Ramsey's Theorem for Pairs and Reverse Mathematics

Yang Yue

Department of Mathematics National University of Singapore

February 18, 2013

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Ramsey's Theorem

Definition For $A \subseteq \mathbb{N}$, let $[A]^n$ denote the set of all *n*-element subsets of *A*.

Theorem (Ramsey, 1930)

Suppose $f : [\mathbb{N}]^n \to \{0, 1, ..., k - 1\}$. Then there is an infinite set $H \subseteq \mathbb{N}$ f is constant on $[H]^n$.

H is called *f*-homogeneous.

Notation: Fix *n* and *k*, the particular version above is denoted by RT_k^n .

(日) (日) (日) (日) (日) (日) (日)

Motivations

- Informal reading: Within some sufficiently large systems, however disordered, there must be some order.
- Question: How complicated is the homogenous set H?
- Question: What information does H carry? E.g. does this infinite set tell us more about finite sets?
- (What are the consequences/strength of Ramsey's Theorem as a combinatorial principle?)
- Precise formulation requires some definitions from Recursion Theory and Reverse Mathematics.

Arithmetical Hierarchy

- ► Language of first order Peano Arithmetic: 0, *S*, +, ×; variables and quantifier are intended for individuals.
- ► Each formula are classified by the number of alternating blocks of quantifiers: Σ_n^0 , Π_n^0 and Δ_n^0 formulas.
- Definable sets are classified by their defining formulas.
- Slogan: "Definability is computability": Recursive=Δ₁, and recursively enumerable sets = Σ₁ sets etc.

Fragments of First Order Peano Arithmetic

- Let IΣ_n denote the induction schema for Σ⁰_n-formulas; and BΣ_n denote the Bounding Principle for Σ⁰_n formulas.
- ► (Kirby and Paris, 1977) $\cdots \Rightarrow I \Sigma_{n+1} \Rightarrow B \Sigma_{n+1} \Rightarrow I \Sigma_n \Rightarrow \dots$

• (Slaman 2004) $I\Delta_n \Leftrightarrow B\Sigma_n$.

Fragments of Second Order Arithmetic

- Two sorted language: (first order part) + variables and quantifiers for sets.
- ► RCA₀: Σ_1^0 -induction and Δ_1^0 -comprehension: For $\varphi \in \Delta_1$, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- WKL₀: RCA₀ and every infinite binary tree has an infinite path.
- ► ACA₀: RCA₀ and for φ arithmetic, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- (ATR₀ and Π_1^1 -CA₀.) Π_1^1 -formulas are of the form $\forall X\varphi$ where φ is an arithmetic formula (with parameters).

Remarks on Axioms

- They all assert the existence of certain sets.
- ► Some are measured by syntactical complexity, e.g. ACA₀.
- Some are from the analysis of mathematical tools, e.g. WKL₀ corresponds to Compactness Theorem.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Basic Models

- ► A model *M* of second-order arithmetic consists (*M*, 0, *S*, +, ×, *S*) where (*M*, 0, *S*, +, ×) is its first-order part and the set variables are interpreted as members of *S*.
- Models of RCA₀: Closure under \leq_T and Turing join.
- In the (minimal) model of RCA₀, S only consists of M-recursive sets.
- ► RCA₀ is the place to do constructive/finitary mathematics.

A D F A 同 F A E F A E F A Q A

Remarks on Goals of Reversion

- Goal of Reverse Mathematics: What set existence axioms are needed to prove the theorems of ordinary, classical (countable) mathematics?
- Goal of Reverse Recursion Theory: What amount of induction are needed to prove the theorems of Recursion Theory, in particular, theorem about r.e. degrees.
- Motivation: To achieve these goals, we have to discover new proofs.

(ロ) (同) (三) (三) (三) (○) (○)

Rephrasing the motivating questions

- Question: Suppose f is recursive. How about the arithmetical complexity of the least complicated homogeneous set H?
- Question: Which system in Reverse Mathematics does Ramsey's Theorem correspond?
- (What are the first-order and second order consequences of Ramsey's Theorem?)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Some Earlier Results: (I)

Theorem (Jockusch, 1972)

- 1. Every recursive colouring f has a Π_2^0 homogenous set H.
- 2. There is a recursive $f : [M]^3 \rightarrow \{0, 1\}$ all of whose homogenous set computes 0'.
- 3. There is a recursive colouring of pairs which has no Σ_2^0 homogenous set.

Corollary Over RCA₀.

$$\begin{split} & \mathsf{ACA}_0 \Leftrightarrow \mathsf{RT}_2^3 \Leftrightarrow \mathsf{RT}.\\ & \mathsf{ACA}_0 \Rightarrow \mathsf{RT}_2^2 \quad \textit{and} \quad \mathsf{WKL}_0 \not\Rightarrow \mathsf{RT}_2^2. \end{split}$$

(日) (日) (日) (日) (日) (日) (日)

Some Earlier Results: (II)

Theorem (Hirst 1987) *Over* RCA₀,

$$\mathrm{RT}_2^2 \Rightarrow B\Sigma_2.$$

(This tells us the lower bound of its first order strength.)

Theorem (Seetapun and Slaman 1995) There is an ideal J in the Turing degrees as follows.

• 0' ∉ J

For every f : [M]² → {0,1} in J, there is an infinite f-homogeneous H in J.

Corollary Over RCA₀,

$ACA_0 \Rightarrow RT_2^2 \ \ \text{and} \ \ RT_2^2 \not\Rightarrow ACA_0.$

Some Earlier Results: (III)

- ► $f : [M]^2 \to \{0, 1\}$ is a called a *stable colouring* if for any *x*, $\lim_{y \to 0} f(x, y)$ exists.
- Stable Ramsey's Theorem for Pairs SRT²₂ says homogenous sets exists for stable colourings.
- SRT²₂ is equivalent to "For every ∆⁰₂ property A, there is an infinite set H contained in or disjoint from A."

Theorem (Cholak, Jockusch and Slaman, 2001) *Over* RCA_0 , $RT_2^2 \Leftrightarrow SRT_2^2 + COH$.

(COH is another second order combinatorial principle.)

Conservation Results

- Harrington observed that WKL₀ is Π¹₁-conservative over RCA₀. i.e., any Π¹₁-statement that is provable in WKL₀ is already provable in the system RCA₀.
- Conservation results are used to measure the weakness of the strength of a theorem.

(日) (日) (日) (日) (日) (日) (日)

Theorem (Cholak, Jockusch and Slaman 2001) RT_2^2 is Π_1^1 -conservative over $RCA_0 + I\Sigma_2$.

Combinatorics below RT₂²

Hirschfeldt and Shore [2007], *Combinatorial principles weaker than Ramsey's theorem for pairs.*

Theorem (Jiayi Liu, 2011) *Over* RCA_0 , $RT_2^2 \neq WKL_0$.

Theorem (Chong, Slaman and Yang, 2011) Over RCA₀, COH is Π_1^1 -conservative over RCA₀ + $B\Sigma_2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Remaining Questions and Obstacles

- Question 1: Over RCA₀, does SRT²₂ imply RT²₂?
- Question 2: Does SRT_2^2 imply $I\Sigma_2$? How about RT_2^2 ?
- Attempt for Q 1: Show that stable colourings always have a low homogenous sets. Or equivalently, every ∆₂⁰-set contains or is disjoint from an infinite low set.

Theorem (Downey, Hirschfeldt, Lempp and Solomon, 2001)

There is a Δ_2^0 set with no infinite low subset in either it or its complement.

Nonstandard Approach

Chong (2005): We should look at nonstandard fragments of arithmetic, because:

- DFLS theorem is done on ω, whose proof involves infinite injury method thus requires IΣ₂.
- There is a model of BΣ₂ but not IΣ₂ in which every incomplete Δ₂⁰ set is low.

Theorem (Chong, Slaman and Yang, 2012) *Over* RCA₀,

 $\begin{aligned} \text{SRT}_2^2 & \Rightarrow \text{RT}_2^2 \\ \text{SRT}_2^2 & \Rightarrow I\Sigma_2. \end{aligned}$

(ロ) (同) (三) (三) (三) (○) (○)

Technical Remarks

- The first order part of the model satisfies PA⁻ + BΣ₂⁰ but not IΣ₂⁰.
- Also assumed
 - ω is the Σ_2^0 -cut;
 - Σ_1^0 -reflection property (and other conditions);
 - certain amount of saturation (to have sufficient codes).
- All these nonstandard features are crucial in the proof. By DHLS, the method does not apply to ω.

(日) (日) (日) (日) (日) (日) (日)

Further Results and Questions

- Theorem (to appear): RT_2^2 does not prove $I\Sigma_2^0$.
- Question: What happens in ω-model? Kind of "provability vs. truth" question.

(ロ) (同) (三) (三) (三) (○) (○)

How about conservation results?

References

- 1. Simpson, *Subsystems of Second-Order Arithmetic*, (second edition), ASL and CUP 2009.
- 2. Hirschfeldt and Shore, *Combinatorial principles weaker than Ramsey's theorem for pairs*, JSL, 2007.
- 3. Liu Jiayi, RT_2^2 does not imply WKL₀, JSL 2011.
- 4. Chong, Slaman and Yang, *The Metamathematics of Stable Ramsey's Theorem for Pairs*, preprint.

(日) (日) (日) (日) (日) (日) (日)