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The theorem of Kruskal

Theorem (Kruskal)

T is a wpo.

What is T?
T is the set of finite planar rooted trees:

• is an element of T,

If T1, . . . ,Tn ∈ T, then
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is also an element of T.
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Tree-embeddability
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Tree-embeddability: definition
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If k1 < k2 < · · · < kn and Ti ≤T T ′ki for every i , then
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The theorem of Kruskal

Theorem (Kruskal)

T is a wpo.

What is a wpo?
A well-partial-ordering (wpo) is a partial ordering that is

well-founded,

has no infinite antichain.

Definition

A well-partial-ordering (X ,≤X ) is a partial ordering such that for
every infinite sequence x1, x2, . . . of elements in X , indices i < j
exists such that xi ≤X xj .
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The theorem of Kruskal

Theorem (Kruskal)

T is a wpo.

=

Theorem (Kruskal)

For every infinite sequence T1,T2, . . . of elements in T, there
exists indices i < j such that Ti ≤T Tj .
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Theorem

T is wpo.

⇓

New tree-class T (W )

Theorem

T (W ) is wpo.

Interested in:

Is this theorem true?

What is the maximal order type of T (W )?

Which theories T can (and which cannot) prove ‘T (W ) is
wpo’?
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Why interested in this?

Trying to obtain the strength of trees with gap-condition.

A natural generalization of the notion ‘tree’ and of Kruskal’s
theorem.

Relations with ordinal notation systems.
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Maximal order type

Definition

The maximal order type of a well-partial-ordering (X ,≤X ) is
defined as

o(X ,≤X ) = sup{α |≤X⊆≤+ with ≤+ a linear ordering on X

and α = otype(X ,≤+)}.

Every extension of a well-partial-ordering to a linear ordering is a
well-ordering.
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Definition
The maximal order type of T (W )
Proof-theoretical strength

Let us introduce T (W )!
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Definition
The maximal order type of T (W )
Proof-theoretical strength

Definition X ∗: the Higman ordering

X ∗ is the set of finite sequence over X with the Higman ordering:

(x1, . . . , xn) ≤∗ (y1, . . . , ym)

⇔ ∃1 ≤ i1 < · · · < in ≤ m such that xj ≤X yij for every j = 1, . . . , n.

Theorem

If X is a well-partial-ordering, then X ∗ is also a
well-partial-ordering.
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Definition
The maximal order type of T (W )
Proof-theoretical strength

Definition X ∗: the Higman ordering

Theorem (De Jongh & Parikh; D. Schmidt)

If X is a well-partial-ordering, then

o(X ∗) =


ωωo(X )+1

if o(X ) is equal to e + n
with e an epsilon number and n < ω,

ωωo(X )−1
if o(X ) is finite,

ωωo(X )
otherwise.

Jeroen Van der Meeren Recursively defined trees and their maximal order types



Introduction
Recursively defined trees

Conclusions

Definition
The maximal order type of T (W )
Proof-theoretical strength

W (X ) = X+

W (X ) = X+ = X ∗\{()}.
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Definition
The maximal order type of T (W )
Proof-theoretical strength

Example: T (X+)

T is the set of finite planar rooted trees:

• is an element of T,

If T1, . . . ,Tn ∈ T, then
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Example: T (X+)

T is the set of finite planar rooted trees:

• is an element of T,

If T1, . . . ,Tn ∈ T, then

•[(T1, . . . ,Tn)]

is also an element of T.
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Example: T (X+)

T is the set of finite planar rooted trees:

• is an element of T,

If (T1, . . . ,Tn) ∈ (T)+, then
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is also an element of T.
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Example: T (X+)

T (X+) is the set of finite planar rooted trees:

• is an element of T (X+),

If (T1, . . . ,Tn) ∈ (T (X+))+, then

•[(T1, . . . ,Tn)]

is also an element of T (X+).
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Definition
The maximal order type of T (W )
Proof-theoretical strength

Recursively defined trees

Definition

T (W ) is defined recursively as follows:

1 ◦ is an element of T (W ).

2 If w(T1, . . . ,Tn) is an element of W (T (W )),
then ◦[w(T1, . . . ,Tn)] is an element of T (W ).

W (X ) satisfies:

If X is a countable well-partial-ordering, then W (X ) is also a
countable well-partial-ordering, hence

∀X (WPO(X )→WPO(W (X ))).

Elements of W (X ) are formal terms with entries in X .

Equality o(W (X )) = o(W (o(X ))) can be proved by using an
effective reification.
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Definition
The maximal order type of T (W )
Proof-theoretical strength

Recursively defined trees

Definition

We define ≤T (W ) on T (W ) as follows:

1 ◦ ≤T (W ) t for every t in T (W ),

2 for every j : if s ≤T (W ) tj , then s ≤T (W ) ◦[w(t1, . . . , tn)],

3 if w(t1, . . . , tn) ≤W (T (W )) w
′(t ′1, . . . , t

′
m), then

◦[w(t1, . . . , tn)] ≤T (W ) ◦[w ′(t ′1, . . . , t ′m)].
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Definition
The maximal order type of T (W )
Proof-theoretical strength

Examples

If W (X ) = X , then
T (W ) ∼= N.

If W (X ) = X+ = X ∗\{()}, then

T (W ) ∼= T.

If W (X ) = (X × X )+, then

T (W ): gluing together of immediate subtrees in pairs
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Definition
The maximal order type of T (W )
Proof-theoretical strength

The maximal order type of T (W )

Conjecture (Weiermann)

T (W ) is a well-partial-ordering and

o(T (W )) = θ(o(W (Ω))),

if o(W (Ω)) ≥ Ω3 and o(W (Ω)) ∈ dom(θ).

If W (X ) = X+, then T (W ) ∼= T. Also, o(W (Ω)) = ωωΩ+1
= Ωω,

hence
o(T) = o(T (W )) = θ(o(W (Ω))) = θ(Ωω).

→ generalization result Diana Schmidt!
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The collapsing function θ : εΩ+1 → Ω

-
0 Ω Ω2 . . . εΩ+1

? ? ?

-
0 Ω
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Definition
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Proof-theoretical strength

Results about the maximal order type

W (X ) o(T (W ))

M�(X × X ) θ(ΩΩ)
M(X × X ) θ(ΩΩ)

(X × X )∗ θ(ΩΩΩ
)

(X ∗)∗ θ(ΩΩΩω

)
B(X ) θ(εΩ+1)
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Definition
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Proof-theoretical strength

Proof-theoretical strength

Theorem

ACA0 + (Π1
1–CA0)− 6` ‘T (B) is a wpo’,

ACA0 + (Π1
1–CA0)− ` ‘T (X

n︷ ︸︸ ︷
∗ · · · ∗) is a wpo’ (n ∈ N).

Theorem

RCA0 + (Π1
1–CA0)− ` ‘T (X n) is wpo’, for every n ≥ 2.

Ongoing:

RCA0 + (Π1
1–CA0)− 6` ‘T (X ∗) is wpo’.
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Definition
The maximal order type of T (W )
Proof-theoretical strength

Interesting conjecture

Conjecture (Rathjen, Weiermann)

|RCA∗0 + (Π1
1 − CA0)−| = ϕω0.
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Conclusions

Definition well-partial-ordering and Kruskal’s theorem

Definition maximal order type of a wpo

Recursively defined trees

Conjecture o(T (W )) = θ(o(W (Ω)))

Results on ordinal and proof-theoretical strength
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Thank you for your attention!

Jeroen Van der Meeren
Ghent University

jvdm@cage.ugent.be
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