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Motivation

Algorithms are viewed as one aspect of proofs in (constructive)
analysis. A corresponding program (i.e., a term t in the underlying
language) can be extracted from a proof of A, and a proof that t
“realizes” A can be generated (⇒ automatic verification).

Data: From free algebras, given by their constructors. Examples:

I finite or infinite lists of signed digits −1, 0, 1 (i.e., reals as
streams),

I possibly non well-founded alternating read-write trees
(representing uniformly continuous functions).



Tools

I Decorations: →c,∀c (short: →,∀) and →nc,∀nc for removal
of abstract data, and fine-tuning.

I Nested inductive/coinductive definitions of predicates. Their
clauses give rise to free algebras. Only here computational
content arises.



Computable functionals

I Types: ι | ρ→ σ. Base types ι: free algebras (e.g., N), given
by their signature.

I Functionals seen as limits of finite approximations: ideals
(Kreisel, Scott, Ershov).

I Computable functionals are r.e. sets of finite approximations
(example: fixed point functional).

I Functionals are partial. Total functionals are defined (by
induction over the types).



Information systems Cρ for partial continuous functionals

I Types ρ, σ, τ : from algebras ι by ρ→ σ.

I Cρ := (Cρ,Conρ,`ρ).

I Tokens a ∈ Cρ (= atomic pieces of information): constructor
trees Ca∗1, . . . a

∗
n with a∗i a token or ∗. Example: S(S∗).

I Formal neighborhoods U ∈ Conρ: {a1, . . . , an}, consistent.

I Entailment U `ρ a.

Ideals x ∈ |Cρ| (“points”, here: partial continuous functionals):
consistent deductively closed sets of tokens.



Flat or non flat algebras?
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Non flat!

I Every constructor C generates an ideal in the function space:
rC := { (U,Ca∗) | U ` a∗ }. Associated continuous map:

|rC|(x) = {Ca∗ | ∃U⊆x(U ` a∗) }.

I Constructors are injective and have disjoint ranges:

|rC|(~x ) ⊆ |rC|(~y )↔ ~x ⊆ ~y ,
|rC1 |(~x ) ∩ |rC2 |(~y ) = ∅.

I Both properties are false for flat information systems (for
them, by monotonicity, constructors need to be strict).

|rC|(∅, y) = ∅ = |rC|(x , ∅),
|rC1 |(∅) = ∅ = |rC2 |(∅).



A theory of computable functionals, TCF

I A variant of HAω.

I Variables range over arbitrary partial continuous functionals.

I Constants for (partial) computable functionals, defined by
equations.

I Inductively and coinductively defined predicates. Totality for
ground types inductively defined.

I Induction := elimination (or least-fixed-point) axiom for a
totality predicate.

I Coinduction := greatest-fixed-point axiom for a coinductively
defined predicate.



Relation to type theory

I Main difference: partial functionals are first class citizens.

I Minimal logic: →,∀ only. = (Leibniz), ∃, ∨, ∧ (Martin-Löf)
inductively defined.

I ⊥ := (False = True). Ex-falso-quodlibet: ⊥ → A provable.

I Classical logic as a fragment: ∃̃xA defined by ¬∀x¬A.



Realizability interpretation

I Define a formula t r A, for A a formula and t a term in T+.

I From a proof M we can extract its computational content, a
term et(M).

I Soundness theorem:
If M proves A, then et(M) r A can be proved.

I Decorations: →c,∀c (short: →,∀) and →nc,∀nc for removal
of abstract data, and fine-tuning:

t r (A→c B) := ∀x(x r A → tx r B),

t r (A→nc B) := ∀x(x r A → t r B),

t r (∀cxA) := ∀x(tx r A),

t r (∀ncx A) := ∀x(t r A).



Example: decorating the existential quantifier

I ∃xA is inductively defined by the clause

∀x(A→ ∃xA)

with least-fixed-point axiom

∃xA→ ∀x(A→ P)→ P.

I Decoration leads to variants ∃d, ∃l,∃r,∃u (d for “double”,
l for “left”, r for “right” and u for “uniform”).

∀cx(A→c ∃dxA),

∀ncx (A→c ∃rxA),

∃dxA→c ∀cx(A→c P)→c P,

∃rxA→c ∀ncx (A→c P)→c P.



Practical aspects

I We need formalized proofs, to allow machine extraction.

I Can’t take a proof assistant from the shelf: none fits TCF.

Minlog (http://www.minlog-system.de)

I Natural deduction for →,∀, plus inductively and coinductively
defined predicates.

I Partial functionals are first class citizens.

I Allows type and predicate parameters (for abstract
developments: groups, fields, reals, . . . ).



Uniformly continuous functions

Based on work of Ulrich Berger (2009).

I Extraction from a proof dealing with abstract uniformly
continuous functions.

I Data representing uniformly continuous functions: base type
cototal ideals.

I The extracted term will involve corecursion.



Type-1 representation of uniformly continuous functions

For contrast: a type-1 represented function f : [−1, 1]→ [−1, 1] is
given by

I an approximating map h : [−1, 1] ∩ Q→ N→ Q,

I bounds N,M ∈ N with ∀a∈[−1,1]∀n(N ≤ h(a, n) ≤ M), and

I a weakly increasing map α : N→ N such that (h(a, n))n is a
Cauchy sequence with (uniform) modulus α, i.e.,

∀a∈[−1,1]∀k∀n,m≥α(k)(|h(a, n)− h(a,m)| ≤ 2−k).

f is (uniformly) continuous if we have a weakly increasing modulus
ω : N→ N such that

∀k∀a,b∈[−1,1]∀n≥α(k)(|a−b| ≤ 2−ω(k)+1 → |h(a, n)−h(b, n)| ≤ 2−k).



Application f (x)

Application of f given by h, α and modulus ω to x := ((an)n,M):

f (x) := (h(an, n))n

with Cauchy modulus max(α(k + 2),M(ω(k + 1)− 1)).



Intermediate value theorem

Let a < b be rationals. If f : [a, b]→ R is continuous with
f (a) ≤ 0 ≤ f (b), and with a uniform lower bound on its slope,
then we can find x ∈ [a, b] such that f (x) = 0.

Proof sketch.

1. Approximate Splitting Principle. Let x , y , z be given with
x < y . Then z ≤ y or x ≤ z .

2. IVTAux. Assume a ≤ c < d ≤ b, say 2−n < d − c , and
f (c) ≤ 0 ≤ f (d). Construct c1, d1 with d1 − c1 = 2

3(d − c),
such that a ≤ c ≤ c1 < d1 ≤ d ≤ b and f (c1) ≤ 0 ≤ f (d1).

3. IVTcds. Iterate the step c, d 7→ c1, d1 in IVTAux.

Let x = (cn)n and y = (dn)n with the obvious modulus. As f is
continuous, f (x) = 0 = f (y) for the real number x = y .



Extracted term

[k0]

left((cDC rat@@rat)(1@2)

([n1]

(cId rat@@rat=>rat@@rat)

([cd3]

[let cd4

((2#3)*left cd3+(1#3)*right cd3@

(1#3)*left cd3+(2#3)*right cd3)

[if (0<=(left cd4*left cd4-2+

(right cd4*right cd4-2))/2)

(left cd3@right cd4)

(left cd4@right cd3)]]))

(IntToNat(2*k0)))

where cDC is a from of the recursion operator.



Free algebra J of intervals

I SD := {−1, 0, 1} signed digits (or {L,M,R}).

I J free algebra of intervals. Constructors

I the interval [−1, 1],

C : SD→ J→ J left, middle, right half.

Write Cdx for Cdx .

I C1I denotes [0, 1].

I C0I denotes [−1
2 ,

1
2 ].

I C0(C−1I) denotes [−1
2 , 0].

Cd0(Cd1 . . . (Cdk−1
I) . . . ) denotes the interval in [−1, 1] whose reals

have a signed digit representation starting with d0d1 . . . dk−1.

I We consider ideals x ∈ |CJ|.



Total and cototal ideals of base type

Generally:

I Cototal ideals x : every token (i.e., constructor tree) P(∗) ∈ x
has a “�1-successor” P(C~∗ ) ∈ x .

I Total ideals: the cototal ones with �1 well-founded.

Examples:

I Total ideals of J:

I i

2k
,k := [

i

2k
− 1

2k
,
i

2k
+

1

2k
] for −2k < i < 2k .

I Cototal ideals of J: reals in [−1, 1], in (non-unique) stream
representation using signed digits −1, 0, 1.



Corecursion

I The conversion rules for R with total ideals as recursion
arguments work from the leaves towards the root, and
terminate because total ideals are well-founded.

I For cototal ideals (streams) a similar operator is available to
define functions with cototal ideals as values: corecursion.

I coRτJ : τ → (τ → U + SD× (J + τ))→ J (U unit type).

I Conversion rule

coRτJNM 7→ [case (MN)U+SD×(J+τ) of

inl 7→ I |
inr〈d , z〉 7→ Cd [case zJ+τ of

inl 7→ I |
inr uτ 7→ coRτJuM]].



W and continuous real functions

I Consider a well-founded “read tree”, i.e., a constructor tree
built from R (ternary) with Rd at its leaves.

I The digit d at a leaf means that, after reading all input digits
on the path leading to the leaf, the output d is written.

I Let Rd1 , . . . ,Rdn be all leaves. At a leaf Rdi continue with W
(i.e., write di ), and continue reading.

I Result: a “nested R(W)-total W-cototal” ideal, representing
a uniformly continuous real function f : I→ I.



A read-write instruction

W W W

- - -

d d d

\ | /

\ | / W W

\ | / - -

o d d

\ | /

\ | /

\ | /

\ | /

\ | /

o



R(α) := µξ(α→ ξ, α→ ξ, α→ ξ, ξ → ξ → ξ → ξ) labelled
read-and-finally-write-one-digit trees. Constructors:

Rd : α→ R(α) (d ∈ {−1, 0, 1}) finally write d & continue,

R : R(α)→ R(α)→ R(α)→ R(α) read.

Using R(α) define nested alternating read-write trees

W := µξ(ξ,R(ξ)→ ξ)

with constructors

W0 : W Stop,

W : R(W)→W Branch by applying a read-write instruction,

and continue.

Want finite read-write instructions, but infinitely many
alternations, via a “nested inductive/coinductive” definition.



Read(X )

We give an inductive definition of a unary predicate Read(X ) on
functions f ; it depends on a parameter X :

f [I] ⊆ Id → X (outd ◦ f )→ Read(X )f (d ∈ {−1, 0, 1}),
(Read(X )(f ◦ ind))d∈{−1,0,1} → Read(X )f .

with ind(a) := a+d
2 and outd(a) := 2a− d . The corresponding

least-fixed-point axiom is

Read(X )f →
(∀ncf (f [I] ⊆ Id → X (outd ◦ f )→ Pf ))d∈{−1,0,1} →
∀ncf ((Read(X )(f ◦ ind))d∈{−1,0,1} → (P(f ◦ ind))d∈{−1,0,1} → Pf )→
Pf ).



Write and its dual coWrite

Using Read(X ) we give a nested inductive definition of another
unary predicate Write by

Write(id),

Read(Write)f →Write f .

Its dual coWrite is defined by

coWrite f → Eq(f , id) ∨ Read(coWrite)f .

The greatest-fixed-point axiom coWrite+ is

Pf → ∀ncf (Pf → Eq(f , id) ∨ Read(coWrite ∨ P)f )→ coWrite f .

coWrite is an example of a nested inductive/coinductive predicate.



Define

Bl ,k f := ∀p∈I∃q(f [Ip,l ] ⊆ Iq,k).

Cf := ∀k∃lBl ,k f .

Theorem
∀ncf (Cf ↔ coWrite f ).

Proof sketch for →.
We use the greatest-fixed-point axiom coWrite+ with P := C . Fix
f ; it suffices to show Cf → Read(coWrite ∨ C )f . Assume Cf . By
definition we have an l such that Bl ,2f . Prove

∀l∀ncf (Bl ,2f → Cf → Read(coWrite ∨ C )f )

by induction on l .



Why is this useful?

Recall the Theorem: ∀ncf (Cf ↔ coWrite f ).

A witness of coWrite f is a nested alternating read-write tree. The
theorem allows to switch to such (base type) data when proving
properties of continuous functions.

Example: the composition g ◦ f of two continuous functions
f , g : I→ I is continuous.

The extracted term involves a corecursion operator with nested
recursion operators.



Conclusion

TCF (theory of computable functionals) as a possible foundation
for (constructive) exact real arithmetic.

I Simply typed theory, with “lazy” free algebras as base types
(⇒ constructors are injective and have disjoint ranges).

I Variables range over partial continuous functionals.

I Constants denote computable functionals (:= r.e. ideals).

I Minimal logic (→, ∀), plus inductive & coinductive definitions.

I Computational content in abstract theories.

I Decorations (→c,∀c and →nc, ∀nc) for removal of abstract
data, and fine-tuning.

I A nested inductive/coinductive definition of alternating
read-write trees representing (uniformly) continuous functions.

I Base type representation of continuous functions when
extracting computational content from proofs.
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