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Two Ramsey like theorems

Theorem (Paris–Harrington, 1977)

For every d , c ,m there exists an R such that for every colouring
C : [m,R]d → c there exists an H ⊆ [m,R] of size minH for which C
restricted to [H]d is constant.
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Two Ramsey like theorems

(a1, . . . , ar ) ≤ (b1, . . . , br )⇔ a1 ≤ b1 ∧ · · · ∧ ar ≤ br

We call a function C : {0, . . . ,R}d → Nr limited if maxC (x) ≤ max x .

Theorem (Adjacent Ramsey, Friedman, 2010)

For every d , r there exists R such that for every limited function
C : {0, . . . ,R}d → Nr there are x1 < · · · < xd+1 ≤ R with
C (x1, . . . , xd) ≤ C (x2, . . . , xd+1).
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Preliminaries
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Ordinals

0, 1, 2, 3, 4, 5, 6, . . . , ω,

ω + 1, ω + 2, ω + 3, . . . , ω + ω = ω · 2, . . . , ω · ω = ω2,

ω2 + 1, . . . , ωω = ω2, . . . , ω
ω2 = ω3, . . . , ωω = ε0.
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Ordinals: Cantor Normal Forms

All α < ε0 can be written uniquely in the Cantor Normal Form:

α = ωα1 ·m1 + · · ·+ ωαn ·mn,

where α1 > · · · > αn and m1 > 0, . . . ,mn > 0, n ≥ 1.
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Ordinals: Fundamental sequences

(α + 1)[x ] = α,

(α + ωαn+1 · (m + 1))[x ] = α + ωαn+1 ·m + ωαn · x ,
(α + ωγ · (m + 1))[x ] = α + ωγ ·m + ωγ[x].
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Ordinals: Hydra battles

A Hydra battle is a sequence ωd = h0 > h1 > . . . of ordinals such that
hi+1 = hi [i + 1].

Termination of Hydra battles is known to be independent of PA.
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Ordinals: Some definitions

Given α = ωα1 · a1 + · · ·+ ωαn · an and β = ωβ1 · b1 + · · ·+ ωβm · bm.

1 CP(α, β) is the smallest i such that ωαi · ai 6= ωβi · bi if such an i
exists, zero otherwise.

2 CC(α, β) is aCP(α,β), where a0 = 0.

3 CE(α, β) is αCP(α,β), where α0 = 0.

4 MP(α) = max{n,MP(αi )}.
5 MC(α) = max{ai ,MC(αi )}.
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Ordinals: Some definitions

1 F1(α) = α.

2 Fd+1(α1, . . . , αd+1) =
(CP(α1, α2),CC(α1, α2),Fd(CE(α1, α2), . . . ,CE(αd , αd+1))).
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Some easy lemmas

Lemma

CP(α, β) ≤ CP(β, γ) ∧ CE(α, β) ≤ CE(β, γ) ∧ CC(α, β) ≤ CC(β, γ)⇒
α ≤ β.

Lemma

Fd(α1, . . . , αd) ≤ Fd(α2, . . . , αd+1)⇒ α1 ≤ α2.

Lemma

maxFd(α1, . . . , αd) ≤ MP(α1),MC(α1).

Lemma

For every Hydra battle h0, h1, . . . we have MP(hi ),MC(hi ) ≤ i .
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Proofs
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AR is independent

C (x1, . . . , xd) = F (hx1 , . . . , hxd )

C (x1, . . . , xd) ≤ C (x2, . . . , xd+1)⇒ hx1 ≤ hx2

Hence AR implies that every Hydra battle terminates.
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PH is independent

C (x1, . . . , xd+1) =

 0 if Fd(hx1−d−2, . . . , hxd−d−2) ≤
Fd(hx2−d−2, . . . , hxd+1−d−2),

i otherwise,

where i is the least such that:

(Fd(hx1−d−2, . . . , hxd−d−2))i > (Fd(hx2−d−2, . . . , hxd+1−d−2))i .

If C (x1, . . . ) = C (x2, . . . ) = · · · = C (xx1−d , . . . ) 6= 0 then we obtain a
sequence x1 − d − 2 ≥ i1 > · · · > ix1−d which is impossible.

Hence PH implies that every Hydra battle terminates.
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Concluding remark

These proofs can be modified to show that for d > 1:

adjacent Ramsey with fixed dimension d and

Paris–Harrington with fixed dimension d + 1

are independent of IΣd .
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