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Back ground and known results

C2 ./ PA

5 5

TC ./ Q
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TC : Theory of Concatenation

In A. Grzegorczyk’s paper “Undecidability without arith-

metization”(2005), he defined a(_,ε,α,β )-theory TC of con-

catenation, whose axioms are:

(TC1) ∀x(x_ε = ε_x = x) Axiom for identity

(TC2) ∀x∀y∀z(x_(y_z) = (x_y)_z) Associativity

(TC3) Editors Axiom:
∀x∀y∀u∀v(x_y = u_v→
∃w((x_w= u∧y= w_v)∨(x= u_w∧w_y= v)))

(TC4) α 6= ε ∧∀x∀y(x_y = α → x = ε ∨y = ε)
(TC5) β 6= ε ∧∀x∀y(x_y = β → x = ε ∨y = ε)
(TC6) α 6= β
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About (TC3); editors axiom

If x_y = u_v,

x y

u v
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About (TC3); editors axiom

If x_y = u_v,

x y

u v
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About (TC3); editors axiom

If x_y = u_v,

x y

u v

w

w
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TC : Theory of Concatenation

Definition� �

• xv y≡ ∃k∃l((k_x)_l = y)

• xvini y≡ ∃l (x_l = y)

• xvend y≡ ∃k(k_x = y)
� �
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What can TC prove?

Proposition� �

TC proves the following assertions:

(1) ∀x(xα 6= ε ∧αx 6= ε)

(2) ∀x∀y(xy= ε → x = ε ∧y = ε)

(3) ∀x∀y(xα = yα∨αx= αy→ x= y) Weakcancellation
� �

Proposition� �

TC cannot prove the following assertions:

• ∀x∀y∀z(xz= yz→ x = y) cancellation
� �
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TC and undecidability

Theorem [Grzegorczyk, 2005]� �

TC is undecidable.
� �
Moreover,

Theorem [Grzegorczyk and Zdanowski, 2007]� �

TC is essentially undecidable.
� �
Grzegorczyk and Zdanowski conjectured that
(i) TC and Q are mutually interpretable;
(ii) TC is minimal essentially undecidable theory.
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Definition of interpretation
L1,L2 : languages of first order logic.
A relative translation τ : L1→ L2 is a pair 〈δ ,F〉 such that

• δ is an L2-formula with one free variable.

• F maps each relation-symbolR of L1 to an L2-formula
F(R).

We translateL1-formulas to L2-formulas as follows:

• (R(x1, · · · ,xn))τ := F(R)(x1, · · · ,xn);

• (·)τ commutes with the propositional connectives;

• (∀xϕ(x))τ := ∀x(δ (x)→ ϕτ);

• (∃xϕ(x))τ := ∃x(δ (x)∧ϕτ).
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Definition of interpretation

Definition (relative interpretation )� �

L1-theory T is (relatively) interpretable in L2-theory S, de-
noted byS.T, iff
there exists a relative translationτ : L1→ L2 such that
(i) S` ∃xδ (x) and
(ii) for each axiom σ of T, S` σ τ .
� �

Proposition� �

Let Sbe a consistent theory.
If S.T and T is essentially undecidable, thenS is also es-
sentially undecidable.
� �
The interpretability conserves the essential undecidability.
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TC and Q

In 2009, the following results were proved by three ways
independently:
Visser and Sterken,Švejdar, and Ganea.

Theorem [2009]� �

TC interprets Q. (HenceTC��Q.)
� �
Here, Q is Robinson’s arithmetic, whose language is(+, ·,0,S)

(Q1) ∀x∀y(S(x) = S(y)→ x = y) (Q2) ∀x(S(x) 6= 0)
(Q3) ∀x(x+0 = x) (Q4) ∀x∀y(x+S(y) = S(x+y))
(Q5) ∀x(x ·0 = 0) (Q6) ∀x∀y(x ·S(y) = x ·y+x)
(Q7) ∀x(x 6= 0→∃y(x = S(y)))

Q is essentially undecidableand finitely axiomatizable.
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Theory C2 and Peano arithmeticPA

The theory C2 of concatenation consists ofTC
plus the following induction:

ϕ(ε)∧∀x(ϕ(x)→ ϕ(x_α)∧ϕ(x_β ))→∀xϕ(x).

Here, ϕ is a (_,ε,α,β )-formula.

Then, Ganea proved that
Theorem [Ganea, 2009]� �

C2 and PA are mutually interpretable.
� �
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Part I

A weak theory WTC of concatenation
and

mutual interpretability with R
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Arithmetic R (Mostowski-Robinson-Tarski, 1953)

(+, ·,0,1,≤)-theory R� �

For eachn,m∈ ω, ( n represents1+ · · ·+1︸ ︷︷ ︸
n

)

(R1) n+m= n+m
(R2) n·m= n·m
(R3) n 6= m (if n 6= m)
(R4) ∀x(x≤ n→ x = 0∨x = 1∨·· ·∨x = n

)
(R5) ∀x(x≤ n∨n≤ x)
� �
* R is Σ1-completeand essentially undecidable.
* R 6�Q, sinceQ is finitely axiomatizable.
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Arithmetic R0 (Cobham, 1960’s)

(+, ·,0,1,≤)-theory R0� �

For eachn,m∈ ω,
(R1) n+m= n+m
(R2) n·m= n·m
(R3) n 6= m (if n 6= m)
(R4’) ∀x(x≤ n↔x = 0∨x = 1∨·· ·∨x = n

)
� �
* R0 interprets R by translating ‘ ≤ ’ by ‘ l ’ as follows:

xly≡ [0≤ y∧∀u(u≤ y∧u 6= y→ u+1≤ y)]→ x≤ y.

* R0 is minimal theory which is Σ1-complete and essentially
undecidable.
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Arithmetic R1 (Jones and Shepherdson, 1983)

(+, ·,0,1,≤)-theory R1� �

For eachn,m∈ ω,
(R2) n·m= n·m
(R3) n 6= m (if n 6= m)
(R4’) ∀x(x≤ n↔ x = 0∨x = 1∨·· ·∨x = n

)

� �
*R1 interprets R0 by J. Robinson’s definition of ad-
dition in terms of multiplication.
*R1 is minimal theory which is essentially undecid-
able.
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WTC: Weak Theory of Concatenation

(_,ε,α,β )-theory WTC has the following
axioms: for eachu∈ {α ,β}∗,
(WTC1) ∀xv u(x_ε = ε_x = x);
(WTC2) ∀x∀y∀z[[x_(y_z)v u∨ (x_y)_zv u]→
x_(y_z) = (x_y)_z];
(WTC3) ∀x∀y∀s∀t [(x_y = s_t ∧x_yv u)→
∃w((x_w = s∧y = w_t)∨ (x = s_w∧w_y = t))];
(WTC4) α 6= ε ∧∀x∀y(x_y = α → x = ε ∨y = ε);
(WTC5) β 6= ε ∧∀x∀y(x_y = β → x = ε ∨y = ε);
(WTC6) α 6= β .
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WTC: Weak Theory of Concatenation
Here,{α,β}∗ is a set of finite strings over{α ,β}, including

empty string ε. Let {α ,β}+ := {α ,β}∗ \{ε}.
For eachu∈ {α ,β}∗, we representu in theories asu by adding
parentheses fromleft. For example,ααβα = ((αα)β )α. We
call eachu (∈ {α,β}∗) standard string.

Definition� �

• xv y≡ (x = y)∨∃k∃l [kx= y∨xl = y∨
(kx)l = y∨k(xl) = y]

• xvini y≡ (x = y)∨∃l (xl = y)

• xvend y≡ (x = y)∨∃k(kx= y)
� �
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Σ1-completeness ofWTC

Lemma� �

WTC proves the following assertion:

∀x(xv u↔
∨

vvu

x = v).

� �
Theorem� �

WTC is Σ1-complete, that is, for each
Σ1-sentenceϕ, if {α,β}∗ � ϕ then WTC ` ϕ.
� �
{α,β}∗ is a standard model ofTC.
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WTC interprets R

From now on, we consider the translation ofR into WTC.
translation of 0,1,+� �

We translate0,1,+ as follows:

• 0⇒ ε;

• 1⇒ α;

• x+y⇒ x_y;

• x≤ y⇒∃z(x_z= y).
� �
To translate the product, we have to make ittotal
on ω. To do this, we consider notion, “witness for
product”.
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WTC interprets R

An idea for the definition of witness� �

Witnessw for 2×3 is as follows:

w = βββββαβααββααβ (αα)(αα)ββαααβ (αα)(αα)(αα)ββ

This is from the following interpretation of 2×3:

(0,0)→ (1,2)→ (2,2+2)→ (3,2+2+2).

That is, 2×3 is interpreted asadding 2 three times.
� �
By the help of above idea, we can represent the re-
lation “ w is a witness for product ofx and y ” by a
formula PWitn(x,y,w).
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WTC interprets R

Translation of product� �

We translate the multiplication “ x×y = z” by
(∃!wPWitn(x,y,w)∧ββyβzββ vend w)∨
(¬(∃!wPWitn(x,y,w)))∧z= 0.
� �

Lemma (uniqueness of the witness onω)� �

For each u,v ∈ {α}∗, there existsw ∈ {α,β}∗ such that
WTC proves
PWitn(u,v,w)∧∀w′(PWitn(u,v,w′)→ w = w′).
� �

Theorem� �

WTC interprets R.
� �
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R interprets WTC

Conversely, we can prove thatR interprets WTC, by apply-
ing the Visser’s following theorem:

Visser’s theorem (2009)� �

T is interpretable in R iff T is locally finitely satisfiable
� �
Here, a theoryT is locally finitely satisfiable iff any finite sub-
theory of T has a finite model.
SinceWTC is locally finitely satisfiable, we can get the follow-
ing result:

Corollary� �

R interprets WTC.
� �
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Conclusion of part I

Theorem� �

WTC and R are mutually interpretable.
� �

Corollary� �

(1) WTC is essentially undecidable.

(2) WTC interprets T iff T is locally finitely satisfiable.

(3) WTC cannot interpret TC.

(4) WTC2 and WTCn (n≥ 2) are mutually interpretable.
� �
Here, WTCn is WTC with n-th single-letters. (4) is from
WTC2 �R�WTCn �WTC2.
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Part II

Minimal essential undecidability
and

variations of WTC
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Minimal essential undecidability

Question� �

Is WTC minimal essentially undecidable ?
� �
Here, minimal essentially undecidable means if one omits one
axiom from WTC, then the resulting theory is no longer essen-
tially undecidable. Again, WTC is: for eachu∈ {α ,β}∗
(WTC1) ∀xv u(x_ε = ε_x = x);
(WTC2) ∀x∀y∀z[[x_(y_z)v u∨ (x_y)_zv u]→

x_(y_z) = (x_y)_z];
(WTC3) ∀x∀y∀s∀t[(x_y = s_t ∧x_yv u)→

∃w((x_w = s∧y = w_t)∨ (x = s_w∧w_y = t))];
(WTC4) α 6= ε ∧∀x∀y(x_y = α → x = ε ∨y = ε);
(WTC5) β 6= ε ∧∀x∀y(x_y = β → x = ε ∨y = ε);
(WTC6) α 6= β .
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Minimal essential undecidability

Proposition� �

WTC−(WTC k) (k = 3,4,5,6) is not essentially undecid-
able.
� �
We can find a decidable consistent extension of eachWTC−(WTC k)
(k = 3,4,5,6). Hence remaining question is
WTC−(WTC k) (k = 1,2) is essentially undecidable ?
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Minimal essential undecidability

Proposition� �

WTC−(WTC k) (k = 3,4,5,6) is not essentially undecid-
able.
� �
We can find a decidable consistent extension of eachWTC−(WTC k)
(k = 3,4,5,6). Hence remaining question is
WTC−(WTC k) (k = 1,2) is essentially undecidable ?

We have proved the following:
Theorem (with O. Yoshida)� �

WTC−(WTC1) can interpret WTC.
Hence,WTC−(WTC1) is still essentially undecidable.
� �

30



WTC−(WTC1) � � WTC

This is proved by the following two lemmas.
Lemma� �

For eachu∈ {α,β}∗, WTC - (WTC1) provesuε = εu = u.
� �
⇒Without (WTC1), axiom for identity, we can prove that the
empty string works well, as an identity element, for at least all
standard strings.

Lemma� �

WTC - (WTC1) ` ∀x(xv u∧∃x′ (x = (εx′)ε)→∨
vvux= v).

� �
Although we do not know whetherWTC−(WTC1) can prove
∀x(x v u→ ∨

vvux = v) or not, the above Lemma is strong
enough to interpret WTC into WTC−(WTC1).
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WTC−(WTC1) � � WTC

Then, we interpret WTC in WTC - (WTC1) as follows:
Domain δ (x)≡ x = α ∨∃x′ (x = (βx′)ε).
Remark that if(βx′)ε is standard, then(βx′)ε = β ((εx′)ε).
Constants ε ⇒ β , α ⇒ βα , β ⇒ ββ .

x_y = z Let Ω(x,y)≡ ∃!x′∃!y′ (x = (βx′)ε ∧y = (βy′)ε).
Then we translate concatenation asConc(x,y,z)≡

x = α ∨y = α → z= α
∧Ω(x,y)→∃x′∃y′ [x = (βx′)ε ∧y = (βy′)ε ∧z= (β ((x′ε)y′))ε]
∧o.w. → z= α .

Lemma� �

For each w ∈ {α,β}∗, WTC - (WTC1) can prove that if
Conc(x,y,βw), then x and y are also standard.
� �
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WTC−(WTC1) � � WTC

Question� �

Is WTC−(WTC1) minimal essentially undecidable ?
� �
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WTC−(WTC1) � � WTC

Question� �

Is WTC−(WTC1) minimal essentially undecidable ?
� �

Theorem (K. Higuchi)� �

WTC−(WTC1) is interpretable in S2S.
� �
Here, S2S is a monadic second-order logicwhose language is
L = {S0,S1,(Pa)a∈A}. S0,S1 are two successors andPa’s are
unary predicates. Then,S2S := {ϕ |ϕ is anL-sentence &{0,1}∗ �
ϕ}. S2S is proved to bedecidableby M. O. Rabin (1969).

Theorem� �

WTC−(WTC1) is minimal essentially undecidable theory.
� �
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TC−ε

On the other hand, we can consider the theory
of concatenation without empty string: (_,α,β )-
theory TC−ε has the following axioms:
(TC−ε1) ∀x∀y∀z(x_(y_z) = (x_y)_z) Associativity

(TC−ε2) Editors Axiom:
∀x∀y∀s∀t (x_y = s_t→ (x = s∧y = t)∨
∃w((x_w = s∧y = w_t)∨(x = s_w∧w_y = t)))

(TC−ε3) ∀x∀y(α 6= x_y)
(TC−ε4) ∀x∀y(β 6= x_y)
(TC−ε5) α 6= β
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WTC−ε

A weak versionWTC−ε of TC−ε has the following axioms:
for eachu∈ {α,β}+,

(WTC−ε1) ∀x∀y∀z[[x_(y_z)v u∨ (x_y)_zv u]
→ x_(y_z) = (x_y)_z];

(WTC−ε2) ∀x∀y∀s∀t [(x_y = s_t ∧x_yv u)→
(x = y)∧ (s= t)∨
∃w((x_w = s∧y = w_t)∨ (x = s_w∧w_y = t))];

(WTC−ε3) ∀x∀y(x_y 6= α);
(WTC−ε4) ∀x∀y(x_y 6= β );
(WTC−ε5) α 6= β .

For this theory, we proved the following:
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WTC−ε � �WTC

Proposition� �

WTC−ε and WTC are mutually interpretable.
HenceWTC−ε is essentially undecidable.
� �
WTC�WTC−ε is easy. We interpretWTC in WTC−ε as:
Domain δ (x)≡ x = α ∨x = β ∨∃x′ (x = βx′).
Constants ε ⇒ β , α ⇒ βα , β ⇒ ββ .
x_y = z Let Ω(x,y)≡ ∃!x′∃!y′ (x = βx′∧y = βy′), and trans-

late the concatenation byConc(x,y,z)≡
[x = α ∨y = α → z= α ]∧ [x = β → z= y]∧ [y = β → z= x]∧
[Ω(x,y)→∃x′∃y′ (x = βx′∧y = βy′∧z= β (x′y′))]∧
[o.w. → z= α].
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WTC−ε is minimal essentially undecidable

Theorem� �

WTC−ε is minimal essentially undecidable.
� �

This result partially contributes the following question by
Grzegorczyk and Zdanowski:

Question� �

Is TC−ε minimal essentially undecidable ?
� �
The remaining part of the question is the essential undecid-
ability of TC−ε−(TC−ε1), that is, TC without associative law.
We can easily find an decidable extension of eachTC−ε−(TC−εk),
(k = 2,3,4,5).
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Variations of WTC: WTC+(TC1) + (TC2) � � WTC

Recall that
(TC1) ∀x(x_ε = ε_x = x)
(TC2) ∀x∀y∀z(x_(y_z) = x_(y_z))
(TC3) ∀x∀y∀s∀t[(x_y = s_t)→

∃w((x_w = s∧y = w_t)∨ (x = s_w∧w_y = t))]
Proposition� �

WTC interprets WTC+(TC1) + (TC2)
� �
BecauseWTC+(TC1) + (TC2) is locally finitely satisfiable.

Proposition� �

WTC can not interpret WTC+(TC3).
� �
BecauseWTC+(TC3) is not locally finitely satisfiable.
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Conclusion of Part II

The following are mutually interpretable (n≥ 2):

WTCn +(Identity)+(Assoc)
WTCn +(Identity)
WTCn +(Assoc) WTC−ε

n +(Assoc)
WTCn WTC−ε

n

WTCn−(WTC1)

Theorem� �

WTC−(WTC1), WTC−ε is minimal essentially
undecidable.
� �
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Questions

(1) Is WTC-(Identity) Σ1-complete ?
⇒ Our conjecture is NO.

(2) WTC+ (Editors Axiom) .TC ?
⇒ Our conjecture is YES.

(3) Are there some natural theoryT such that
TC�T �WTC and WTC 6�T and T 6�TC ?
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WTC interprets R

Definition of “Good”� �

We define the formulaGood(x) as follows:

Good(x)≡ ID(x)∧AS(x)∧EA(x), where

• ID(x)≡ ∀sv x(s_ε = ε_s= s);

• AS(x) ≡ ∀s0∀s1∀s2[[s0
_(s1

_s2) v x∨ (s0
_s1)_s2 v

x]→ s0
_(s1

_s2) = (s0
_s1)_s2]

• EA(x)≡ ∀s0∀s1∀t0∀t1[(s0
_s1 = t0_t1∧s0

_s1v x)→
∃w((s0

_w = t0 ∧ s1 = w_t1) ∨ (s0 = t0_w∧w_s1 =
t1))]
� �
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WTC interprets R

Properties of Good� �

(1) For eachu∈ {α,β ,γ}∗,WTC `Good(u);

WTC proves the following assertions:

(2) ∀x(Good(x)→∀yv xGood(y)), that is
Goodis closed under taking substrings.
� �
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WTC interprets R

To translate the product, we define “witness for
product”.
First, we define a notion “number strings” as fol-
lows:

Definition of “ Num”� �

We define the formulaNum(x) as follows:

Num(x)≡ ∀y((yv x∧y 6= ε)→ α vend y).
� �

Fact� �

For eachu∈ {α}∗,WTC ` Num(u).
� �
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Definition of PWitn� �

We define a formulaPWitn(x,y,w) as follows:

(i) Num(x)∧Num(y)∧Good(w);

(ii) βγβ vini w;

(iii) ∃z(Num(z)∧βyγzβ vend w);

(iv) ∀p∀z(Num(z) ∧ pβyγzβ = w → ∀z′(Num(z′) →
¬(βyγz′β v pβ ));

(v) ∀p∀q∀s2∀t2[(Num(s2) ∧ Num(t2) ∧ pβs2γt2βq = w ∧
p 6= ε)
→ (∃s1∃t1(Num(s1)∧Num(t1)∧ s2 = s1α ∧ t2 = t1x∧

βs1γt1β vend pβ ))];

(vi) ∀p∀q∀s∀t((Num(s1) ∧Num(t1) ∧ pβsγtβq = w∧ q 6=
ε)→ βsαγtxβ vini βq).
� �
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WTC interprets R

PWitn(x,y,w)

w
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WTC interprets R

PWitn(x,y,w)

βγβ

condition (ii)

w
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WTC interprets R

PWitn(x,y,w)

βyγzβ for somez

w

condition (iii)
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WTC interprets R

PWitn(x,y,w)

βyγ zβ
w

condition (iv)

βyγ does not appear
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WTC interprets R

Translation of product� �

We translate the multiplication “ x× y = z” into
the formula M(x,y,z) as follows:

M(x,y,z)≡ (∃!wPWitn(x,y,w)∧ γzβ vend w)∨
(¬(∃!wPWitn(x,y,w)))∧z= 0.

� �
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WTC interprets R

Main theorem� �

For each u,v ∈ {a}+, there existsw ∈ {a,b,c}+
such that WTC proves

PWitn(u,v,w)∧∀w′(PWitn(u,v,w′)→ w = w′).
� �
In what follows, we see the each steps of the proof
of this main theorem.
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WTC interprets R

Lemma� �

WTC proves the following assertions:

(1) Good(xβs)∧xβs= yβ t ∧¬(β v s)∧¬(β v t)
→ (x = y∧s= t).

(2) Good(xβsβ p)∧xβsβ p = yβ tβ ∧¬(β v s)∧¬(β v t)

→
{

p 6= ε →∃w(xβsβw = yβ ∧wtβ = p)∨
p = ε → (x = y∧s= t).

� �
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WTC interprets R

If xβsβ p = yβ tβ ,

x

y t

β β

β β

s

(a) p 6= ε (b) p = ε

x

β β

β β

s p

y t

w
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WTC interprets R

Existence of the witness� �

Fix u∈ {a}+.
We can prove theexistenceof the witness
w ∈ {a,b,c}+ by the meta-induction on the
length of v∈ {a}+.
� �
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To prove the uniquenessof the witness, we prove
thie by the following two steps: Fixu,v∈ {a}+ and
let w∈ {a,b,c}+ be some witness foru,v. In WTC,
let w′ be such thatPWitn(u,v,w′). Then,

Step 1� �

(1) For eachk, l ∈ {a}+,
WTC ` ∀p(pβkγ lβ vini w→ pβkγ lβ vini w′);

(2) WTC ` wvini w′.
� �
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w′

w
βγββγβ
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w′

w
βγββγβ

βγβ
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w′

w βαγuβ
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w′

w βαγuβ

βαγuβ
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w′

w βααγuuβ
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w′

w βααγuuβ

βααγuuβ
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w′

w
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Step 2� �

WTC ` w = w′.
� �
We prove this by way of contradiction. Let us as-
sume that∃q(wq = w′∧q 6= ε).
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Step 2� �

WTC ` w = w′.
� �
We prove this by way of contradiction. Let us as-
sume that∃q(wq = w′∧q 6= ε).

w′

w

q (6= ε)
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Step 2� �

WTC ` w = w′.
� �
We prove this by way of contradiction. Let us as-
sume that∃q(wq = w′∧q 6= ε).

w′

w βvγz0β
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Step 2� �

WTC ` w = w′.
� �
We prove this by way of contradiction. Let us as-
sume that∃q(wq = w′∧q 6= ε).

w′

w βvγz0β

βvγz1β
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Step 2� �

WTC ` w = w′.
� �
We prove this by way of contradiction. Let us as-
sume that∃q(wq = w′∧q 6= ε).

w′

w βvγz0β

βvγz1ββvγz0β
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Step 2� �

WTC ` w = w′.
� �
We prove this by way of contradiction. Let us as-
sume that∃q(wq = w′∧q 6= ε).

w′

w

βvγ z1ββvγ z0β
contradict to the def. of PWitn
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