTC
plus the following induction:

D) AVX(P(X) = ¢(Xa)AP(XB)) — VXP(X).

Here, ¢ isa(,&,a,p)-formula.

Then, Ganea proved that
[Theorem [Ganea, 2009] j

C? and PA are mutually interpretable.

14
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Part |

A weak theory WTC of concatenation
and
mutual interpretability with R
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Arithmetic R (Mostowski-Robinson-Tarski, 1953 I

~(+,,0,1,<)-theory R ~

For eachn,me w, (Nrepresentsl+ n +1)

(

( -m
(R3) n=m (if n#m)
( — X

(

\_ J

* Ris Z1-completeand essentially undecidable
* R 5 Q, sinceQ is finitely axiomatizable.
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Arithmetic Rg (Cobham, 1960’s) I

a (_|_7 0,1, S)'theory Ro ™

For eachn,me w,
(R1) ﬁ+m: +m

(
(Q3)n;ém( nz m)
(R4") VX (x<Neox=0vx=1V---Vx=n)

/

* Ro interprets R by translating * <’ by *‘ < " as follows:
X<Yy=[0<yAVUULSYAU#Y—-U+1<Y)] —-x<Y.

* Rp Is minimal theory which is >1-complete and essentially
undecidable
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Arithmetic R4 (Jones and Shepherdson, 1983)'

4 (_|_7°707 17§)_theory R1 ™

For eachn,m e w,
(R2) n-m=n-m
(R3) n#m (if n#m)
(R4) Vx(x<nex=0V

HI
<

X = N)

\_ J
*R1 Interprets Rg by J. Robinson’s definition of ad-
dition in terms of multiplication.

*R1 Is minimal theory which is essentially undecid-
able.
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WTC: Weak Theory of Concatenation I

(7, €&,a,B)-theory WTC has the following
axioms: for eachu € {a, B},
(WTC1l) WXC u(X e=¢&"X=X);
(WTC2) Vxvyvz|x"(y " 2EuV (X"y)"zE U —
X~ (y"2) = (x"y)"Z;
(WTC3) VXVYVsSVt|[(Xy=StAX YyC U) —
IW((X"W=SAYy=W 1)V (X=S"WAW y=t))];
(WTC4) a#£eANVXVY(Xy=O0 > X=EVY=E¢E);
(WTC5) BH#eAVXVY(XYy=B —>X=€EVYy=¢&);
(WTC6) a # L.
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WTC: Weak Theory of Concatenation

Here, {a,[}" Is a set of finite strings over{a,}, including
empty string €. Let {a,B}" :={a,B}*\ {e}.
Foreachue {a,B}*, we representuin theories asu by adding
parentheses fromleft. For example,aafa = ((aa)B)a. We

call eachu (€ {a,[}*) standard string.

/Definition N
e XLy=(x=y)VIkdl kx=yVvxl=yV
(kx)l =yVKk(xl) =Yy
e XCiniy= (Xx=y)Vvdl(xl =y)
® XLCend Y= (X=Y)VIk(kx=Yy)
N ) y

20



~ Lemma

>1-completeness oW TC I

~
WTC proves the following assertion:
VX(XE U<« \/ X=V).
vLu
\- Y
~ Theorem ~
WTC s 21-complete, that Is, for each
21-sentencep, if {a,B}"F ¢ then WTCFH ¢. )
\_

{a,B}* is a standard model of TC.
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WTC interprets R

From now on, we consider the translation ofR into WTC.
/translatlon of 0,1, + ~

We translate 0,1, + as follows:
e O0=c¢;
e 1=0;

o X+y=X"Y,

o X<y=dJz(X"z=Y).
\_ J

To translate the product, we have to make ittotal
on w. To do this, we consider notion, “witness for
product”.
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WTC interprets R '

fAn Idea for the definition of withess ~

Withessw for 2 x 3 is as follows:

w=BBBRRaRaaBRaaB(aa)(aa)BBacaB(aa)(aa)(aa)Bf

This is from the following interpretation of 2 x 3:

(0,0) — (1,2) — (2,24+2) — (3,2+ 2+ 2).

That is, 2 x 3is interpreted asadding 2 three times

\_ J
By the help of above idea, we can represent the re-
lation “ w Is a witnhess for product ok andy ” by a
formula PWitn(x,y,w).

23



WTC interprets R '

~ Translation of product

~
We translate the multiplication “x x y = Z' by
(BIWPWitn(x, y,w) A BBYBZBS Ceng W)V
(=(F'wWPWitn(x,y,w))) Az= 0. y
~ Lemma (uniqueness of the withess o) ~

For each u,v € {a}*, there existsw € {a,B}* such that
WTC proves
KPWitn(t_J,\_/,v_v) AVW (PWitn(u,v,wW) — w=w). ,

Theorem
[WTC Interprets R. ]

24




R interprets WTC

Conversely, we can prove thaR interprets WTC, by apply-
Ing the Visser’s following theorem:

Visser’s theorem (2009)
[T IS Interpretable in R iff T is locally finitely satisfiable j

Here, a theory T islocally finitely satisfiable iff any finite sub-
theory of T has a finite model.

SinceWTC is locally finitely satisfiable, we can get the follow-
Ing result:

Corollary
[R Interprets WTC. ]

25



Conclusion of part | '

Theorem
[WTC and R are mutually interpretable. j
~ Corollary ~

1) WTC is essentially undecidable.

2) WTC interprets T iff T is locally finitely satisfiable.

)
)

3) WTC cannotinterpret TC.
)

(
(
(
L (4) WTCoand WTC, (n> 2) are mutually interpretable. )

Here, WTC, is WTC with n-th single-letters. (4) is from
WTC > R>WTCh>WTCCs.

20
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Part |l

Minimal essential undecidability
and
variations of WTC
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Minimal essential undecidability '

Question
[Is WTC minimal essentially undecidable ? ]

Here, minimal essentially undecidable means if one omits one
axiom from WTC, then the resulting theory is no longer essen-
tially undecidable. Again, WTC is: for eachu e {a,B}"

(WTC1)
(WTC2)

(WTC3)
(WTC4)

(WTC5)
(WTCB6)

VXC U(XT & =€ X=X);
VXYWZ|[X (Y Z)Cu VvV (XTy) T ZE U —
X (Y )= (X"y)" Z;

VXVWSYE (XY =STtAXTYC U) —

W(X"W=SAYy=W"1)V(X=S"WAW Yy =t))];
O #EAVXVY(XYy=a - X=€EVYy=E&);
B#eNVXVY(XYy=B —=X=€EVYy=E€);
a #+ 3.

28



Minimal essential undecidability '

r Proposition ~

WTC—(WTCK) (k = 3,4,5,6) Is not essentially undecid-

kable. y

We can find a decidable consistent extension of ead T C—(WTC k)
(k= 3,4,5,6). Hence remaining guestion is
WTC—(WTC k) (k= 1.2) is essentially undecidable ?

29



Minimal essential undecidability '

r Proposition ~

WTC—(WTCK) (k = 3,4,5,6) Is not essentially undecid-

kable. y

We can find a decidable consistent extension of ead T C—(WTC k)
(k= 3,4,5,6). Hence remaining guestion is
WTC—(WTC k) (k= 1.2) is essentially undecidable ?

We have proved the following:
/Theorem (with O. Yoshida)

WTC—(WTC1) can interpret WTC.

\Hence,WTC—(WTC 1) is still essentially undecidable. y

~
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WTC—-(WTC1) > <WTC
This Is proved by the following two lemmas.

Lemma
[For eachue {a,B}*, WTC - (WTCL1) provesue = eu= g.]

= Without (WTC1), axiom for identity, we can prove that the
empty string works well, as an identity element, for at least all
standard strings.

Lemma
[WTC -(WTC1) EYX(XC uA3IX (X = (eX)€) = VyouX= \_/)]

Although we do not know whetherWTC—(WTC1) can prove
VX(XE U — \/yX=V) or not, the above Lemma is strong
enough to interpret WTC into WTC—(WTCL1).

31



WTC—(WTC1) > <« WTC

Then, we interpret WTC in WTC - (WTC1) as follows:
Domain| d(x) =x=a Vv 3IX (x= (BX)e).
Remark that if (8X')¢ is standard, then 8x')e = B((eX)¢).
Constants| € = (3, a = [Ba, b= (.

X"y=2z| Let Q(x,y) = AX 3y (x= (BX)eAy= (BY)¢).

Then we translate concatenation agongx,y,z) =
X=0Vy=0 —z=d0d

AQ(xY) — XY [x= (BX)e Ay = (By)e Az= (B((Xe)Y))e]

AOW. —Z=0.

e Lemma

For eachw € {a,B}*, WTC - (WTC1) can prove that if

kConc(x, y, Bw), thenx and y are also standard. y

~
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WTC—(WTC1) > <« WTC '

Question
[Is WTC—(WTC1) minimal essentially undecidable ? ]

33



WTC—(WTC1) > <« WTC '

Question
[Is WTC—(WTC1) minimal essentially undecidable ? J

Theorem (K. Higuchi)
[WTC(WTCl) IS Interpretable in S28S. ]

Here, S2S is a monadic second-order logievhose language is
L = {S0,S1,(Pa)aca}. So,S1 are two successors andPy’s are
unary predicates. Then,S25:={¢ | ¢ is anL-sentence &0,1}" F
¢}. S2S is proved to bedecidableby M. O. Rabin (1969).

Theorem
[WTC(WTCl) IS minimal essentially undecidable theory]

34



TC ¢ '
On the other hand, we can consider the theory
of concatenation without empty string: (7, a,B)-
theory TC~¢ has the following axioms:
(TC%1) YxvyWz(X (Y~ 2) = (X"y)"2) Associativity
(TC~%2) Editors Axiom:
VXVYVSVE (XTy=S"t — (X=SAy=t)V
AW(X"W=SAYy=W 1)V (X=S"WAW y=t)))
(TC23) Wxvy(a #X"y)
(TC™24) IxVy(B #XY)
(TC™°5) a # P

35



WTC™® '

A weak versionWTC ¢ of TC™¢ has the following axioms:
foreachue {a,B}",

(WTC 1) Vxvyvz[[x~(y z)Cuv (x"y)"zC U
— X (Y 7 =(x"y)" Z;

(WTC ~22) WXWYVsvt[(Xy=StAX"yC u) —
(X=Y)A(s=1)V
IW((X"W=SAYy=W"t)V(X=S"WAW y=1))];

(WTC ~23) WXVY (XY #a);

(WTC ~¢4) vxvy(x"y# B);

(WTC ~¢5) a # .

For this theory, we proved the following:

36



WTC > <aWTC '

~ Proposition ~

WTC~¢ and WTC are mutually interpretable.

\HenceWTC‘g is essentially undecidable. y

WTCr>WTC ¢ is easy. We interpretWTC in WTC™¢ as:
Domain| 6(X) =x=aVvx= VI (x=LX).

Constants €= B, a = pa, B = [Bp.

X"y=2z| Let Q(x,y) = 3X 3y (x=BX Ay = BY), and trans-
ate the concatenation byCongx,y,z) =
X=aVy=a—z=0a|AX=B—z=Yy|Aly=B—z=XA

Q(X,y) — X Iy (x=PX' Ay =By Az=B(XY))]A
ow. —z=d].

37



WTC™¢ is minimal essentially undecidable I

Theorem
[WTCS is minimal essentially undecidable. j

This result partially contributes the following question by
Grzegorczyk and Zdanowski:

Question
[Is TC~¢ minimal essentially undecidable ? ]

The remaining part of the question is the essential undecid-
ability of TC™¢—(TC€1), that is, TC without associative law.
We can easily find an decidable extension of eadfiC ¢ —(TC —£k),
(k=2,3,4,5).

38



Variations of WTC: WTCH+(TC1) + (TC2) > <« WTC

Recall that
(TC1) ¥X(X"e=€"X=X)
(TC2) YXVYVzZ(X (Y2 =X" (Y 2))
(TC3) YXVyWsvt[(Xxy=5"t) —
(X" W=SAYy=W 1)V (X=S WAW y=t))]

Proposition
[WTC interprets WTC+(TC1) + (TC2) ]

BecauseNTC+(TC1) + (TC2) is locally finitely satisfiable.

Proposition
[WTC can notinterpret WTC+(TC3). J

BecauseNTC+(TC3) is not locally finitely satisfiable.
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Conclusion of Part Il '

The following are mutually interpretable (n > 2):

WTC, + (Identity) + (Assog
WTCh + (Identity)

WTC, + (Assog WTC, ®+ (Assog
WTC, WTC;
WTCh—(WTC1)

~ Theorem ~

WTC—(WTC1), WTC™¢ is minimal essentially
\undecidable.

J
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Questions I

(1) Is WTC-(Identity) >;-complete ?
= Our conjecture is NO.

(2) WTC+ (Editors Axiom) >TC ?
= Our conjecture is YES.

(3) Are there some natural theory T such that
TC>T>WTCandWTC TandT HTC?

41
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WTC interprets R '

~ Definition of “Good”
We define the formulaGoodx) as follows:

Goodx) = ID(x) AAS(x) AEA(X), where
e ID(X)=VSCX(S"e=¢€"5=79);

o AS(X) = VoVs1VS|[So (S17 ) E XV (97 S1) S C
X —s (17 %)=(051)" %

o EA(X) =VsoVsiVioWt1[(So St =1t t1 A St E X) —
W(SH5W=tgAST=W 11)V(So=1tg WAW S =

t1))]

~

J
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WTC interprets R I

- Properties of Good ~

(1) Foreachue{a,B,y}*,WTCF Goodu);

WTC proves the following assertions:

(2) Vx(Good x) — Vy C xGoody)), that is

_ Goodis closed under taking substrings. )

44



WTC interprets R I

To translate the product, we define “witness for
oroduct”.
-irst, we define a notion “number strings” as fol-
OWS:
~ Definition of “ Num” ~
We define the formulaNum(x) as follows:

. Num(x) = Vy((YE XAY# €) — O Ceng Y).

Fact
[For eachu e {a}*, WTCF Num(u). j

45



~ Definition of PWitn ~
We define a formulaPWitn(x,y, w) as follows:
(i) Num(x) A Num(y) A Goodw);
(i) BYB Cini W;
(iii) 32(Num(2) A ByyzB Ceng W);
(iv) Vpvz(Num(z) A pByyz8 = w — VZ(Num(Z) —
~(ByyZB C pB)):
(V) VpVavsvio[(Num(sp) A Num(tz) A pBspyto3g = w A

p#€)
— (ds Aty (Num(sy) ANum(ty) Ao =510 Ato = t1xX A

leytlﬁ L end pB))] !

(vi) Vpvgvsvt((Num(sz) A Num(ty) A pBsytSq = wAq #

— Cini :
L £) — BsaytxB Cini Q) )
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WTC interprets R I

PWitn(x,y, w)

47



WTC interprets R I

PWitn(x,y, w)

condition (i)

ByB
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WTC interprets R I

PWitn(x,y, w)

condition (i)

,ByyzB for somez
W

49



WTC interprets R I

PWitn(x,y, w)

condition (iv)
Byy|does not appear

/ | ByyizB

"W
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WTC interprets R I

- Translation of product
We translate the multiplication “xx y = Z’ into
the formula M(x,y,z) as follows:
M(X,y,2) = (FWPWItn(X,y,W) A yzB Eapng W)V
(—(F'WPWitn(x,y,w))) Az= 0.

~

/
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WTC interprets R I

4 )
For eachu,v € {a}*, there existsw € {a,b,c}"
such that WTC proves

. PWitn(u, v, w) A YW (PWitn(u,v,w) — w=w). )

In what follows, we see the each steps of the proof
of this main theorem.
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WTC interprets R I

~Lemma
WTC proves the following assertions:

(1) GoodxBs) AxBs=yBtA—-(BES)A-(BEH)
— (X=YyAsS=1t).

(2) GoodxBsBp) AxBsBp=yBtBA-(BES)A-(BLET)

. JpF &= IWXBSBw=yB AW = p)V
p=¢&— (X=YyAS=t).

~
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WTC interprets R I

It XBsBp = ypBtp,

@p7e (b) p=e¢

BB X ,
AYSy P o x s

\% ;

e

54



WTC interprets R I

~ Existence of the withess ~N

\_

Fix ue {a}*.

We can prove theexistenceof the witness

w € {a,b,c}™ by the meta-induction on the
length of ve {a} .

J
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WTC interprets R I

To prove the uniquenessof the witness, we prove
thie by the following two steps: Fixu,v e {a}" and
let we {a,b,c}" be some witness fou,v. In WTC,
let W be such thatPWitn(u,v,w'). Then,

- Step 1

N
(1) For eachk,l € {a}™,
WTCHVp(pBKUS Eini W — pBKyI B Cini W),

- Y,
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WTC interprets R I

ByB

=
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WTC interprets R I

ByB

=

ByB
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WTC interprets R I

BayuB

=
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WTC interprets R I

BayuB

=

Bayup
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WTC interprets R I

Baayuufs

=

01l



WTC interprets R I

Baayuufs

=

Baayuuf
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WTC interprets R I

=
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WTC interprets R I
Step 2
[WTC -w=Ww. j

We prove this by way of contradiction. Let us as-
sume that3g(wg=w Aq # €).
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WTC interprets R I
Step 2
[WTC -w=Ww. j

We prove this by way of contradiction. Let us as-
sume that3g(wg=w Aq # €).

W
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WTC interprets R I
Step 2
[WTC -w=Ww. j

We prove this by way of contradiction. Let us as-
sume that3g(wg=w Aq # €).

W .B\_/Vzo,Bl
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WTC interprets R I
Step 2
[WTC -w=Ww. ]

We prove this by way of contradiction. Let us as-
sume that3g(wg=w Aq # €).

W .B\_/Vzo,Bl

Bvyzi 3
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WTC interprets R I
Step 2
[WTC -w=Ww. ]

We prove this by way of contradiction. Let us as-
sume that3g(wg=w Aq # €).

W .B\_/Vzo,Bl

.B\_/VZO[J’; Bvyz13
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WTC interprets R I
Step 2
[WTC -w=Ww. ]

We prove this by way of contradiction. Let us as-
sume that3g(wg=w Aq # €).

W

gcontradict to the def. of PWitn
Bvy zof3 Bvyz13
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