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Ramsey’s Theorem

Definition
For A C N, let [A]" denote the set of all n-element subsets of A.

Theorem (Ramsey, 1930)
Suppose f : [N]" — {0,1,...,k —1}. Then there is an infinite
set H C N f is constant on [H]".

H is called f-homogeneous.

Notation: Fix n and k, the particular version above is denoted
by RT}.



Motivations

» Informal reading: Within some sufficiently large systems,
however disordered, there must be some order.

» Question: How complicated is the homogenous set H?

» Question: What information does H carry? E.g. does this
infinite set tell us more about finite sets?

» (What are the consequences/strength of Ramsey’s
Theorem as a combinatorial principle?)

» Precise formulation requires some definitions from
Recursion Theory and Reverse Mathematics.



Arithmetical Hierarchy

v

Language of first order Peano Arithmetic: 0, S, +, x;
variables and quantifier are intended for individuals.

v

Each formula are classified by the number of alternating
blocks of quantifiers: ¥9, N9 and A9 formulas.

v

Definable sets are classified by their defining formulas.

v

Slogan: “Definability is computability”: Recursive=A4, and
recursively enumerable sets = ¥ sets efc.



Fragments of First Order Peano Arithmetic

» Let IS, denote the induction schema for ¥%-formulas; and
BY., denote the Bounding Principle for 9 formulas.

» (Kirby and Paris, 1977) --- = X, 1 = BX 1 = X = ...

> (Slaman 2004) IA, < BX .



Fragments of Second Order Arithmetic

v

Two sorted language: (first order part) + variables and
quantifiers for sets.

v

RCA,: =%-induction and AJ-comprehension:
For o € Ay, 3XVn(n € X < ¢(n)).

v

WKLy: RCAq and every infinite binary tree has an infinite
path.

v

ACA(: RCA( and for ¢ arithmetic, 3XVn(n € X < ¢(n)).

v

(ATR, and M1-CAq.) Ni-formulas are of the form VX
where ¢ is an arithmetic formula (with parameters).



Remarks on Axioms

» They all assert the existence of certain sets.
» Some are measured by syntactical complexity, e.g. ACAy.

» Some are from the analysis of mathematical tools, e.g.
WKL, corresponds to Compactness Theorem.



Basic Models

» A model M of second-order arithmetic consists
(M,0, S, +, x,S) where (M,0, S, +, x) is its first-order part
and the set variables are interpreted as members of S.

» Models of RCAq: Closure under <t and Turing join.

» In the (minimal) model of RCAy, S only consists of
M-recursive sets.

» RCAy is the place to do constructive/finitary mathematics.



Remarks on Goals of Reversion

» Goal of Reverse Mathematics: What set existence axioms
are needed to prove the theorems of ordinary, classical
(countable) mathematics?

» Goal of Reverse Recursion Theory: What amount of
induction are needed to prove the theorems of Recursion
Theory, in particular, theorem about r.e. degrees.

» Motivation: To achieve these goals, we have to discover
new proofs.



Rephrasing the motivating questions

» Question: Suppose f is recursive. How about the
arithmetical complexity of the least complicated
homogeneous set H?

» Question: Which system in Reverse Mathematics does
Ramsey’s Theorem correspond?

» (What are the first-order and second order consequences
of Ramsey’s Theorem?)



Some Earlier Results: (I)

Theorem (Jockusch, 1972)

1. Every recursive colouring f has a ng homogenous set H.

2. Thereis a recursive f : [M]® — {0,1} all of whose
homogenous set computes 0'.

3. There is a recursive colouring of pairs which has no £3
homogenous set.

Corollary

Over RCA,,
ACA, < RT3 < RT.

ACA, = RT3 and WKLy # RT3.



Some Earlier Results: (II)

Theorem (Hirst 1987)
Over RCA,,
RT3 = BXY,.

(This tells us the lower bound of its first order strength.)
Theorem (Seetapun and Slaman 1995)
There is an ideal J in the Turing degrees as follows.

» 0 gJ

» Forevery f:[M])? — {0,1} in J, there is an infinite
f-homogeneous H in J.

Corollary
Over RCA,,

ACA, = RT3 and RT3 # ACA,.



Some Earlier Results: (lI)

» f:[M]? = {0,1} is a called a stable colouring if for any x,
limy f(x, y) exists.

» Stable Ramsey’s Theorem for Pairs SRT3 says
homogenous sets exists for stable colourings.

> SRT% is equivalent to “For every Ag property A, there is an
infinite set H contained in or disjoint from A”

Theorem (Cholak, Jockusch and Slaman, 2001)

Over RCA,,
RT2 < SRT3 + COH.

(COH is another second order combinatorial principle.)



Conservation Results

» Harrington observed that WKL, is I'I]—conservative over
RCA. i.e., any I'I]—statement that is provable in WKL, is
already provable in the system RCAy.

» Conservation results are used to measure the weakness of
the strength of a theorem.

Theorem (Cholak, Jockusch and Slaman 2001)
RT3 is N1 -conservative over RCAg + IX.



Combinatorics below RT3

Hirschfeldt and Shore [2007], Combinatorial principles weaker
than Ramsey'’s theorem for pairs.
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Some Resent Results

Theorem (Jiayi Liu, 2011)
Over RCA,,
RT3 % WKL,.

Theorem (Chong, Slaman and Yang, 2011)
Over RCA,, COH is N} -conservative over RCA, + BE.



Remaining Questions and Obstacles

» Question 1: Over RCA, does SRT3 imply RT3?
» Question 2: Does SRT2 imply /£,? How about RT2?

» Attempt for Q 1: Show that stable colourings always have a
low homogenous sets. Or equivalently, every Ag-set
contains or is disjoint from an infinite low set.

Theorem (Downey, Hirschfeldt, Lempp and Solomon,
2001)

There is a A set with no infinite low subset in either it or its
complement.



Nonstandard Approach

Chong (2005): We should look at nonstandard fragments of
arithmetic, because:

» DFLS theorem is done on w, whose proof involves infinite
injury method thus requires /X,.

» There is a model of BY, but not /%, in which every
incomplete AS set is low.

Theorem (Chong, Slaman and Yang, 2012)

Over RCAy,
SRT3 4 RT3

SRT3 4 I%,.



Technical Remarks

» The first order part of the model satisfies PA~ + B3 but
not /9.

» Also assumed
» wis the £3-cut;
> Z?—reflection property (and other conditions);
» certain amount of saturation (to have sufficient codes).

» All these nonstandard features are crucial in the proof. By
DHLS, the method does not apply to w.



Further Results and Questions

» Theorem (to appear): RT3 does not prove I3

» Question: What happens in w-model? Kind of “provability
vs. truth” question.

» How about conservation results?
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