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Basis theorems.

A basis theorem is a theorem of the form:

For any nonempty effectively closed set

in Euclidean space, at least one member

of the set is “close to being computable”.

Some well known basis theorems are:

• the Low Basis Theorem,

• the R.E. Basis Theorem,

• the Hyperimmune-Free Basis Theorem,

• the Cone Avoidance Basis Theorem,

• the Randomness Preservation Basis Thm.

Less well known is a basis theorem of

Higuchi/Hudelson/Simpson/Yokoyama

on preservation of partial randomness.

We shall state these basis theorems, discuss

some of their applications, and discuss the

possibilities for combining them.
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Three basis theorems.

Let ≤T denote Turing reducibility.

Let ′ denote the Turing jump operator.

The Low Basis Theorem:

For any nonempty effectively closed set Q,

there exists Z ∈ Q such that Z ′ ≤T 0′.

The R.E. Basis Theorem:

For any nonempty effectively closed set Q,

there exists Z ∈ Q such that Z is

of recursively enumerable Turing degree.

We say that Z is hyperimmune-free if

(∀ functions f ≤T Z) (∃ recursive function g)
∀n (f(n) < g(n)).

The Hyperimmune-Free Basis Theorem:

For any nonempty effectively closed set Q,

(∃Z ∈ Q) (Z is hyperimmune-free).

These three basis theorems are due to

Jockusch/Soare 1972.
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Some applications.

Basis theorems are applicable to the study of
models of first- and second-order arithmetic.

Namely, there is a nonempty effectively closed
set Qω such that each Z ∈ Qω encodes
a countable ω-model of WKL0 (subsystems of
second-order arithmetic), or equivalently,
a Scott set (models of first-order arithmetic).

Thus, there exist Z1, Z2, Z3 ∈ Qω such that
Z1 is low, Z2 is of r.e. Turing degree, and
Z3 is hyperimmune-free.

Question: Does there exist Z ∈ Qω

with two or more of these properties?

Answer: See the next slide.

Conversely, for any ω-model M of WKL0
and any nonempty effectively closed set Q,
we have M ∩Q 6= ∅.

Thus Qω is in a sense universal.
For many purposes, we may assume Q = Qω.
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Can we combine these basis theorems?

No. The Jockusch/Soare basis theorems

are known to be “pairwise incompatible.”

1. The Arslanov Completeness Criterion

provides a nonempty effectively closed Q

such that for all r.e. sets A,

if (∃Z ∈ Q) (Z ≤T A) then 0′ ≤T A.

Therefore, the Low Basis Theorem and

the R.E. Basis Theorem cannot be

combined into one basis theorem.

2. It is known that for hyperimmune-free Z

one cannot have 0 <T Z ≤T 0′.

Therefore, the Hyperimmune-Free Basis

Theorem cannot be combined with the

Low Basis Theorem or with the R.E.

Basis Theorem.
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Two more basis theorems.

The Cone Avoidance Basis Theorem:

For any nonempty effectively closed set Q,

if A �T 0 then (∃Z ∈ Q) (A �T Z).

More generally,

if ∀i (Ai �T 0) then (∃Z ∈ Q)∀i (Ai �T Z).

Gandy/Kreisel/Tait, 1960.

Let MLR = {X | X is Martin-Löf random}.

Let MLRZ = {X | X is Martin-Löf random

relative to Z}.

The Randomness Preservation Basis Theorem:

For any nonempty effectively closed set Q,

if X ∈ MLR then (∃Z ∈ Q) (X ∈ MLRZ).

Reimann/Slaman, not yet published.

Downey/Hirschfeldt/Miller/Nies, 2005.

Simpson/Yokoyama, 2011.
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More applications.

An application of Cone Avoidance:

Let T be a recursively axiomatizable

consistent theory extending first-order

arithmetic PA (or even Robinson’s Q). Define

the hard core of T as HC(T) =
⋂
{M | M is

the Scott set of some model of T}. Then

HC(T) = REC = {A ⊆ N | A is recursive}.

In particular, REC is the intersection of all

ω-models of WKL0.

The use of the term “hard core” in this

context was suggested by Kreisel.
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More applications.

Applications of Randomness Preservation:

1. (Reimann/Slaman) X �T 0 implies X is

non-atomically random with respect to some

Borel probability measure.

2. (Simpson/Yokoyama) Given a countable

ω-model M of WWKL0, we can extend M to

a countable ω-model M1 of WKL0 such that

C ∩M 6= ∅ for every M1-coded closed set C

of positive measure. This has consequences

for the reverse mathematics of non-standard

measure theory.

3. (Brattka/Miller/Nies) A real number x is

computably random if and only if every

computably continuous function of bounded

variation is differentiable at x.
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More combinations of basis theorems?

It is known that Cone Avoidance can be

combined with the Low Basis Theorem, or

with the Hyperimmune-free Basis Theorem,

but not with the R.E. Basis Theorem. (See

for instance Downey/Hirschfeldt §2.19.3.)

Also, Randomness Preservation cannot be

combined with the Low or the R.E. or the

Hyperimmune-Free Basis Theorem.

A leading question: Can Cone Avoidance

be combined with Randomness Preservation?

The answer to this question involves

LR-reducibility.

Define A ≤LR B ⇐⇒ MLRB ⊆ MLRA. Clearly

A ≤T B implies A ≤LR B, and it is known that

A ≤LR 0 implies A′ ≤T 0′. A major theorem of

Nies is that A ≤LR 0 ⇐⇒ A is K-trivial. See

Nies 2009 or Downey/Hirschfeldt 2010.
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A theorem which combines Cone Avoidance

and Randomness Preservation:

Theorem 1 (Simpson/Stephan, 2013).

For any nonempty effectively closed set Q,

if X ∈ MLR and ∀i (Ai �LR 0 or Ai �T X),

then (∃Z ∈ Q) (X ∈ MLRZ and ∀i (Ai �T Z)).

On the other hand, let Ω ∈ MLR be such that

Ω ≡T 0′. It is well known that such reals exist

(Chaitin, Kučera/Gács).

Theorem 2 (Simpson/Stephan, 2013).

∃ nonempty effectively closed set Q such that

(∀A ≤LR 0) (∀Z ∈ Q) (Ω ∈ MLRZ ⇒ A ≤T Z).

The proof uses a result of Miller 2010.

Summary of Theorems 1 and 2:

Randomness Preservation cannot be

combined with Cone Avoidance, but only

because A �T 0 does not imply A �LR 0.
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Another application.

WKL0 is a subsystem of Z2 which is good for

the reverse mathematics of compactness

(Heine-Borel, Arzela-Ascoli, Hahn-Banach,

fixed points, prime ideals, etc.).

WWKL0 is a subsystem of WKL0 which is

good for the reverse mathematics of measure

theory (countable additivity, Monotone and

Dominated Convergence theorems, Vitali

Covering Lemma, etc.).

Let M be a countable ω-model of WWKL0.

By Simpson/Yokoyama 2011, we get

a countable ω-model M1 ⊇ M of WKL0

such that C ∩M 6= ∅ for every M1-coded

closed set C of positive measure.

This is called a good extension of M .

As an application of Theorem 1, we get

two good extensions M1,M2 ⊇ M such that

M = M1 ∩M2.
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Preservation of partial randomness.

Let f : {0,1}∗ → [−∞,∞] be
an arbitrary recursive function.

For S ⊆ {0,1}∗ let wtf(S) =
∑

σ∈S 2−f(σ),

pwtf(S) = sup{wtf(P) | P ⊆ S prefix-free},

and JSK = {X ∈ {0,1}N | (∃σ ∈ S) (σ ⊂ X)}.

We say that X is strongly f-random if
X /∈

⋂
nJSnK for all uniformly r.e. Sn ⊆ {0,1}∗

such that ∀n (pwtf(Sn) ≤ 2−n).

Martin-Löf randomness is the special case
f(σ) = |σ|. In this case pwtf(S) = µ(JSK)
where µ is the fair coin measure on {0,1}N.

Partial Randomness Preservation:

For any nonempty effectively closed set Q,
if X is strongly f-random then (∃Z ∈ Q)
(X is strongly f-random relative to Z).

More generally, if ∀i (Xi is strongly fi-random)
then (∃Z ∈ Q) ∀i (Xi is strongly fi-random
relative to Z).

Higuchi/Hudelson/Simpson/Yokoyama, 2012.
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To what extent can we combine

Partial Randomness Preservation

with Cone Avoidance?

Theorem 3 (implicit in H/H/S/Y 2012).

For any nonempty effectively closed set Q,

if ∀i (Ai �LR 0 and Xi is strongly fi-random),

then (∃Z ∈ Q) ∀i (Ai �LR Z and Xi is strongly

fi-random relative to Z).

On the other hand, because of Theorem 2,

we cannot always replace ≤LR by ≤T.

Can we sometimes replace ≤LR by ≤T?

A typical open question:

Define X to be strongly half-random ⇐⇒

X is strongly f-random where f(σ) = |σ|/2.

If Q is nonempty effectively closed, and

if A �T 0 and X is strongly half-random,

does there exist Z ∈ Q such that A �T Z
and X is strongly half-random relative to Z?
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Proofs of Theorems 1 and 2.

To prove Theorem 1, we use

the Cone Avoidance Basis Theorem,

relativized to X.

To prove Theorem 2, we use

K = prefix-free Kolmogorov complexity.

(1) If Ω ∈ MLRZ then |K(n)−KZ(n)| ≤ O(1)

for infinitely many n. (Miller 2010.)

(2) If Ω ∈ MLRZ and Z ∈ Qω then

∃ an infinite Z-recursive set A and

a Z-recursive function K̃ such that

|K(n)− K̃(n)| ≤ O(1) for all n ∈ A.

(3) Let C = plain Kolmogorov complexity.

Chaitin 1976 proved: every C-trivial real is

computable. Using K̃ and A as in (2), we

similarly prove: every K-trivial real is ≤T Z.
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Thank you for your attention!
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