A short proof of two Ramsey like independence results using recursion theoretic methods

${\sf Florian}\ {\sf Pelupessy}^1$

Department of Mathematics, Ghent University, Belgium

Tokyo, 18 February, 2013

¹Joint work with Harvey Friedman

- Introduction: two Ramsey like theorems which are independent of PA
- Preliminaries
- Proofs

Introduction

Theorem (Paris–Harrington, 1977)

For every d, c, m there exists an R such that for every colouring $C : [m, R]^d \to c$ there exists an $H \subseteq [m, R]$ of size min H for which C restricted to $[H]^d$ is constant.

$(a_1,\ldots,a_r)\leq (b_1,\ldots,b_r)\Leftrightarrow a_1\leq b_1\wedge\cdots\wedge a_r\leq b_r$

We call a function $C: \{0, \ldots, R\}^d \to \mathbb{N}^r$ limited if $\max C(x) \le \max x$.

Theorem (Adjacent Ramsey, Friedman, 2010)

For every d, r there exists R such that for every limited function $C: \{0, ..., R\}^d \to \mathbb{N}^r$ there are $x_1 < \cdots < x_{d+1} \leq R$ with $C(x_1, ..., x_d) \leq C(x_2, ..., x_{d+1})$.

Preliminaries

$$0, 1, 2, 3, 4, 5, 6, \dots, \omega,$$

$$\omega + 1, \omega + 2, \omega + 3, \dots, \omega + \omega = \omega \cdot 2, \dots, \omega \cdot \omega = \omega^2,$$

$$\omega^2 + 1, \dots, \omega^{\omega} = \omega_2, \dots, \omega^{\omega_2} = \omega_3, \dots, \omega_{\omega} = \varepsilon_0.$$

All $\alpha < \varepsilon_0$ can be written uniquely in the Cantor Normal Form:

$$\alpha = \omega^{\alpha_1} \cdot \mathbf{m}_1 + \cdots + \omega^{\alpha_n} \cdot \mathbf{m}_n,$$

where $\alpha_1 > \cdots > \alpha_n$ and $m_1 > 0, \ldots, m_n > 0$, $n \ge 1$.

$$\begin{aligned} & (\alpha+1)[x] &= \alpha, \\ & (\alpha+\omega^{\alpha_n+1}\cdot(m+1))[x] &= \alpha+\omega^{\alpha_n+1}\cdot m+\omega^{\alpha_n}\cdot x, \\ & (\alpha+\omega^{\gamma}\cdot(m+1))[x] &= \alpha+\omega^{\gamma}\cdot m+\omega^{\gamma[x]}. \end{aligned}$$

A Hydra battle is a sequence $\omega_d = h_0 > h_1 > \dots$ of ordinals such that $h_{i+1} = h_i[i+1]$.

Termination of Hydra battles is known to be independent of PA.

Given $\alpha = \omega^{\alpha_1} \cdot a_1 + \cdots + \omega^{\alpha_n} \cdot a_n$ and $\beta = \omega^{\beta_1} \cdot b_1 + \cdots + \omega^{\beta_m} \cdot b_m$.

- OP(α, β) is the smallest i such that ω^{α_i} · a_i ≠ ω^{β_i} · b_i if such an i exists, zero otherwise.
- 2 CC(α, β) is $a_{CP(\alpha,\beta)}$, where $a_0 = 0$.
- CE(α, β) is $\alpha_{CP(\alpha,\beta)}$, where $\alpha_0 = 0$.
- $MP(\alpha) = \max\{n, MP(\alpha_i)\}.$
- $MC(\alpha) = \max\{a_i, MC(\alpha_i)\}.$

•
$$F_1(\alpha) = \alpha.$$

• $F_{d+1}(\alpha_1, \dots, \alpha_{d+1}) =$
(CP(α_1, α_2), CC(α_1, α_2), F_d (CE(α_1, α_2), ..., CE(α_d, α_{d+1}))).

Lemma

 $CP(\alpha,\beta) \leq CP(\beta,\gamma) \wedge CE(\alpha,\beta) \leq CE(\beta,\gamma) \wedge CC(\alpha,\beta) \leq CC(\beta,\gamma) \Rightarrow \alpha \leq \beta.$

Lemma

$$F_d(\alpha_1,\ldots,\alpha_d) \leq F_d(\alpha_2,\ldots,\alpha_{d+1}) \Rightarrow \alpha_1 \leq \alpha_2.$$

Lemma

 $CP(\alpha,\beta) \leq CP(\beta,\gamma) \wedge CE(\alpha,\beta) \leq CE(\beta,\gamma) \wedge CC(\alpha,\beta) \leq CC(\beta,\gamma) \Rightarrow \alpha \leq \beta.$

Lemma

$$F_d(\alpha_1,\ldots,\alpha_d) \leq F_d(\alpha_2,\ldots,\alpha_{d+1}) \Rightarrow \alpha_1 \leq \alpha_2.$$

Lemma

$$\max F_d(\alpha_1,\ldots,\alpha_d) \leq MP(\alpha_1), MC(\alpha_1).$$

Lemma

For every Hydra battle h_0, h_1, \ldots we have $MP(h_i), MC(h_i) \leq i$.

Proofs

$$C(x_1,\ldots,x_d)=F(h_{x_1},\ldots,h_{x_d})$$

$$C(x_1,\ldots,x_d)=F(h_{x_1},\ldots,h_{x_d})$$

$$C(x_1,\ldots,x_d) \leq C(x_2,\ldots,x_{d+1}) \Rightarrow h_{x_1} \leq h_{x_2}$$

$$C(x_1,\ldots,x_d)=F(h_{x_1},\ldots,h_{x_d})$$

$$C(x_1,\ldots,x_d) \leq C(x_2,\ldots,x_{d+1}) \Rightarrow h_{x_1} \leq h_{x_2}$$

Hence AR implies that every Hydra battle terminates.

$$C(x_1, \dots, x_{d+1}) = \begin{cases} 0 & \text{if } F_d(h_{x_1-d-2}, \dots, h_{x_d-d-2}) \leq \\ & F_d(h_{x_2-d-2}, \dots, h_{x_{d+1}-d-2}), \\ i & \text{otherwise}, \end{cases}$$

$$C(x_1,...,x_{d+1}) = \begin{cases} 0 & \text{if } F_d(h_{x_1-d-2},...,h_{x_d-d-2}) \leq \\ & F_d(h_{x_2-d-2},...,h_{x_{d+1}-d-2}), \\ i & \text{otherwise}, \end{cases}$$

where i is the least such that:

$$(F_d(h_{x_1-d-2},\ldots,h_{x_d-d-2}))_i > (F_d(h_{x_2-d-2},\ldots,h_{x_{d+1}-d-2}))_i.$$

$$C(x_1,...,x_{d+1}) = \begin{cases} 0 & \text{if } F_d(h_{x_1-d-2},...,h_{x_d-d-2}) \leq \\ & F_d(h_{x_2-d-2},...,h_{x_{d+1}-d-2}), \\ i & \text{otherwise}, \end{cases}$$

where *i* is the least such that:

$$(F_d(h_{x_1-d-2},\ldots,h_{x_d-d-2}))_i > (F_d(h_{x_2-d-2},\ldots,h_{x_{d+1}-d-2}))_i.$$

If $C(x_1,...) = C(x_2,...) = \cdots = C(x_{x_1-d},...) \neq 0$ then we obtain a sequence $x_1 - d - 2 \ge i_1 > \cdots > i_{x_1-d}$ which is impossible.

$$C(x_1,...,x_{d+1}) = \begin{cases} 0 & \text{if } F_d(h_{x_1-d-2},...,h_{x_d-d-2}) \leq \\ & F_d(h_{x_2-d-2},...,h_{x_{d+1}-d-2}), \\ i & \text{otherwise}, \end{cases}$$

where *i* is the least such that:

$$(F_d(h_{x_1-d-2},\ldots,h_{x_d-d-2}))_i > (F_d(h_{x_2-d-2},\ldots,h_{x_{d+1}-d-2}))_i.$$

If $C(x_1,...) = C(x_2,...) = \cdots = C(x_{x_1-d},...) \neq 0$ then we obtain a sequence $x_1 - d - 2 \ge i_1 > \cdots > i_{x_1-d}$ which is impossible.

Hence PH implies that every Hydra battle terminates.

These proofs can be modified to show that for d > 1: adjacent Ramsey with fixed dimension d and Paris-Harrington with fixed dimension d + 1are independent of $I\Sigma_d$.

Florian Pelupessy pelupessy@cage.ugent.be cage.ugent.be/~pelupessy/