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Questions

Questions

Question 1
Can we define some randomness notions in terms of another randomness
notions?

Question 2
How can we define it?

Liang Yu: Characterizing strong randomness via Martin-Löf
randomness. Annals of Pure and Applied Logic, vol. 163, no. 3, pp.
214-224 (2012).
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Questions

Question 1
Can we define some randomness notions in terms of another randomness
notions?

Question 2
How can we define it?

Let R and S be two randomness notions.

Questoin 1’
(∃Γ ⊂ 2ω)[R =

⋂
X∈Γ X -S] or (∃Γ ⊂ 2ω)[R =

⋃
X∈Γ X -S]?

where X -R and X -S are relativizations of R and S to X , respectively.

Question 2’
What kinds of Γ satisfy above relations ?
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Randomness Notions

ML-randomness

ML-randomness is a central notion of algorithmic randomness for subsets
of N, which defined in the following way.

Definition (Martin-Löf , 1966)

(i) A Martin-Löf test, or ML-test for short, is a uniformly c.e. sequence
(Gm)m∈N of open sets such that ∀m ∈ N µ(Gm) ≤ 2−m.

(ii) A set Z ⊆ N fails the test if Z ∈
⋂

m Gm, otherwise Z passes the test.
(iii) Z is ML-random if Z passes each ML-test.

Let MLR = {X | X is ML-random }.
Let Z-MLR={X | X is ML-random relative to Z }
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Randomness Notions

Weak 2-randomness

Weak 2-randomness, like ML-randomness, is defined in terms of tests.

Definition (Kurtz, 1981)

(i) A generalized ML-test is a uniformly c.e. sequence (Gm)m∈N of open
sets such that µ(

⋂
m Gm) = 0.

(ii) Z is weakly 2-random if it passes every generalized ML-test.

Let W 2R = {X | X is weakly 2-random }.
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Randomness Notions

Schnorr randomness

Definition (Schnorr, 1971)

A Schnorr test is a ML-test (Gm)m∈N such that µGm is computable
uniformly in m. A set Z ⊆ N fails the test if Z ∈

⋂
m Gm, otherwise Z

passes the test. Z is Schnorr random if Z passes each Schnorr test.

Let SR = {X | X is Schnorr-random }.
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Randomness Notions

Martingale

Another important notion of randomness is computable randomness, whose
definition involves the concept of a martingle.

Definition

A martingale is a function d : 2<N → R≥0 that satisfies for every σ ∈ 2<N

the averaging condition d(σ) = d(σ0)+d(σ1)
2 .

A martingale d succeeds on a set A if lim supn→∞ d(A � n) =∞.

Definition
We say that Z is computably random if no computable martingale succeeds
on Z .
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Randomness Notions
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Randomness Notions

Lowness and Higness

Definition
Let R and S be two randomness notions. We identify these notions with
the sets of all random reals in the sense of these notions.

Low(R, S) = {X ∈ 2ω : R ⊂ X -S}

High(R, S) = {X ∈ 2ω : X -R ⊂ S}

where X -R and X -S are relativizations of R and S to X , respectively.
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Randomness Notions

Remark

Questoin 1’
(∃Γ ⊂ 2ω)[R =

⋂
X∈Γ X -S] or (∃Γ ⊂ 2ω)[R =

⋃
X∈Γ X -S]?

We can prove easily Q1’ is equivalent to Q1”:

Questoin 1”
R =

⋂
X∈Low(R,S) X -S or

⋃
X∈High(R,S) X -R = S ?

This is because that: R ⊂
⋂

X∈low(R,S) X − S ⊂
⋂

X∈Γ X − S for any
Γ ⊂ low(R, S). And if Γ satisfies the first equality of Q1’, then
Γ ⊂ low(R, S).
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Answers to Questions

3. Answers to Questions
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Answers to Questions Positive Answer

Positive Answer: ∅′-SR vs MLR

Questoin 1’
(∃Γ ⊂ 2ω)[R =

⋂
X∈Γ X -S] or (∃Γ ⊂ 2ω)[R =

⋃
X∈Γ X -S]?

Question 2’
What kinds of Γ satisfy above relations ?

Theorem (Yu, 2012)

∅′-Schnorr randomness =
⋂

X∈L X −MLR.

where L is the set of all the low sets.

Question, (Yu, 2012)

Does ∅′-Schnorr randomness =
⋂

X∈L∩G X −MLR?

where G is the set of all the 1-generic sets.
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Answers to Questions Positive Answer

Positive Answer: ∅′-SR vs MLR

Theorem
For any ∅′-Schnorr test {Ue}e∈ω, there exist a low 1-generic real Z and a
Z-Martin-Löf test {Ve}e∈ω with

⋂
e∈ω Ue ⊂

⋂
e∈ω Ve .

Proof.
A finite injury argument.

Corollary

∅′-Schnorr randomness =
⋂

X∈L∩G X −MLR .

This give an affirmative answer to Yu’s problem.
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Answers to Questions Positive Answer

Application

Recall that a real A is said to be LR-reducible to B , abbreviated A ≤LR B ,
if every real Martin-Löf random relative to B is also Martin-Löf random
relative to A.

Theorem (Diamondstone, 2012)

For any low real X ,Y , there exists a low c.e. real Z such that X ,Y ≤LR Z.

We have the following similar theorem:

Theorem
For any low real X ,Y , there exists a low 1-generic real Z such that
X ,Y ≤LR Z.
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Answers to Questions Positive Answer

Positive Answer: ∅′-SR vs MLR

Questoin 1’
(∃Γ ⊂ 2ω)[R =

⋂
X∈Γ X -S] or (∃Γ ⊂ 2ω)[R =

⋃
X∈Γ X -S]?

Theorem (Yu, 2012)⋃
X∈High(MLR,∅′-SR) X-MLR = ∅′-SR

This is a positive answer for Q1’ in the uniou part.
In fact, Yu also shown that Γ can be MLR ∩ High(ML, ∅′ − SR). This is a
interesting answer of Q2.
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Answers to Questions Positive Answer

Questoin 1’
(∃Γ ⊂ 2ω)[R =

⋂
X∈Γ X -S] or (∃Γ ⊂ 2ω)[R =

⋃
X∈Γ X -S]?

Question 2’
What kinds of Γ satisfy above relations ?

A New Characterization of MLR.

Theorem⋃
X∈PA X -CR = MLR.

Proof.
Franklin, Stephan and Yu (2011) proved that High(CR,MLR) includes all
PA-complete reals. Reimann and Slaman showed that any Martin-Löf
random is Martin-Löf relative to some PA-complete real(Randomness
preservation basis theorem). Since X -MLR ⊂ X -CR, it is known that any
Martin-Löf random is computably random relative to some PA-complete
real. This implies the desired equality.
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Answers to Questions Negative Answer

Negative Answer: W2R vs MLR

Questoin 1’
(∃Γ ⊂ 2ω)[R =

⋂
X∈Γ X -S] or (∃Γ ⊂ 2ω)[R =

⋃
X∈Γ X -S]?

Theorem (Yu, 2012)

¬∃Γ ⊂ 2ω such that W 2R =
⋂

x∈Γ X −MLR.

Theorem (Merkle and Yu, unpublished)

¬∃Γ ⊂ 2ω such that W 2R =
⋃

x∈Γ X −MLR.
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Answers to Questions Negative Answer

Negative Answer: SR vs CR

Questoin 1’
(∃Γ ⊂ 2ω)[R =

⋂
X∈Γ X -S] or (∃Γ ⊂ 2ω)[R =

⋃
X∈Γ X -S]?

Theorem
SR =

⋂
X∈Low(CR,SR) X-SR 6= CR

Proof.
Kjos-Hanssen, Nies and Stephan (2006) proved that
Low(CR, SR) = Low(SR, SR) holds.

Theorem
∅′ − SR =

⋃
X∈High(SR,CR) X-SR 6= CR
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Summary

Summary of Results

⋂
X∈Low(R,S) X -S = R

W2R

MLR

0’-SR

CR

SR

0’-SR W2R MLR CR SR

?

Yes

R
S

Yes Yes Yes

No No No

No? ? Yes

Yes No No No

No

?

? ?

⋃
X∈High(R,S) X -R = S
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Summary

Thank you very much!
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