Reverse Mathematics and Commutative Ring Theory

Takeshi Yamazaki Mathematical Institute, Tohoku University

Computability Theory and Foundations of Mathematics Tokyo Institute of Technology, February 18 - 20, 2013 Outline of this talk:

- 1. What is Reverse Ring Theory?
- 2. Basics on R-modules

Background of reverse mathematics: Second order arithmetic (Z_2) is a two-sorted system.

Number variables m,n,\ldots are intended to range over $\omega = \{0,1,2\ldots\}~.$

Set variables X, Y, \dots are intended to range over subsets of ω .

We have $+, \cdot, =$ on ω , plus the membership relation

$$\in = \{(n, X) : n \in X\} \subseteq \omega \times \mathcal{P}(\omega).$$

Within subsystems of second order arithmetic, we can formalize rigorous mathematics (analysis, algebra, geometry, . . .).

Themes of Reverse Mathematics:

Let τ be a mathematical theorem. Let S_{τ} be the weakest natural subsystem of second order arithmetic in which τ is provable.

- I. Very often, the principal axiom of S_{τ} is logically equivalent to τ (over RCA_0).
- II. Furthermore, only few subsystems of second order arithmetic arise in this way.

Such subsystems are

```
(\mathsf{RCA}_0), \mathsf{WKL}_0, \mathsf{ACA}_0, \mathsf{ATR}_0, \Pi_1^1 \text{-} \mathsf{CA}_0
```

We say these are big 5 systems!

Reverse Ring Theory is a part of R.M. given by restricting the subject to the theorems of Commutative Ring Theory. **Definition 1 (RCA₀)** A (code for a) **commutative ring** (with identity) is a subset R of N, together with computable binary operations + and \cdot on R, and elements $0, 1 \in R$, such that $(R, 0, 1, +, \cdot)$ is a ring (with identity $1 \in R$).

We often write $(R, 0, 1, +, \cdot)$ by R for short.

By a ring, we mean a commutative ring (with identity) throughout the rest of this talk.

Theorem 1 (Friedman-Simpson-Smith) ACA_0 is equivalent to the statement that every countable ring has a maximal ideal over RCA_0 .

Theorem 2 (FSS) WKL_0 is equivalent to the statement that every countable ring has a prime ideal over RCA_0 .

The following definitions are made in RCA_0 . Let R be a ring. An abelian group M is said to be an R-module if Racts linearly on it, that is, A triple (M, R, \cdot) is an R-module if a function $\cdot : R \times M \to M$ satisfies the usual axioms of scalar. We often write $\cdot(a, x)$ by ax and (M, R, \cdot) by M for short. **Theorem 3** The following assertions are pairwise equivalent over RCA_0 .

(1) ACA_0

- (2) Any R-submodules M_1 and M_2 of an R-module M has the sum $M_1 + M_2$ in M.
- (3) Any sequence $\langle M_i : i \in \mathbb{N} \rangle$ of submodules of an *R*-module *M* has the sum $\sum_{i \in \mathbb{N}} M_i$ in *M*.

For *R*-module M, the annihilator of M is the set of all elements r in R such that for each m in M, rm = 0.

Theorem 4 The assertion that any R-module has the annihilator, is equivalent to ACA_0 over RCA_0 .

Theorem 5 The following assertions are pairwise equivalent over RCA_0 .

(1) ACA_0

- (2) Any ideals I and J of a countable ring has the ideal quotient exists.
- (3) Any ideal I of a countable ring has the annihilator.

A R-module M is a *semi-simple* if M is a direct sum of irreducible modules.

(1) ACA_0

(2) Any submodule of a semi-simple R-modele is a direct summand.

A *R*-module is said to be *projective* if any epimorphism of *R*-modules, say $g: A \to B$, and any *R*-homomorphism $f: M \to B$, there exists an *R*-homomorphism $f': M \to A$ such that $f = g \circ f'$.

Any free module is projective.

Theorem 7 (RCA_0) A R-module M is projective if and only if it is a direct summand of a free module. A *R*-module is said to be *injective* if any monomorphism of *R*-modules, say $g: A \to B$, and any *R*-homomorphism $f: A \to M$, there exists an *R*-homomorphism $f': B \to M$ such that $f = f' \circ g$.

Theorem 8 The following assertions are pairwise equivalent over RCA_0 .

(1) ACA_0

(2) Baer's test: if an R-module M is injective, then for any ideal I of R and any R-homomorphism $f: I \to M$ can be extended to $f': R \to M$.

Then an *R*-module *T* is a tensor product of *M* and *N* if there exists a *R*-bilinear function $F: M \times N \to T$ such that for any *R*-module *P* and *R*-bilinear function $G: M \times N \to P$, there exists a unique *R*-linear function $H: T \to P$ satisfying $G = H \circ F$. We write the tensor product of *M* and *N* by $M \otimes_R N$.

Theorem 9 The following assertions are pairwise equivalent over RCA_0 .

 $(1) \mathsf{ACA}_0$

- (2) For any two R-modules M and N, $M \otimes_R N$ exists.
- (3) For any R-module $M, M \otimes_R M$ exists.

Proof of (3) \Rightarrow (1) Let $f : \mathbb{N} \to \mathbb{N}$ be a one-to-one function. Then for each $n \in \mathbb{N}$, define an abelian group X_{n+1} by $X_0 = \mathbb{Z}/2\mathbb{Z}$ and

$$X_{n+1} = \begin{cases} \mathbb{Z}/(2m+1)\mathbb{Z} & \text{if } f(m) = n \\ \mathbb{Z} & \text{if } n \notin \operatorname{Im}(f) \end{cases}$$

Let $M = \bigoplus X_n$. Now we denote a generator for X_n by x_n . Then, for each $x_0 \otimes x_{n+1} \in M \otimes_{\mathbb{Z}} M$,

 $x_0 \otimes x_{n+1} = 0$ iff *n* is in the image of *f*.

Basic properties on tensor product can be shown within RCA_0 if its tensor product exists.

References

- [1] H. M. Friedman, S. G. Simpson, R. L. Smith, Countable algebra and set existence axioms, Ann. Pure Appl. Logic 25 (1983), 141–181.
- [2] H. M. Friedman, S. G. Simpson, R. L. Smith, Addendum to:
 " Countable algebra and set existence axioms, " Ann. Pure Appl. Logic 28 (1985), 319–320.
- [3] Stephen G. Simpson, Subsystems of Second Order Arithmetic, Springer-Verlag, 1999.
- [4] Dodney G. Downey, Steffen Lempp and Joseph R. Mileti, Ideals In Computable Rings, J. Algebra 314 (2007), 872–887.