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Outline of this talk:

1. What is Reverse Ring Theory?

2. Basics on R-modules




Background of reverse mathematics: Second order
arithmetic (Z,) is a two-sorted system.

Number variables m, n, ... are intended to range over

w=40,1,2...} .

Set variables X, Y, ... are intended to range over subsets of
Ww.

We have 4+, -, = on w, plus the membership relation

c={(n,X):ne X} CwxPw).

Within subsystems of second order arithmetic, we can

formalize rigorous mathematics (analysis, algebra,

geometry, . . . ).




Themes of Reverse Mathematics:

Let 7 be a mathematical theorem. Let S; be the weakest
natural subsystem of second order arithmetic in which 7 is

provable.

I. Very often, the principal axiom of S, is logically
equivalent to 7 (over RCAp).

II. Furthermore, only few subsystems of second order

arithmetic arise in this way.

Such subsystems are
(RCAg), WKLg, ACAq, ATR,, TI3-CA,
We say these are big 5 systems!




Reverse Ring Theory is a part of R.M. given by restricting

the subject to the theorems of Commutative Ring Theory.




Definition 1 (RCAg) A (code for a) commutative ring
(with identity) is a subset R of N, together with computable

binary operations + and - on R, and elements 0,1 € R,
such that (R,0,1,4,+) is a ring (with identity 1 € R).

We often write (R,0,1,+,-) by R for short.

By a ring, we mean a commutative ring (with identity)
throughout the rest of this talk.

Theorem 1 (Friedman-Simpson-Smith) ACA, is
equivalent to the statement that every countable ring has a
mazximal ideal over RCAy.

Theorem 2 (FSS) WKLq s equivalent to the statement
that every countable ring has a prime ideal over RCA,.




The following definitions are made in RCAg. Let R be a
ring. An abelian group M is said to be an R-module if R
acts linearly on it, that is, A triple (M, R, -) is an
R-module if a function - : R x M — M satisfies the usual

axioms of scalar. We often write -(a, z) by ax and (M, R, -)
by M for short.




Theorem 3 The following assertions are pairwise

equivalent over RCA,.
(1) ACAq

(2) Any R-submodules My and My of an R-module M has
the sum M + My in M.

(3) Any sequense (M; : i € N) of submodules of an
R-module M has the sum ) . M; in M.




For R-module M, the annihilator of M is the set of all
elements r in R such that for each m in M, rm = 0.

Theorem 4 The assertion that any R-module has the
annihilator, is equivalent to ACAg over RCA,.

Theorem 5 The following assertions are pairwise

equivalent over RCA,.
(1) ACA,

(2) Any ideals I and J of a countable ring has the ideal
quotient exists.

(3) Any ideal I of a countable ring has the annihilator.




A R-module M is a semi-simple if M is a direct sum of
irreducible modules.

Theorem 6 The following assertions are pairwise

equivalent over RCA,.

(1) ACA,

(2) Any submodule of a semi-simple R-modele is a direct

summand.




A R-module is said to be projective if any epimorphism of

R-modules, say g : A — B, and any R-homomorphism
f: M — B, there exists an R-homomorphism ' : M — A
such that f = go f.

Any free module is projective.

Theorem 7 (RCAy) A R-module M is projective if and
only if 1t is a direct summand of a free module.




A R-module is said to be injective if any monomorphism of
R-modules, say g : A — B, and any R-homomorphism
f:A— M, there exists an R-homomorphism f': B — M
such that f = f' o g.

Theorem 8 The following assertions are pairwise

equivalent over RCA,.

(1) ACA,

(2) Baer’s test: if an R-module M 1is injective, then for any

wdeal I of R and any R-homomorphism f : 1 — M can
be extended to f': R — M.




Then an R-module 1" is a tensor product of M and N it
there exists a R-bilinear function F': M x N — T such
that for any R-module P and R-bilinear function

G : M x N — P, there exists a unique R-linear function
H : T — P satistying G = H o F'. We write the tensor
product of M and N by M ®r N.

Theorem 9 The following assertions are pairwise

equivalent over RCA,.

(1) ACA,

(2) For any two R-modules M and N, M ®r N exists.

(3) For any R-module M, M ®@r M exists.




Proof of (3) = (1) Let f: N — N be a one-to-one
function. Then for each n € N, define an abelian group
Xn—i—l by X() — Z/QZ and

X1 { Z)(2m+ 1)Z if f(m) =n

7, if n & Im(f)
Let M = ®&X,,. Now we denote a generator for X,, by z,,.
Then, for each zog ® z,,,.1 € M ®5 M,
O0000 zg® 2,1 =0 iff nis in the image of f.
[]

Basic properties on tensor product can be shown within
RCA, if its tensor product exists.
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