On a Theorem of Seetapun

Wu Guohua A joint work with Frank Stephan

Nanyang Technological University

CTFM Workshop 2013, Tokyo

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Post's problem

A Turing degree is c.e. if it contains a c.e. set.

The c.e. degrees form an upper-semi lattice with greatest and least elements, $\mathbf{0}'$ and $\mathbf{0}.$

Post: Are there any other c.e. degrees?

Post's efforts:

- simple sets,
- hypersimple sets,
- hyperhypersimple sets.

Friedberg-Muchnik Theorem

The answer to Post problem is "YES".

Significance: a technique, called "priority injury argument", was invented.

0

0′

•

•

Sacks' Two Theorems

- Sacks Splitting Theorem: Every nonzero c.e. degree is the join of two incomparable c.e. degrees.
- Sacks Density Theorem: The c.e. degrees are dense.

New features of Sacks' theorems: complexity of injury arguments

Shoenfield conjectured that the structure of c.e. degrees is not complicated.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Shoenfield Conjecture

Shoenfield Conjecture

As an upper-semi lattice, the structure of c.e. degrees is countably categorical.

- ▶ If the conjecture is true, the theory of this countable structure is decidable.
- Lachlan and Yates first proved the existence of minimal pairs and hence Shoenfield Conjecture is wrong.

Minimal pairs, cappable degrees, noncapable degrees

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

High/Low hierarchy

• Jump operator - $A' = \{e : \Phi_e^A(e) \text{ converges}\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A decomposition of c.e. degrees

Theorem Harrington's Work

- ► Caps or Cups
- Caps and Cups

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

A decomposition of c.e. degrees

Theorem Harrington's Work

- Caps or Cups
- Caps and Cups

Theorem

AJSS's decomposition Theorem

- All cappable degrees form an ideal of c.e. degrees;
- All noncappable degrees form a strong filter of c.e. degrees;
- A c.e. degree is noncappable if and only if it is low-cuppable;

Cuppable degrees

Theorem

Recent Work

► There is a low₂, but not low-cuppable, degree. (LWZ)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Cuppable degrees

Theorem

Recent Work

- ► There is a low₂, but not low-cuppable, degree. (LWZ)
- There exists a cuppable degree, which is only high-cuppable to $\mathbf{0}'$. (GNW)

Cuppable degrees

Theorem

Recent Work

- ► There is a low₂, but not low-cuppable, degree. (LWZ)
- There exists a cuppable degree, which is only high-cuppable to $\mathbf{0}'$. (GNW)
- There exists two cuppable degrees such that no incomplete c.e. degree can cup both to 0' simultaneously. This implies that the quotient structure R/NCup contains a minimal pair. (LWY)

Definition: (Seetapun)

A nonzero c.e. degree \mathbf{a} is locally noncappable if there is a c.e. degree \mathbf{c} above \mathbf{a} such that no nonzero c.e. degree below \mathbf{c} can form a minimal pair with \mathbf{a} .

We say that \mathbf{c} witnesses that \mathbf{a} is locally noncappable.

Theorem: Downey, Stob

Any nonzero c.e. degree a bounds a nonzero c.e. degree c such that c is noncappable below a.

Each nonzero incomplete c.e. degree **a** is locally noncappable.

Each nonzero incomplete c.e. degree **a** is locally noncappable.

As a corollary, there is no maximal nonbounding degree, as when a is a nonbounding degrees, so is c.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Each nonzero incomplete c.e. degree **a** is locally noncappable.

As a corollary, there is no maximal nonbounding degree, as when a is a nonbounding degrees, so is c.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Mathew Giorgi published Seetapun's result in 2004.

Each nonzero incomplete c.e. degree **a** is locally noncappable.

As a corollary, there is no maximal nonbounding degree, as when a is a nonbounding degrees, so is c.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Mathew Giorgi published Seetapun's result in 2004.

Theorem: (Stephan and Wu)

The witness c can be high₂.

It is a gap-cogap argument, where a cogap can be open again and this can happen infinitely many often, corresponding to a divergence outcome.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Two actions can reopen a cogap.

- It is a gap-cogap argument, where a cogap can be open again and this can happen infinitely many often, corresponding to a divergence outcome.
- Two actions can reopen a cogap.

The following are direct corollaries:

- Continuity of capping (Harrington and Soare, 1989)
- ▶ There is a high₂ nonbounding degree [Downey, Lempp and Shore, 1993].

- It is a gap-cogap argument, where a cogap can be open again and this can happen infinitely many often, corresponding to a divergence outcome.
- Two actions can reopen a cogap.

The following are direct corollaries:

- Continuity of capping (Harrington and Soare, 1989)
- ▶ There is a high₂ nonbounding degree [Downey, Lempp and Shore, 1993].
- ▶ There is a high₂ plus-cupping degree, in terms of Harrington [Li, 2010].

- It is a gap-cogap argument, where a cogap can be open again and this can happen infinitely many often, corresponding to a divergence outcome.
- Two actions can reopen a cogap.

The following are direct corollaries:

- Continuity of capping (Harrington and Soare, 1989)
- ▶ There is a high₂ nonbounding degree [Downey, Lempp and Shore, 1993].
- ▶ There is a high₂ plus-cupping degree, in terms of Harrington [Li, 2010].
- ► There is a high₂ degree bounding no bases of Slaman triples [Leonardi, 1996].

High permitting

High c.e. degrees behave like $\mathbf{0}'$.

High permitting

High c.e. degrees behave like $\mathbf{0}'$.

Every high c.e. degree bounds

- a minimal pair (Cooper, 1973);
- ▶ a high noncuppable degree (Harrington, around 1973);

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ a Slaman triple (Shore and Slaman, 1993).

Thanks!

・ロ> < 回> < 三> < 三> < 三> < 回> < 回> < <