
Proofs, computations and analysis

Helmut Schwichtenberg
(j.w.w. Kenji Miyamoto)

Mathematisches Institut, LMU, München

Computability Theory and Foundations of Mathematics, Tokyo,
19. February 2013

Motivation

Algorithms are viewed as one aspect of proofs in (constructive)
analysis. A corresponding program (i.e., a term t in the underlying
language) can be extracted from a proof of A, and a proof that t
“realizes” A can be generated (⇒ automatic verification).

Data: From free algebras, given by their constructors. Examples:

I finite or infinite lists of signed digits −1, 0, 1 (i.e., reals as
streams),

I possibly non well-founded alternating read-write trees
(representing uniformly continuous functions).

Tools

I Decorations: →c,∀c (short: →,∀) and →nc,∀nc for removal
of abstract data, and fine-tuning.

I Nested inductive/coinductive definitions of predicates. Their
clauses give rise to free algebras. Only here computational
content arises.

Computable functionals

I Types: ι | ρ→ σ. Base types ι: free algebras (e.g., N), given
by their signature.

I Functionals seen as limits of finite approximations: ideals
(Kreisel, Scott, Ershov).

I Computable functionals are r.e. sets of finite approximations
(example: fixed point functional).

I Functionals are partial. Total functionals are defined (by
induction over the types).

Information systems Cρ for partial continuous functionals

I Types ρ, σ, τ : from algebras ι by ρ→ σ.

I Cρ := (Cρ,Conρ,`ρ).

I Tokens a ∈ Cρ (= atomic pieces of information): constructor
trees Ca∗1, . . . a

∗
n with a∗i a token or ∗. Example: S(S∗).

I Formal neighborhoods U ∈ Conρ: {a1, . . . , an}, consistent.

I Entailment U `ρ a.

Ideals x ∈ |Cρ| (“points”, here: partial continuous functionals):
consistent deductively closed sets of tokens.

Flat or non flat algebras?

I Flat:

∅
•

•
{0}

�
��
•
{1}

�
��

��
•
{2}

. . .

I Non flat:

•0 • S∗@
@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

..
.

Non flat!

I Every constructor C generates an ideal in the function space:
rC := { (U,Ca∗) | U ` a∗ }. Associated continuous map:

|rC|(x) = {Ca∗ | ∃U⊆x(U ` a∗) }.

I Constructors are injective and have disjoint ranges:

|rC|(~x) ⊆ |rC|(~y)↔ ~x ⊆ ~y ,
|rC1 |(~x) ∩ |rC2 |(~y) = ∅.

I Both properties are false for flat information systems (for
them, by monotonicity, constructors need to be strict).

|rC|(∅, y) = ∅ = |rC|(x , ∅),
|rC1 |(∅) = ∅ = |rC2 |(∅).

A theory of computable functionals, TCF

I A variant of HAω.

I Variables range over arbitrary partial continuous functionals.

I Constants for (partial) computable functionals, defined by
equations.

I Inductively and coinductively defined predicates. Totality for
ground types inductively defined.

I Induction := elimination (or least-fixed-point) axiom for a
totality predicate.

I Coinduction := greatest-fixed-point axiom for a coinductively
defined predicate.

Relation to type theory

I Main difference: partial functionals are first class citizens.

I Minimal logic: →,∀ only. = (Leibniz), ∃, ∨, ∧ (Martin-Löf)
inductively defined.

I ⊥ := (False = True). Ex-falso-quodlibet: ⊥ → A provable.

I Classical logic as a fragment: ∃̃xA defined by ¬∀x¬A.

Realizability interpretation

I Define a formula t r A, for A a formula and t a term in T+.

I From a proof M we can extract its computational content, a
term et(M).

I Soundness theorem:
If M proves A, then et(M) r A can be proved.

I Decorations: →c,∀c (short: →,∀) and →nc,∀nc for removal
of abstract data, and fine-tuning:

t r (A→c B) := ∀x(x r A → tx r B),

t r (A→nc B) := ∀x(x r A → t r B),

t r (∀cxA) := ∀x(tx r A),

t r (∀ncx A) := ∀x(t r A).

Example: decorating the existential quantifier

I ∃xA is inductively defined by the clause

∀x(A→ ∃xA)

with least-fixed-point axiom

∃xA→ ∀x(A→ P)→ P.

I Decoration leads to variants ∃d, ∃l,∃r,∃u (d for “double”,
l for “left”, r for “right” and u for “uniform”).

∀cx(A→c ∃dxA),

∀ncx (A→c ∃rxA),

∃dxA→c ∀cx(A→c P)→c P,

∃rxA→c ∀ncx (A→c P)→c P.

Practical aspects

I We need formalized proofs, to allow machine extraction.

I Can’t take a proof assistant from the shelf: none fits TCF.

Minlog (http://www.minlog-system.de)

I Natural deduction for →,∀, plus inductively and coinductively
defined predicates.

I Partial functionals are first class citizens.

I Allows type and predicate parameters (for abstract
developments: groups, fields, reals, . . .).

Uniformly continuous functions

Based on work of Ulrich Berger (2009).

I Extraction from a proof dealing with abstract uniformly
continuous functions.

I Data representing uniformly continuous functions: base type
cototal ideals.

I The extracted term will involve corecursion.

Type-1 representation of uniformly continuous functions

For contrast: a type-1 represented function f : [−1, 1]→ [−1, 1] is
given by

I an approximating map h : [−1, 1] ∩ Q→ N→ Q,

I bounds N,M ∈ N with ∀a∈[−1,1]∀n(N ≤ h(a, n) ≤ M), and

I a weakly increasing map α : N→ N such that (h(a, n))n is a
Cauchy sequence with (uniform) modulus α, i.e.,

∀a∈[−1,1]∀k∀n,m≥α(k)(|h(a, n)− h(a,m)| ≤ 2−k).

f is (uniformly) continuous if we have a weakly increasing modulus
ω : N→ N such that

∀k∀a,b∈[−1,1]∀n≥α(k)(|a−b| ≤ 2−ω(k)+1 → |h(a, n)−h(b, n)| ≤ 2−k).

Application f (x)

Application of f given by h, α and modulus ω to x := ((an)n,M):

f (x) := (h(an, n))n

with Cauchy modulus max(α(k + 2),M(ω(k + 1)− 1)).

Intermediate value theorem

Let a < b be rationals. If f : [a, b]→ R is continuous with
f (a) ≤ 0 ≤ f (b), and with a uniform lower bound on its slope,
then we can find x ∈ [a, b] such that f (x) = 0.

Proof sketch.

1. Approximate Splitting Principle. Let x , y , z be given with
x < y . Then z ≤ y or x ≤ z .

2. IVTAux. Assume a ≤ c < d ≤ b, say 2−n < d − c , and
f (c) ≤ 0 ≤ f (d). Construct c1, d1 with d1 − c1 = 2

3(d − c),
such that a ≤ c ≤ c1 < d1 ≤ d ≤ b and f (c1) ≤ 0 ≤ f (d1).

3. IVTcds. Iterate the step c, d 7→ c1, d1 in IVTAux.

Let x = (cn)n and y = (dn)n with the obvious modulus. As f is
continuous, f (x) = 0 = f (y) for the real number x = y .

Extracted term

[k0]

left((cDC rat@@rat)(1@2)

([n1]

(cId rat@@rat=>rat@@rat)

([cd3]

[let cd4

((2#3)*left cd3+(1#3)*right cd3@

(1#3)*left cd3+(2#3)*right cd3)

[if (0<=(left cd4*left cd4-2+

(right cd4*right cd4-2))/2)

(left cd3@right cd4)

(left cd4@right cd3)]]))

(IntToNat(2*k0)))

where cDC is a from of the recursion operator.

Free algebra J of intervals

I SD := {−1, 0, 1} signed digits (or {L,M,R}).

I J free algebra of intervals. Constructors

I the interval [−1, 1],

C : SD→ J→ J left, middle, right half.

Write Cdx for Cdx .

I C1I denotes [0, 1].

I C0I denotes [−1
2 ,

1
2].

I C0(C−1I) denotes [−1
2 , 0].

Cd0(Cd1 . . . (Cdk−1
I) . . .) denotes the interval in [−1, 1] whose reals

have a signed digit representation starting with d0d1 . . . dk−1.

I We consider ideals x ∈ |CJ|.

Total and cototal ideals of base type

Generally:

I Cototal ideals x : every token (i.e., constructor tree) P(∗) ∈ x
has a “�1-successor” P(C~∗) ∈ x .

I Total ideals: the cototal ones with �1 well-founded.

Examples:

I Total ideals of J:

I i

2k
,k := [

i

2k
− 1

2k
,
i

2k
+

1

2k
] for −2k < i < 2k .

I Cototal ideals of J: reals in [−1, 1], in (non-unique) stream
representation using signed digits −1, 0, 1.

Corecursion

I The conversion rules for R with total ideals as recursion
arguments work from the leaves towards the root, and
terminate because total ideals are well-founded.

I For cototal ideals (streams) a similar operator is available to
define functions with cototal ideals as values: corecursion.

I coRτJ : τ → (τ → U + SD× (J + τ))→ J (U unit type).

I Conversion rule

coRτJNM 7→ [case (MN)U+SD×(J+τ) of

inl 7→ I |
inr〈d , z〉 7→ Cd [case zJ+τ of

inl 7→ I |
inr uτ 7→ coRτJuM]].

W and continuous real functions

I Consider a well-founded “read tree”, i.e., a constructor tree
built from R (ternary) with Rd at its leaves.

I The digit d at a leaf means that, after reading all input digits
on the path leading to the leaf, the output d is written.

I Let Rd1 , . . . ,Rdn be all leaves. At a leaf Rdi continue with W
(i.e., write di), and continue reading.

I Result: a “nested R(W)-total W-cototal” ideal, representing
a uniformly continuous real function f : I→ I.

A read-write instruction

W W W

- - -

d d d

\ | /

\ | / W W

\ | / - -

o d d

\ | /

\ | /

\ | /

\ | /

\ | /

o

R(α) := µξ(α→ ξ, α→ ξ, α→ ξ, ξ → ξ → ξ → ξ) labelled
read-and-finally-write-one-digit trees. Constructors:

Rd : α→ R(α) (d ∈ {−1, 0, 1}) finally write d & continue,

R : R(α)→ R(α)→ R(α)→ R(α) read.

Using R(α) define nested alternating read-write trees

W := µξ(ξ,R(ξ)→ ξ)

with constructors

W0 : W Stop,

W : R(W)→W Branch by applying a read-write instruction,

and continue.

Want finite read-write instructions, but infinitely many
alternations, via a “nested inductive/coinductive” definition.

Read(X)

We give an inductive definition of a unary predicate Read(X) on
functions f ; it depends on a parameter X :

f [I] ⊆ Id → X (outd ◦ f)→ Read(X)f (d ∈ {−1, 0, 1}),
(Read(X)(f ◦ ind))d∈{−1,0,1} → Read(X)f .

with ind(a) := a+d
2 and outd(a) := 2a− d . The corresponding

least-fixed-point axiom is

Read(X)f →
(∀ncf (f [I] ⊆ Id → X (outd ◦ f)→ Pf))d∈{−1,0,1} →
∀ncf ((Read(X)(f ◦ ind))d∈{−1,0,1} → (P(f ◦ ind))d∈{−1,0,1} → Pf)→
Pf).

Write and its dual coWrite

Using Read(X) we give a nested inductive definition of another
unary predicate Write by

Write(id),

Read(Write)f →Write f .

Its dual coWrite is defined by

coWrite f → Eq(f , id) ∨ Read(coWrite)f .

The greatest-fixed-point axiom coWrite+ is

Pf → ∀ncf (Pf → Eq(f , id) ∨ Read(coWrite ∨ P)f)→ coWrite f .

coWrite is an example of a nested inductive/coinductive predicate.

Define

Bl ,k f := ∀p∈I∃q(f [Ip,l] ⊆ Iq,k).

Cf := ∀k∃lBl ,k f .

Theorem
∀ncf (Cf ↔ coWrite f).

Proof sketch for →.
We use the greatest-fixed-point axiom coWrite+ with P := C . Fix
f ; it suffices to show Cf → Read(coWrite ∨ C)f . Assume Cf . By
definition we have an l such that Bl ,2f . Prove

∀l∀ncf (Bl ,2f → Cf → Read(coWrite ∨ C)f)

by induction on l .

Why is this useful?

Recall the Theorem: ∀ncf (Cf ↔ coWrite f).

A witness of coWrite f is a nested alternating read-write tree. The
theorem allows to switch to such (base type) data when proving
properties of continuous functions.

Example: the composition g ◦ f of two continuous functions
f , g : I→ I is continuous.

The extracted term involves a corecursion operator with nested
recursion operators.

Conclusion

TCF (theory of computable functionals) as a possible foundation
for (constructive) exact real arithmetic.

I Simply typed theory, with “lazy” free algebras as base types
(⇒ constructors are injective and have disjoint ranges).

I Variables range over partial continuous functionals.

I Constants denote computable functionals (:= r.e. ideals).

I Minimal logic (→, ∀), plus inductive & coinductive definitions.

I Computational content in abstract theories.

I Decorations (→c,∀c and →nc, ∀nc) for removal of abstract
data, and fine-tuning.

I A nested inductive/coinductive definition of alternating
read-write trees representing (uniformly) continuous functions.

I Base type representation of continuous functions when
extracting computational content from proofs.

References

I U. Berger, From coinductive proofs to exact real arithmetic.
CSL 2009.

I U. Berger, K. Miyamoto, H.S. and M. Seisenberger, The
interactive proof system Minlog. Calco-Tools 2011.

I K. Miyamoto and H.S., Program extraction in exact real
arithmetic. To appear in MSCS.

I K. Miyamoto, F. Nordvall Forsberg and H.S., Program
extraction from nested definitions. Submitted.

I H.S., Realizability interpretation of proofs in constructive
analysis. Theory of Computing Systems, 2008.

I H.S. and S.S. Wainer, Proofs and Computations. Perspectives
in Logic, ASL & Cambridge UP, 2012.

