Computably measurable sets and computably measurable functions in terms of algorithmic randomness

> Tokyo Institute of Technology 20 Feb 2013

Kenshi Miyabe RIMS, Kyoto University

Motivation

Measure (Probability) theory everywhere(!) Non-constructive proof

Topics in measure theory

- Measure
- Measurable set
- Measurable function
- Lebesgue integral
- Radon-Nikodym theorem

- Change of variables
- Fourier transform
- L^p spaces
- convergence of measure
- conditional measure

Use randomness

 A property holds almost surely (or almost everywhere)

* A property holds for a (sufficiently) random point

* differentiable

Birkhoff's ergodic theorem

computably measurable set

is tor wash's non-sector period in at Low day the transmistic washing a sure

approximation approach

[0, 1] with the Lebesgue measure μ Sanin 1968(!), Edalat 2009, Hoyrup& Rojas 2009, Rute \mathcal{B} : the set of Borel subsets

$$d(A,B) = \mu(A\Delta B)$$

[\mathcal{B}]: the quotient of \mathcal{B} by $A \sim B \iff d(A, B) = 0$ \mathcal{U} : the set of finite unions of intervals with rational endpoints **Theorem** (Rojas 2008) ([\mathcal{B}], d, \mathcal{U}) is a computable metric space For a subset $A \subseteq [0,1]$, $[A] \in [\mathcal{B}]$ is a computable point in the space if there exists a computable sequence $\{B_n\}$ of Usuch that $d(A, B_n) \leq 2^{-n}$ for all n.

Naive definition

A is a computably measurable set if [A] is a computable point in the space.

Remark

Essentially the same idea is used in Pour-El & Richard (1989).

The relation with randomness

Sanin or Edalat didn't study

- * Hoyrup-Rojas did for Martin-Löf randomness
- Rute did for Schnorr randomness but not fully effective

Convergence

Observation (Implicit in Pathak et al., Rute and M.) The following are equivalent for $x \in [0, 1]$:

- 1. x is Schnorr random,
- 2. $\lim_{n \to \infty} B_n(x)$ exits for each computable sequence $\{B_n\}$ in \mathcal{U} such that

$$d(B_{n+1}, B_n) \le 2^{-n}$$

for all n.

Possible definition Let $\{A_n\}$ be a computable sequence of \mathcal{U} such that

$$d(A_{n+1}, A_n) \le 2^{-n}$$

for all n. The set A defined by

 $A(x) = \begin{cases} \lim_{x \to 0} A_n(x) & \text{if } x \text{ is Schnorr random} \\ 0 & \text{otherwise.} \end{cases}$

is called a computably measurable set.

This idea is similar to \hat{f} in Pathak et al. and Rute.

Definition

Definition (M.)

A set A is called a computably measurable set if there is a computable sequence $\{A_n\}$ of \mathcal{U} such that $d(A_{n+1}, A_n) \leq 2^{-n}$ for all n and A(x) is equivalent to $\lim_n A_n(x)$ up to Schnorr null.

Schnorr null

An open U is c.e. if $U = \bigcup_n U_n$ for a computable $\{U_n\}$ in \mathcal{U} .

Definition (Schnorr 1971) A Schnorr test is a sequence $\{U_n\}$ of uniformly c.e. open sets with $\mu(U_n) \leq 2^{-n}$ for each n. A point x is called Schnorr random if $x \notin \bigcap_n U_n$ for each Schnorr test.

For each Schnorr test $\{U_n\}$, the set $\bigcap_n U_n$ is called a Schnorr null set.

No universal Schnorr test

Proposition

For each Schnorr null set N, there is a computable point z that is not contained in N.

Definition

A and B are equivalent up to Schnorr null if $A\Delta B$ is contained in a Schnorr null set.

Remark

Equivalence up to Schnorr null is a stronger notion than equivalence for all random points.

Definition (again)

Definition (M.)

A set A is called a computably measurable set if there is a computable sequence $\{A_n\}$ of \mathcal{U} such that $d(A_{n+1}, A_n) \leq 2^{-n}$ for all n and A(x) is equivalent to $\lim_n A_n(x)$ up to Schnorr null.

Possible definition Let $\{A_n\}$ be a computable sequence of \mathcal{U} such that

$$d(A_{n+1}, A_n) \le 2^{-n}$$

for all n. The set A defined by

 $A(x) = \begin{cases} \lim_{x \to 0} A_n(x) & \text{if } x \text{ is Schnorr random} \\ 0 & \text{otherwise.} \end{cases}$

is called a computably measurable set.

This idea is similar to \hat{f} in Pathak et al. and Rute.

Usual definition

A is computably measurable set if [A] is a computable point, that is, there is a computable sequence $\{A_n\}$ of \mathcal{U} such that

$$d(A, A_n) = \mu(A\Delta A_n) \le 2^{-n}.$$

Sometimes called effectively measurable set or μ -recursive sets

Basic property

Proposition

Every computable measurable set has a computable measure.

Proposition

Let A, B be computable measurable sets. Then so are $A^c, A \cup B$ and $A \cap B$. Furthermore, $\mu(A\Delta B) = 0$ iff A and B are equivalent up to Schnorr null.

The approach via regularity

This approach is used in Edalat and Hoyrup & Rojas. **Proposition** The following are equivalent for a set A:

(i) A is a computably measurable set A.
(ii) There are two sequences {U_n} and {V_n} of c.e. open sets such that

 $V_n^c \subseteq A \subseteq U_n,$

 $\mu(U_n \cap V_n) \leq 2^{-n}$ and $\mu(U_n \cap V_n)$ is uniformly computable for each n.

Proposition

Let $E \subseteq \mathbb{R}$ be a measurable set.

- (i) For any $\epsilon > 0$, there is an open set $O \supseteq E$ such that $m(O \setminus E) < \epsilon$.
- (ii) For any $\epsilon > 0$, there is a closed set $F \subseteq E$ such that $m(E \setminus F) < \epsilon$.

(iii) There is a $G \in G_{\delta}$ such that $E \subseteq G$ and $m(G \setminus E) = 0$. (iv) There is a $F \in F_{\sigma}$ such that $E \supseteq F$ and $m(E \setminus F) = 0$.

Furthermore, if $m(E) < \infty$, then, for any $\epsilon > 0$, there is a finite union U of open intervals such that $m(U\Delta E) < \epsilon$.

Proposition

The following are equivalent for a set A:

(i) A is a computably measurable set A.
(ii) A has a computable measure and is equivalent up to Schnorr null to ∩_n U_n for a decreasing sequence {U_n} of uniformly c.e. open sets such that μ(U_n) is uniformly computable.

Definition (M.)

A function $f :\subseteq X \to Y$ is Schnorr layerwise computable if there exists a Schnorr test $\{U_n\}$ such that

 $f|_{X \setminus U_n}$

is uniformly computable.

Proposition The following are equivalent for a set A:

(i) A is a computably measurable set,
(ii) A : [0,1] → {0,1} is Schnorr layerwise computable.

computably measurable function

The is tory was a ground to prove the state of the second with the state of the sta

Definition

A function $f: X \to Y$ is measurable if $f^{-1}(U)$ is measurable for each open set U.

Theorem (Lusin's theorem)

A function $f : [0,1] \to \mathbb{R}$ is measurable iff, for each $\epsilon > 0$, there is a continuous function f_{ϵ} and a compact set K_{ϵ} such that $\mu(K_{\epsilon}^{c}) < \epsilon$ and $f = f_{\epsilon}$ on K_{ϵ} .

Definition (M.)

A function $f : [0,1] \to \mathbb{R}$ is computably measurable if $f^{-1}(U)$ is uniformly computably measurable for each interval U with rational endpoints.

Theorem (M.)

A function $f : [0,1] \to \mathbb{R}$ is computably measurable iff Schnorr layerwise computable.

Topics in measure theory

- Measure
- Measurable set
- Measurable function
- Lebesgue integral
- Radon-Nikodym theorem

- Change of variables
- Fourier transform
- L^p spaces
- convergence of measure
- conditional measure