Where closure under Turing jumps can replace elementarity between structures

Tin Lok Wong

Ghent University, Belgium

20 February, 2013

*My current appointment is funded by the John Templeton Foundation.

Nonstandard arithmetic

- The language \mathscr{L}_{A} is $\{0, 1, +, \times, <\}$.
- Peano arithmetic (PA) consists of the axioms for discretely ordered semirings, and the induction axiom

$$heta(0) \wedge orall x ig(heta(x) o heta(x+1) ig) o orall x \ heta(x)$$

for each formula $\theta(x)$.

- A *nonstandard* model of PA is a model not isomorphic to ω .
- ▶ Skolem (1934) showed that nonstandard models exist.

The standard cut

Fix a nonstandard model $M \models PA$.

- \mathscr{L}_A has terms for 0, 1, 1 + 1, ...
- So M contains a copy of ω that is often called the standard cut.

Kaye, Kossak, W. Adding standardness to nonstandard arithmetic. Forthcoming.

Study the expanded structure (M, ω) in the language L_ω = L_A ∪ {ω}.

Why add ω ?

- Nonstandard analysis
- Model theory
- Reverse mathematics

unary predicate

This talk

Where closure under Turing jumps can replace elementarity between structures

Plan

- Introduction
- Kanovei's Theorem (elementarity between structures)
- Variation (closure under Turing jumps)
- Conclusion

Motivation

Fix a nonstandard model $M \models PA$.

- ► Gödel (1931) says $Th(M) \leq T 0$.
- Th(M) can be "close to being recursive".
- ► Th(*M*) represents some nonrecursive set.

•
$$\operatorname{Th}(M,\omega) \geq_{\mathsf{T}} 0^{(n)}$$
 for all $n \in \omega$.

▶ $0^{(n)}$ is parameter-free definable in (M, ω) for all $n \in \omega$.

Question

Can $0^{(\omega)}$ be parameter-free definable in (M, ω) ?

Answer (Kanovei 1996)

Yes, when M is an elementary extension of ω .

Th \mathfrak{M} denotes the set of all sentences true in \mathfrak{M} .

Elementary extensions

Definition

An extension $M \supseteq N$ is *elementary* if

$$M \models \varphi(\bar{n}) \quad \Leftrightarrow \quad N \models \varphi(\bar{n}).$$

for all formulas φ and all $\bar{n} \in N$. We write $M \succ N$ for this.

Theorem (Kanovei 1996) If $M \succ \omega$, then $0^{(\omega)}$ is parameter-free definable in (M, ω) .

Proof outline

- Recall $0^{(\omega)} \equiv_{\mathsf{T}} \mathsf{Th}(\omega)$.
- Our formula $\tau(\sigma)$ defining Th(ω) in (M, ω) says

'there is a certificate for the truth of σ in $\omega'.$

What certifies truth?

Example Let $\sigma = \forall x \exists y \varphi(x, y)$, where φ is quantifier-free.

$$\frac{\varphi(0, n_0)}{\exists y \ \varphi(0, y)} \qquad \frac{\varphi(1, n_1)}{\exists y \ \varphi(1, y)} \qquad \frac{\varphi(2, n_2)}{\exists y \ \varphi(2, y)} \qquad \cdots \\ \forall x \ \exists y \ \varphi(x, y)$$

Definition

A set of sentences C is a *truth certificate* if the following hold.

- (a) If a quantifier-free $\varphi \in C$, then φ is true in ω .
- (b) If $\forall x \ \varphi(x) \in C$, then $\varphi(m) \in C$ for all $m \in \omega$.
- (c) If $\exists y \ \psi(y) \in C$, then $\psi(n) \in C$ for some $n \in \omega$.

Recall $\tau(\sigma)$ is meant to define Th(ω) in $M_{\int de}$

$\mathsf{definable}/\mathsf{coded}$

- $\tau(\sigma)$ says 'there is a truth certificate C containing σ '.
- For a sentence σ , if $(M, \omega) \models \tau(\sigma)$, then $\omega \models \sigma$.

Proposition

If
$$\omega \models \sigma$$
 and $M \succ \omega$, then $(M, \omega) \models \tau(\sigma)$.

Proof sketch

Consider $\sigma = \forall x \exists y \ \varphi(x, y)$, where φ is quantifier-free. Define

$$P_{0} = \{(m, n) \in \omega^{2} : \omega \models \varphi(m, n)\}$$

= $\{(m, n) \in \omega^{2} : M \models \varphi(m, n)\}$ by elementarity,
$$P_{1} = \{m \in \omega : \omega \models \exists y \ \varphi(m, y)\}$$

= $\{m \in \omega : M \models \exists y \ \varphi(m, y)\}$ by elementarity.

Then $C = \{\sigma\} \cup \{\exists y \ \varphi(m, y) : m \in P_1\} \cup \{\varphi(m, n) : (m, n) \in P_0\}$ is a truth certificate containing σ in M, because $\omega \models \sigma$.

Arithmetical comprehension

Recal

call

$$P_0 = \{(m, n) \in \omega^2 : \omega \models \varphi(m, n)\}$$

$$= \{(m, n) \in \omega^2 : M \models \varphi(m, n)\},$$

$$P_1 = \{m \in \omega : \omega \models \exists y \ \varphi(m, y)\}$$

$$= \{m \in \omega : \exists y \in \omega \quad (m, y) \in P_0\}.$$

Definition

SSy(M) is the collection of all sets of the form

$$\{\bar{m}\in\omega:M\models\theta(\bar{m},\bar{c})\},\$$

where θ is an \mathscr{L}_A formula and $\overline{c} \in M$. $(\omega, SSy(M)) \models ACA_0$ Proposition (Kaye–Kossak–W)

If $\omega \models \sigma$ and SSy(*M*) is closed under (·)', then $(M, \omega) \models \tau(\sigma)$.

Conclusion

Theorem (Kaye–Kossak–W)

If $M \models \mathsf{PA}$ such that $\mathsf{SSy}(M)$ is closed under $(\cdot)'$, then $0^{(\omega)}$ is parameter-free definable in (M, ω) .

Intuition

The following properties are similar for $M \models PA$.

•
$$M \succ \omega$$
.

SSy(
$$M$$
) is closed under (·)'.

Fact

If $M \succ \omega$ or SSy(M) is closed under (·)', then there is $b \in M$ such that

$$\omega < b < c$$

for all nonstandard definable elements $c \in M$.

