
Reuniting the antipodes: bringing together
Nonstandard Analysis and Constructive Analysis

Sam Sanders1

CTFM, Feb. 18, 2013

1This research is generously supported by the John Templeton Foundation.



Content

1 We provide a simple definition of Turing computability using
infinitesimals in NSA.

2 We provide a faithful interpretation of BISH inside NSA.

3 (FUTURE work) An interpretation of Type Theory in NSA.



Content

1 We provide a simple definition of Turing computability using
infinitesimals in NSA.

2 We provide a faithful interpretation of BISH inside NSA.

3 (FUTURE work) An interpretation of Type Theory in NSA.



Content

1 We provide a simple definition of Turing computability using
infinitesimals in NSA.

2 We provide a faithful interpretation of BISH inside NSA.

3 (FUTURE work) An interpretation of Type Theory in NSA.



Content

1 We provide a simple definition of Turing computability using
infinitesimals in NSA.

2 We provide a faithful interpretation of BISH inside NSA.

3 (FUTURE work) An interpretation of Type Theory in NSA.



Nonstandard Analysis: a new way to compute

Any system of Nonstandard Analysis includes N and ∗N.
∗N, the hypernatural numbers

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N, the natural numbers

- . . . ω . . . 2ω . . . -0 1 . . .

finite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

Ω=∗N∖N, the infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

N = the natural/finite/standard numbers.

Ω = ∗N ∖N = the infinite/nonstandard numbers.

Definition (Ω-invariance)

For ψ(n,m) ∈ ∆0 and ω ∈ Ω, the formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[ψ(n, ω) ↔ ψ(n, ω′)].



Nonstandard Analysis: a new way to compute

Any system of Nonstandard Analysis includes N and ∗N.

∗N, the hypernatural numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N, the natural numbers

- . . . ω . . . 2ω . . . -0 1 . . .

finite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

Ω=∗N∖N, the infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

N = the natural/finite/standard numbers.

Ω = ∗N ∖N = the infinite/nonstandard numbers.

Definition (Ω-invariance)

For ψ(n,m) ∈ ∆0 and ω ∈ Ω, the formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[ψ(n, ω) ↔ ψ(n, ω′)].



Nonstandard Analysis: a new way to compute

Any system of Nonstandard Analysis includes N and ∗N.
∗N, the hypernatural numbers

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N, the natural numbers

- . . . ω . . . 2ω . . . -0 1 . . .

finite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

Ω=∗N∖N, the infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

N = the natural/finite/standard numbers.

Ω = ∗N ∖N = the infinite/nonstandard numbers.

Definition (Ω-invariance)

For ψ(n,m) ∈ ∆0 and ω ∈ Ω, the formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[ψ(n, ω) ↔ ψ(n, ω′)].



Nonstandard Analysis: a new way to compute

Any system of Nonstandard Analysis includes N and ∗N.
∗N, the hypernatural numbers

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N, the natural numbers

- . . . ω . . . 2ω . . . -0 1 . . .

finite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

Ω=∗N∖N, the infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

N = the natural/finite/standard numbers.

Ω = ∗N ∖N = the infinite/nonstandard numbers.

Definition (Ω-invariance)

For ψ(n,m) ∈ ∆0 and ω ∈ Ω, the formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[ψ(n, ω) ↔ ψ(n, ω′)].



Nonstandard Analysis: a new way to compute

Any system of Nonstandard Analysis includes N and ∗N.
∗N, the hypernatural numbers

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N, the natural numbers

- . . . ω . . . 2ω . . . -0 1 . . .

finite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

Ω=∗N∖N, the infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

N = the natural/finite/standard numbers.

Ω = ∗N ∖N = the infinite/nonstandard numbers.

Definition (Ω-invariance)

For ψ(n,m) ∈ ∆0 and ω ∈ Ω, the formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[ψ(n, ω) ↔ ψ(n, ω′)].



Nonstandard Analysis: a new way to compute

Any system of Nonstandard Analysis includes N and ∗N.
∗N, the hypernatural numbers

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N, the natural numbers

- . . . ω . . . 2ω . . . -0 1 . . .

finite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

Ω=∗N∖N, the infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

N = the natural/finite/standard numbers.

Ω = ∗N ∖N = the infinite/nonstandard numbers.

Definition (Ω-invariance)

For ψ(n,m) ∈ ∆0 and ω ∈ Ω, the formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[ψ(n, ω) ↔ ψ(n, ω′)].



Nonstandard Analysis: a new way to compute

Any system of Nonstandard Analysis includes N and ∗N.
∗N, the hypernatural numbers

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N, the natural numbers

- . . . ω . . . 2ω . . . -0 1 . . .

finite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

Ω=∗N∖N, the infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

N = the natural/finite/standard numbers.

Ω = ∗N ∖N = the infinite/nonstandard numbers.

Definition (Ω-invariance)

For ψ(n,m) ∈ ∆0 and ω ∈ Ω, the formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[ψ(n, ω) ↔ ψ(n, ω′)].



Nonstandard Analysis: a new way to compute

Any system of Nonstandard Analysis includes N and ∗N.
∗N, the hypernatural numbers

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N, the natural numbers

- . . . ω . . . 2ω . . . -0 1 . . .

finite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

Ω=∗N∖N, the infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

N = the natural/finite/standard numbers.

Ω = ∗N ∖N = the infinite/nonstandard numbers.

Definition (Ω-invariance)

For ψ(n,m) ∈ ∆0 and ω ∈ Ω, the formula ψ(n, ω) is Ω-invariant if

(∀n ∈ N)(∀ω′ ∈ Ω)[ψ(n, ω) ↔ ψ(n, ω′)].
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Principle (Ω-CA)

For all Ω-invariant ψ(n, ω), we have

(∃X s ⊂ N)(∀n ∈ N)(n ∈ X s ↔ ψ(n, ω)).

Theorem

Ω-CA implies ∆0
1-CA (Turing comp. ⊆ Ω-invariance)

∗RCA0 +Ω-CA ≡cons RCA0
∗IΣ1 ⊢∆0

1-CA ↔ Ω-CA ‘(Ω-invariance ⊆ Turing comp.)’
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Son of a. . .

Errett Bishop’s Constructive Analysis (also ‘BISH’) is a constructive
redevelopment of Mathematics, consistent with CLASS, RUSS and INT.
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≈Math. programmable on TM
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≈Brouwer’s Intuitionistic Math.



Algorithm and Proof in Constructive Analysis

Errett Bishop’s Constructive Analysis (BISH) is a constructive

redevelopment of Mathematics, where algorithm and proof are central.

Definition (Logical connectives in BISH: BHK)

1 P ∨Q: we have an algorithm that outputs either P or Q, together
with a proof of the chosen disjunct.

2 P ∧Q: we have both a proof of P and a proof of Q.

3 P → Q: by means of an algorithm we can convert any proof of P
into a proof of Q.

4 ¬P ≡ P → (0 = 1).

5 (∃x)P(x): an algorithm computes an object x0 such that P(x0).

6 (∀x ∈ A)P(x): for all x , x ∈ A→ P(x).
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The system NSA and the interpretation B

We will define an interpretation B from BISH to NSA, where:

1 The equivalences of CRM are preserved by B.
2 B maps non-constructive principles (LPO, LLPO, MP, . . . ) to

Transfer Principles not available in NSA.
3 B preserves the property that ‘not all ∆1-formulas are decidable’.
4 B interprets ‘proof’ and ‘algorithm’ as ‘Transfer (T)’ and

‘Ω-invariance’ (Math/Physics)

The system NSA is essentially ∗RCA0 +Ω-CA, but:
∗N, the hypernatural numbers

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

. . . ω2 . . . ωk . . . -ω10 1 . . .

N, the finite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

N
-

Ω=∗N∖N, the infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
small infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

large infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

◇N
-



The system NSA and the interpretation B

We will define an interpretation B from BISH to NSA, where:
1 The equivalences of CRM are preserved by B.

2 B maps non-constructive principles (LPO, LLPO, MP, . . . ) to
Transfer Principles not available in NSA.

3 B preserves the property that ‘not all ∆1-formulas are decidable’.
4 B interprets ‘proof’ and ‘algorithm’ as ‘Transfer (T)’ and

‘Ω-invariance’ (Math/Physics)

The system NSA is essentially ∗RCA0 +Ω-CA, but:
∗N, the hypernatural numbers

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

. . . ω2 . . . ωk . . . -ω10 1 . . .

N, the finite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

N
-

Ω=∗N∖N, the infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
small infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

large infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

◇N
-



The system NSA and the interpretation B

We will define an interpretation B from BISH to NSA, where:
1 The equivalences of CRM are preserved by B.
2 B maps non-constructive principles (LPO, LLPO, MP, . . . ) to

Transfer Principles not available in NSA.

3 B preserves the property that ‘not all ∆1-formulas are decidable’.
4 B interprets ‘proof’ and ‘algorithm’ as ‘Transfer (T)’ and

‘Ω-invariance’ (Math/Physics)

The system NSA is essentially ∗RCA0 +Ω-CA, but:
∗N, the hypernatural numbers

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

. . . ω2 . . . ωk . . . -ω10 1 . . .

N, the finite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

N
-

Ω=∗N∖N, the infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
small infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

large infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

◇N
-



The system NSA and the interpretation B

We will define an interpretation B from BISH to NSA, where:
1 The equivalences of CRM are preserved by B.
2 B maps non-constructive principles (LPO, LLPO, MP, . . . ) to

Transfer Principles not available in NSA.
3 B preserves the property that ‘not all ∆1-formulas are decidable’.

4 B interprets ‘proof’ and ‘algorithm’ as ‘Transfer (T)’ and
‘Ω-invariance’ (Math/Physics)

The system NSA is essentially ∗RCA0 +Ω-CA, but:
∗N, the hypernatural numbers

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

. . . ω2 . . . ωk . . . -ω10 1 . . .

N, the finite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

N
-

Ω=∗N∖N, the infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
small infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

large infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

◇N
-



The system NSA and the interpretation B

We will define an interpretation B from BISH to NSA, where:
1 The equivalences of CRM are preserved by B.
2 B maps non-constructive principles (LPO, LLPO, MP, . . . ) to

Transfer Principles not available in NSA.
3 B preserves the property that ‘not all ∆1-formulas are decidable’.
4 B interprets ‘proof’ and ‘algorithm’ as ‘Transfer (T)’ and

‘Ω-invariance’ (Math/Physics)

The system NSA is essentially ∗RCA0 +Ω-CA, but:
∗N, the hypernatural numbers

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

. . . ω2 . . . ωk . . . -ω10 1 . . .

N, the finite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

N
-

Ω=∗N∖N, the infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
small infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

large infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

◇N
-



The system NSA and the interpretation B

We will define an interpretation B from BISH to NSA, where:
1 The equivalences of CRM are preserved by B.
2 B maps non-constructive principles (LPO, LLPO, MP, . . . ) to

Transfer Principles not available in NSA.
3 B preserves the property that ‘not all ∆1-formulas are decidable’.
4 B interprets ‘proof’ and ‘algorithm’ as ‘Transfer (T)’ and

‘Ω-invariance’ (Math/Physics)

The system NSA is essentially ∗RCA0 +Ω-CA, but:

∗N, the hypernatural numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

. . . ω2 . . . ωk . . . -ω10 1 . . .

N, the finite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

N
-

Ω=∗N∖N, the infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
small infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

large infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

◇N
-



The system NSA and the interpretation B

We will define an interpretation B from BISH to NSA, where:
1 The equivalences of CRM are preserved by B.
2 B maps non-constructive principles (LPO, LLPO, MP, . . . ) to

Transfer Principles not available in NSA.
3 B preserves the property that ‘not all ∆1-formulas are decidable’.
4 B interprets ‘proof’ and ‘algorithm’ as ‘Transfer (T)’ and

‘Ω-invariance’ (Math/Physics)

The system NSA is essentially ∗RCA0 +Ω-CA, but:
∗N, the hypernatural numbers

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

. . . ω2 . . . ωk . . . -ω10 1 . . .

N, the finite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

N
-

Ω=∗N∖N, the infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
small infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

large infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

◇N
-



The system NSA and the interpretation B

We will define an interpretation B from BISH to NSA, where:
1 The equivalences of CRM are preserved by B.
2 B maps non-constructive principles (LPO, LLPO, MP, . . . ) to

Transfer Principles not available in NSA.
3 B preserves the property that ‘not all ∆1-formulas are decidable’.
4 B interprets ‘proof’ and ‘algorithm’ as ‘Transfer (T)’ and

‘Ω-invariance’ (Math/Physics)

The system NSA is essentially ∗RCA0 +Ω-CA, but:
∗N, the hypernatural numbers

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

. . . ω2 . . . ωk . . . -ω10 1 . . .

N, the finite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

N
-

Ω=∗N∖N, the infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

small infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

large infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

◇N
-



The system NSA and the interpretation B

We will define an interpretation B from BISH to NSA, where:
1 The equivalences of CRM are preserved by B.
2 B maps non-constructive principles (LPO, LLPO, MP, . . . ) to

Transfer Principles not available in NSA.
3 B preserves the property that ‘not all ∆1-formulas are decidable’.
4 B interprets ‘proof’ and ‘algorithm’ as ‘Transfer (T)’ and

‘Ω-invariance’ (Math/Physics)

The system NSA is essentially ∗RCA0 +Ω-CA, but:
∗N, the hypernatural numbers

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

. . . ω2 . . . ωk . . . -ω10 1 . . .

N, the finite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

N
-

Ω=∗N∖N, the infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
small infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

large infinite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

◇N
-



About Transfer and T

A Transfer Principle expresses that the standard and nonstandard
universe have the same properties.

E.g.

Principle (Π1-Transfer Principle)

For ϕ(n) ∈ ∆0, we have (∀n ∈ N)ϕ(n) → (∀n ∈ ∗N)ϕ(n).

General form of Transfer Principle: A↔ ∗A

However, NSA does not have a Transfer Principle. Hence, for some
formulas A we have A↔ ∗A, and for others not.

The formula ‘A ∈ T’ is read ‘A satisfies Transfer’ and is short for
A↔ ∗A (or another Transfer Principle).

BISH: Limited to formulas with proofs.
NSA: Limited to formulas A such that A ∈ T
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The interpretation B from BISH to classical NSA

We define B which maps formulas of BISH to formulas of NSA.

Let A,B be formulas in the language of BISH.
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Lost in translation

BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK)

NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB:

There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

‘A ∈ T’ means ‘A satisfies Transfer’.

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

‘A ∈ T’ means ‘A satisfies Transfer’.

A A ∈ T
(∀n ∈ N)ϕ(n) (∀n ∈ N)ϕ(n) → (∀n ∈ ∗N)ϕ(n)

(∃n ∈ ∗N)ϕ(n) (∃n ∈ ∗N)ϕ(n) → (∃n ∈ ◇N)ϕ(n)

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

‘A ∈ T’ means ‘A satisfies Transfer’.

A A ∈ T
(∀n ∈ N)ϕ(n) (∀n ∈ N)ϕ(n) → (∀n ∈ ∗N)ϕ(n)
(∃n ∈ ∗N)ϕ(n) (∃n ∈ ∗N)ϕ(n) → (∃n ∈ ◇N)ϕ(n)

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

¬A: A→ (0 = 1)

∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)

(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

∼[(∀n ∈ N)A(n)]

≡ (∃n ∈ ◇N)∼A(n)

WEAKER than (∃n ∈ N)∼A(n).

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

∼[(∀n ∈ N)A(n)] ≡ (∃n ∈ ◇N)∼A(n)

WEAKER than (∃n ∈ N)∼A(n).

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

∼[(∀n ∈ N)A(n)] ≡ (∃n ∈ ◇N)∼A(n)

WEAKER than (∃n ∈ N)∼A(n).

¬[(∀n ∈ N)A(n)] is WEAKER

than (∃n ∈ N)¬A(n).

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Lost in translation
BISH (based on BHK) NSA (based on CL)

Central: algorithm and proof

A ∨B:
an algo yields a proof of A or of B

Central: Ω-invariance and Transfer (T)

AVB: There is Ω-invariant ψ(x⃗ , ω) s.t.

ψ(x⃗ , ω) → [A(x⃗) ∧ [A(x⃗) ∈ T]]
∧

¬ψ(x⃗ , ω) → [B(x⃗) ∧ [B(x⃗) ∈ T]]

A→ B: an algo converts a proof of A
to a proof of B

A⇛ B: [A ∧ [A ∈ T]] → [B ∧ [B ∈ T]]

¬A: A→ (0 = 1) ∼A: A⇛ (0 = 1)

(∃x)A(x): an algo computes x0

such that A(x0)
(∃̃x)A(x): “an Ω-inv. proc. computes x0

such that A(x0)”

WHY is this a good/faithful/reasonable/. . . translation?

BECAUSE it preserves all essential features of BISH (e.g. CRM)



Constructive Reverse Mathematics

BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LPO: For P ∈ Σ1, P ∨ ¬P
↕

LPR: (∀x ∈ R)(x > 0 ∨ ¬(x > 0))
↕

MCT: monotone convergence thm

↕
CIT: Cantor intersection thm

unavailable Transfer Principle

LPO: For P ∈ Σ1, P V∼P
⇚⇛

LPR: (∀x ∈ R)(x > 0V∼(x > 0))
⇚⇛

MCT: monotone convergence thm

⇚⇛
CIT: Cantor intersection thm

(limit computed by algo) (limit computed by Ω-inv. proc.)

⇚⇛
Π1-TRANSSET

(∀n ∈ N)ϕ(n, X⃗ ) → (∀n ∈ ∗N)ϕ(n, ∗X⃗ )
⇚⇛

(∀x ∈ R)(x ≈ 0 ⇛ x = 0)NSA does prove (∀δ ∈ R)[δ > 0 ⇛ (x > 0)V(x < δ)].
BISH does prove (∀δ ∈ R)[δ > 0→ (x > 0) ∨ (x < δ)].
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Constructive Reverse Mathematics II

BISH (based on BHK) NSA (based on CL)
non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧Q) → ¬P ∨ ¬Q
↕

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)
↕

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)
↕

IVT: Intermediate value theorem

↕
WKL

unavailable Transfer Principle

LLPO
For P,Q ∈ Σ1, ∼(P ∧Q) ⇛ ∼P V∼Q

⇚⇛
LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

⇚⇛
NIL
(∀x , y ∈ R)(xy = 0 ⇛ x = 0V y = 0)

⇚⇛
IVT: Intermediate value theorem

⇚⇛ WKL

(int. value computed by algo)

⇚⇛ ∨-Transfer

(∀Φ ∈ Π0
1)(∀α,β ∈ 2N)(Φ(α) ∨Φ(β) ⇛ Φ(α)VΦ(β))

(∃̃z ∈ [0,1])(f (z) = 0) ≡ ???

BISH and NSA can prove (∀k ∈ N)(∃x0 ∈ [0,1])(∣f (x0)∣ < 1/k).



Constructive Reverse Mathematics II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧Q) → ¬P ∨ ¬Q
↕

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)
↕

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)
↕

IVT: Intermediate value theorem

↕
WKL

unavailable Transfer Principle

LLPO
For P,Q ∈ Σ1, ∼(P ∧Q) ⇛ ∼P V∼Q

⇚⇛
LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

⇚⇛
NIL
(∀x , y ∈ R)(xy = 0 ⇛ x = 0V y = 0)

⇚⇛
IVT: Intermediate value theorem

⇚⇛ WKL

(int. value computed by algo)

⇚⇛ ∨-Transfer

(∀Φ ∈ Π0
1)(∀α,β ∈ 2N)(Φ(α) ∨Φ(β) ⇛ Φ(α)VΦ(β))

(∃̃z ∈ [0,1])(f (z) = 0) ≡ ???

BISH and NSA can prove (∀k ∈ N)(∃x0 ∈ [0,1])(∣f (x0)∣ < 1/k).



Constructive Reverse Mathematics II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧Q) → ¬P ∨ ¬Q
↕

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)
↕

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)
↕

IVT: Intermediate value theorem

↕
WKL

unavailable Transfer Principle

LLPO
For P,Q ∈ Σ1, ∼(P ∧Q) ⇛ ∼P V∼Q

⇚⇛
LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

⇚⇛
NIL
(∀x , y ∈ R)(xy = 0 ⇛ x = 0V y = 0)

⇚⇛
IVT: Intermediate value theorem

⇚⇛ WKL

(int. value computed by algo)

⇚⇛ ∨-Transfer

(∀Φ ∈ Π0
1)(∀α,β ∈ 2N)(Φ(α) ∨Φ(β) ⇛ Φ(α)VΦ(β))

(∃̃z ∈ [0,1])(f (z) = 0) ≡ ???

BISH and NSA can prove (∀k ∈ N)(∃x0 ∈ [0,1])(∣f (x0)∣ < 1/k).



Constructive Reverse Mathematics II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧Q) → ¬P ∨ ¬Q
↕

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)
↕

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)
↕

IVT: Intermediate value theorem

↕
WKL

unavailable Transfer Principle

LLPO
For P,Q ∈ Σ1, ∼(P ∧Q) ⇛ ∼P V∼Q

⇚⇛
LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

⇚⇛
NIL
(∀x , y ∈ R)(xy = 0 ⇛ x = 0V y = 0)

⇚⇛
IVT: Intermediate value theorem

⇚⇛ WKL

(int. value computed by algo) (int. value computed by Ω-inv. proc.)

⇚⇛ ∨-Transfer

(∀Φ ∈ Π0
1)(∀α,β ∈ 2N)(Φ(α) ∨Φ(β) ⇛ Φ(α)VΦ(β))

(∃̃z ∈ [0,1])(f (z) = 0) ≡ ???

BISH and NSA can prove (∀k ∈ N)(∃x0 ∈ [0,1])(∣f (x0)∣ < 1/k).



Constructive Reverse Mathematics II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic

LLPO

For P,Q ∈ Σ1, ¬(P ∧Q) → ¬P ∨ ¬Q
↕

LLPR: (∀x ∈ R)(x ≥ 0 ∨ x ≤ 0)
↕

NIL

(∀x , y ∈ R)(xy = 0→ x = 0 ∨ y = 0)
↕

IVT: Intermediate value theorem

↕
WKL

unavailable Transfer Principle

LLPO
For P,Q ∈ Σ1, ∼(P ∧Q) ⇛ ∼P V∼Q

⇚⇛
LLPR: (∀x ∈ R)(x ≥ 0V x ≤ 0)

⇚⇛
NIL
(∀x , y ∈ R)(xy = 0 ⇛ x = 0V y = 0)

⇚⇛
IVT: Intermediate value theorem

⇚⇛ WKL

(int. value computed by algo) (int. value computed by Ω-inv. proc.)

⇚⇛ ∨-Transfer

(∀Φ ∈ Π0
1)(∀α,β ∈ 2N)(Φ(α) ∨Φ(β) ⇛ Φ(α)VΦ(β))

(∃̃z ∈ [0,1])(f (z) = 0) ≡ ???

BISH and NSA can prove (∀k ∈ N)(∃x0 ∈ [0,1])(∣f (x0)∣ < 1/k).



Constructive Reverse Mathematics II
BISH (based on BHK) NSA (based on CL)

non-constructive/non-algorithmic
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Constructive Reverse Mathematics III

BISH (based on BHK) NSA (based on CL)
non-constructive/non-algorithmic

MP: For P ∈ Σ1, ¬¬P → P

↕
MPR: (∀x ∈ R)(¬¬(x > 0) → x > 0)

↕
EXT: the extensionality theorem

Transfer Principle

MP: For P ∈ Σ1, ∼∼P ⇛ P

⇚⇛
MPR: (∀x ∈ R)(∼∼(x > 0) ⇛ x > 0)

⇚⇛
EXT: the extensionality theorem

WLPO: For P ∈ Σ1, ¬¬P ∨ ¬P
↕

WLPR: (∀x ∈ R)[¬¬(x > 0) ∨ ¬(x > 0)]
↕

DISC:

A discontinuous 2N → N-function exists.

WLPO: For P ∈ Σ1, ∼∼P V∼P
⇚⇛

WLPR: (∀x ∈ R)[∼∼(x > 0)V∼(x > 0)]
⇚⇛

DISC: A discontinuous

2N → N-function exists.
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(Ω-invariance + T) is weaker than Recursive in NSA

Markov’s principle MP can be reformulated as If it is impossible that a
TM runs forever, then it must halt.

As no algorithmic upper bound on the halting time of the TM is given,

MP is rejected in BISH. The notion of algorithm in BISH is not identical

to ‘recursive’.

Definition (In NSA)

A formula ψ is �1 if ψ⇚⇛ (∃n ∈ N)ϕ1(n) ⇚⇛ (∀m ∈ N)ϕ2(m).

Theorem

NSA +MP ⊢ ψ V∼ψ (For all ψ ∈ �1)
NSA does not prove ψ V∼ψ for all ψ ∈ �1.
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Constructive Reverse Mathematics IV

Same for WMP, FAN∆, BD-N, and MP∨.
Same for ‘mixed’ theorems:

BISH (based on BHK) NSA (based on CL)

LPO ↔ MP+WLPO

MP ↔ WMP + MP∨

WLPO → LLPO

LLPO → MP∨

LPO → BD-N

LLPO → FAN∆

LLPO ↔ WKL

LPO⇚⇛ MP +WLPO
MP⇚⇛WMP +MP∨

WLPO ⇛ LLPO
LLPO ⇛ MP∨

LPO ⇛ BD-N
LLPO ⇛ FAN∆

LLPO ⇚⇛ WKL
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Constructive Reverse Mathematics IV
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Reuniting the antipodes: NSA ≈ BISH

Our interpretation from BISH to NSA has the following properties.

1 CRM-equivalences are preserved.

2 Non-constructive princ. from BISH are interpreted as Transfer
Princ. rejected in NSA. (Even WMP and BD-N)

3 “Not all ∆1-formulas are decidable” is preserved.

4 Double negation translation N is compatible with B.

INT

CLASS RUSS

BISH≈ NSA

≈Math. programmable on TM
Classical Math. ≈

≈Brouwer’s Intuitionistic Math.
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New interpretation

ALGORITHM

= Built up from the ground out of basic elements.

= Independence of the choice of ideal object.
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Why?

The nonstandard view: N ⊂ ◇N ⊂ ∗N

∗N, the hypernatural numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

. . . ω2 . . . ωk . . . -ω10 1 . . .

N, the finite numbers
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

N
-

Ω=∗N∖N, the infinite numbers
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Future work: Type Theory

Martin-Löf intended his type theory as a foundation for BISH.
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Martin-Löf intended his type theory as a foundation for BISH.

Can Ω-invariance help capture e.g. Type Theory?

Homotopy:

f (x)

g(x)

●

●

●
�
�

●
�
��

●
��

���

●
PPPPP

@
@
@
@
@

mω(x) ≈

kω(x) ≈

●@@
●

Q
QQ

●
PPPPP

●
PPPPP�

�
�
�
�

●PPPPP●��
���

●⇓ ONE basic step

⋮
ω basic steps

⋮

Independent of the choice of ω

≈ Ω-invariant broken-line transformation hω,t of f to g .



Philosophy of Physics

Why is Mathematics in Physics so constructive/computable?

Indeed, most of Physics can be formalized in BISH (e.g. Gleason’s
thm).

Yet, in Physics, an informal version of NSA is used to date.
(Weierstraß’ notorious ‘ε-δ’ method was never adopted, neither
was BISH).

Now, in Physics, the end result of a calculation should have
physical meaning (modeling of reality).

A mathematical result with physical meaning will not depend on
the choice of infinite number/infinitesimal used, i.e. it is
Ω-invariant.
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Final Thoughts

The two eyes of exact science are mathematics and logic, the

mathematical sect puts out the logical eye, the logical sect puts out the

mathematical eye; each believing that it sees better with one eye than

with two.

Augustus De Morgan

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

This research is generously sponsored by the John Templeton Foundation.

Thank you for your attention!
Any questions?
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