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Outline of this talk:

1. What is Reverse Ring Theory?

2. Basics on R-modules



Background of reverse mathematics: Second order

arithmetic (Z2) is a two-sorted system.

Number variables m,n, . . . are intended to range over

ω = {0, 1, 2 . . .} .

Set variables X,Y, ... are intended to range over subsets of

ω.

We have +, ·, = on ω, plus the membership relation

∈ = {(n,X) : n ∈ X} ⊆ ω × P(ω).

Within subsystems of second order arithmetic, we can

formalize rigorous mathematics (analysis, algebra,

geometry, . . . ).



Themes of Reverse Mathematics:

Let τ be a mathematical theorem. Let Sτ be the weakest

natural subsystem of second order arithmetic in which τ is

provable.

I. Very often, the principal axiom of Sτ is logically

equivalent to τ (over RCA0).

II. Furthermore, only few subsystems of second order

arithmetic arise in this way.

Such subsystems are

(RCA0), WKL0, ACA0, ATR0, Π1
1-CA0

We say these are big 5 systems!



Reverse Ring Theory is a part of R.M. given by restricting

the subject to the theorems of Commutative Ring Theory.



Definition 1 (RCA0) A (code for a) commutative ring

(with identity) is a subset R of N, together with computable

binary operations + and · on R, and elements 0, 1 ∈ R,

such that (R, 0, 1, +, ·) is a ring (with identity 1 ∈ R).

We often write (R, 0, 1, +, ·) by R for short.

By a ring, we mean a commutative ring (with identity)

throughout the rest of this talk.

Theorem 1 (Friedman-Simpson-Smith) ACA0 is

equivalent to the statement that every countable ring has a

maximal ideal over RCA0.

Theorem 2 (FSS) WKL0 is equivalent to the statement

that every countable ring has a prime ideal over RCA0.



The following definitions are made in RCA0. Let R be a

ring. An abelian group M is said to be an R-module if R

acts linearly on it, that is, A triple (M,R, ·) is an

R-module if a function · : R × M → M satisfies the usual

axioms of scalar. We often write ·(a, x) by ax and (M,R, ·)
by M for short.



Theorem 3 The following assertions are pairwise

equivalent over RCA0.

(1) ACA0

(2) Any R-submodules M1 and M2 of an R-module M has

the sum M1 + M2 in M .

(3) Any sequense 〈Mi : i ∈ N〉 of submodules of an

R-module M has the sum
∑

i∈N Mi in M .



For R-module M , the annihilator of M is the set of all

elements r in R such that for each m in M , rm = 0.

Theorem 4 The assertion that any R-module has the

annihilator, is equivalent to ACA0 over RCA0.

Theorem 5 The following assertions are pairwise

equivalent over RCA0.

(1) ACA0

(2) Any ideals I and J of a countable ring has the ideal

quotient exists.

(3) Any ideal I of a countable ring has the annihilator.



A R-module M is a semi-simple if M is a direct sum of

irreducible modules.

Theorem 6 The following assertions are pairwise

equivalent over RCA0.

(1) ACA0

(2) Any submodule of a semi-simple R-modele is a direct

summand.



A R-module is said to be projective if any epimorphism of

R-modules, say g : A → B, and any R-homomorphism

f : M → B, there exists an R-homomorphism f ′ : M → A

such that f = g ◦ f ′.

Any free module is projective.

Theorem 7 (RCA0) A R-module M is projective if and

only if it is a direct summand of a free module.



A R-module is said to be injective if any monomorphism of

R-modules, say g : A → B, and any R-homomorphism

f : A → M , there exists an R-homomorphism f ′ : B → M

such that f = f ′ ◦ g.

Theorem 8 The following assertions are pairwise

equivalent over RCA0.

(1) ACA0

(2) Baer’s test: if an R-module M is injective, then for any

ideal I of R and any R-homomorphism f : I → M can

be extended to f ′ : R → M .



Then an R-module T is a tensor product of M and N if

there exists a R-bilinear function F : M × N → T such

that for any R-module P and R-bilinear function

G : M × N → P , there exists a unique R-linear function

H : T → P satisfying G = H ◦ F . We write the tensor

product of M and N by M ⊗R N .

Theorem 9 The following assertions are pairwise

equivalent over RCA0.

(1) ACA0

(2) For any two R-modules M and N , M ⊗R N exists.

(3) For any R-module M , M ⊗R M exists.



Proof of (3) ⇒ (1) Let f : N → N be a one-to-one

function. Then for each n ∈ N, define an abelian group

Xn+1 by X0 = Z/2Z and

Xn+1 =

{
Z/(2m + 1)Z if f(m) = n

Z if n ̸∈ Im(f)

Let M = ⊕Xn. Now we denote a generator for Xn by xn.

Then, for each x0 ⊗ xn+1 ∈ M ⊗Z M ,

　　　　　 x0 ⊗ xn+1 = 0 iff n is in the image of f .
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Basic properties on tensor product can be shown within

RCA0 if its tensor product exists.
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