Several versions of Friedman's self-embedding theorem

Keita Yokoyama

Tokyo Institute of Technology

February 20, 2013

Friedman's self-embedding theorem

Theorem (Friedman 1973)

If M is a countable model of PA, there exists a self-embedding $f: M \to M$ such that $f(M) \subseteq_e M$. (f(M) is a proper cut of M.)

Starting from Friedman's theorem, several different/precise versions of self-embedding theorems are studied.

 Ali Enayat "From Friedman to Tanaka, and beyond" CUNY Logic seminar, May 2012.

Friedman's self-embedding theorem

Theorem (Friedman 1973)

If M is a countable model of PA, there exists a self-embedding $f: M \to M$ such that $f(M) \subseteq_e M$. (f(M) is a proper cut of M.)

Starting from Friedman's theorem, several different/precise versions of self-embedding theorems are studied.

 Ali Enayat "From Friedman to Tanaka, and beyond" CUNY Logic seminar, May 2012.

1 "From Friedman": self-embedding for first-order arithmetic

- Optimal self-embedding theorem for $I\Sigma_n$
- Some more variations

"To Tanaka": self-embedding for second-order arithmetic

- Self-embedding theorems for subsystems of second-order arithmetic
- Nonstandard arithmetic

Outline

1 "From Friedman": self-embedding for first-order arithmetic

- Optimal self-embedding theorem for $I\Sigma_n$
- Some more variations
- ² "To Tanaka": self-embedding for second-order arithmetic
 - Self-embedding theorems for subsystems of second-order arithmetic
 - Nonstandard arithmetic

Fragments of PA (Induction and bounding)

• Σ_n -induction: for $\varphi \in \Sigma_n$,

$$\varphi(0) \land \forall n(\varphi(n) \rightarrow \varphi(n+1)) \rightarrow \forall n\varphi(n).$$

• Σ_n -bounding: for $\varphi \in \Sigma_n$,

 $\forall u \exists v [\forall n \leq u \exists m \varphi(n, m) \rightarrow \forall n \leq u \exists m \leq v \varphi(n, m)].$

$$\begin{split} \mathrm{I}\Sigma_n &:= \text{``basic axioms''} + \Sigma_n\text{-induction.}\\ \mathrm{B}\Sigma_n &:= \text{``basic axioms''} + \Sigma_n\text{-bounding.}\\ \mathrm{PA} &:= \bigcup_{n \in \omega} \mathrm{I}\Sigma_n = \bigcup_{n \in \omega} \mathrm{B}\Sigma_n. \end{split}$$

Theorem (Paris, etc.)

 $\mathrm{I}\Sigma_0 < \mathrm{B}\Sigma_1 < \mathrm{I}\Sigma_1 < \mathrm{B}\Sigma_2 < \mathrm{I}\Sigma_2 < \mathrm{B}\Sigma_3 < \cdots < \mathsf{PA}.$

Original self-embedding theorem.

Theorem (Friedman 1973)

If M is a countable model of PA, there exists a self-embedding $f: M \to M$ such that $f(M) \subseteq_e M$. (f(M) is a proper cut of M.)

We can sharpen this theorem as follows.

Theorem (In Kaye's book (1991))

Let $n \ge 0$. If M is a countable model of $I\Sigma_{n+1}$, there exists a Σ_n -elementary self-embedding $f : M \to M$ such that $f(M) \subseteq_e M$.

Original self-embedding theorem.

Theorem (Friedman 1973)

If M is a countable model of PA, there exists a self-embedding $f: M \to M$ such that $f(M) \subseteq_e M$. (f(M) is a proper cut of M.)

We can sharpen this theorem as follows.

Theorem (In Kaye's book (1991))

Let $n \ge 0$. If M is a countable model of $I\Sigma_{n+1}$, there exists a Σ_n -elementary self-embedding $f : M \to M$ such that $f(M) \subseteq_e M$.

Question

If a countable model *M* has a Σ_n -elementary self-embedding $f: M \to M$ such that $f(M) \subseteq_e M$, then, is *M* a model of $I\Sigma_{n+1}$?

No!

We can show that $M \models B\Sigma_{n+1}$, but,

Proposition (folklore)

Let M be a countable recursively saturated model of $I\Sigma_0$. Then, the following are equivalent.

• *M* is a model of $B\Sigma_{n+1}$.

 M has a Σ_n-elementary self-embedding f : M → M such that f(M) ⊆_e M.

Question

If a countable model *M* has a Σ_n -elementary self-embedding $f: M \to M$ such that $f(M) \subseteq_e M$, then, is *M* a model of $I\Sigma_{n+1}$?

No!

We can show that $M \models B\Sigma_{n+1}$, but,

Proposition (folklore)

Let M be a countable recursively saturated model of $I\Sigma_0$. Then, the following are equivalent.

• *M* is a model of $B\Sigma_{n+1}$.

• *M* has a Σ_n -elementary self-embedding $f : M \to M$ such that $f(M) \subseteq_e M$.

Question

If a countable model *M* has a Σ_n -elementary self-embedding $f: M \to M$ such that $f(M) \subseteq_e M$, then, is *M* a model of $I\Sigma_{n+1}$?

No!

We can show that $M \models B\Sigma_{n+1}$, but,

Proposition (folklore)

Let M be a countable recursively saturated model of $I\Sigma_0$. Then, the following are equivalent.

• *M* is a model of $B\Sigma_{n+1}$.

• *M* has a Σ_n -elementary self-embedding $f : M \to M$ such that $f(M) \subseteq_e M$.

Question

If a countable model *M* has a Σ_n -elementary self-embedding $f: M \to M$ such that $f(M) \subseteq_e M$, then, is *M* a model of $I\Sigma_{n+1}$?

No!

We can show that $M \models B\Sigma_{n+1}$, but,

Proposition (folklore)

Let M be a countable recursively saturated model of $I\Sigma_0$. Then, the following are equivalent.

- *M* is a model of $B\Sigma_{n+1}$.
- *M* has a Σ_n -elementary self-embedding $f : M \to M$ such that $f(M) \subsetneq_e M$.

Question

If a countable model *M* has a Σ_n -elementary self-embedding $f: M \to M$ such that $f(M) \subseteq_e M$, then, is *M* a model of $I\Sigma_{n+1}$?

No!

```
We can show that M \models B\Sigma_{n+1}, but,
```

Proposition (folklore)

Let M be a countable recursively saturated model of $I\Sigma_0$. Then, the following are equivalent.

- *M* is a model of $B\Sigma_{n+1}$.
- *M* has a Σ_n -elementary self-embedding $f : M \to M$ such that $f(M) \subsetneq_e M$.

We can add an extra condition for f(M).

Definition

Let *M* be a model of $I\Sigma_0$, and $I \subsetneq_e M$. Then, *I* is said to be semi-regular if for any *M*-finite set $X \subseteq M$, $|X| \in I \Rightarrow X \cap I$ is bounded in *I*.

Note that semi-regular cut is very useful in the model theory of arithmetic. (It is called "finiteness" in nonstandard arithmetic.)

Theorem

- *M* is a model of $I\Sigma_{n+1}$.
- M has a Σ_n-elementary self-embedding f : M → M such that f(M) ⊊_e M and f(M) is semi-regular.

We can add an extra condition for f(M).

Definition

Let *M* be a model of $I\Sigma_0$, and $I \subsetneq_e M$.

Then, *I* is said to be semi-regular if for any *M*-finite set $X \subseteq M$,

 $|X| \in I \Rightarrow X \cap I$ is bounded in *I*.

Note that semi-regular cut is very useful in the model theory of arithmetic. (It is called "finiteness" in nonstandard arithmetic.)

Theorem

- *M* is a model of $I\Sigma_{n+1}$.
- M has a Σ_n-elementary self-embedding f : M → M such that f(M) ⊊_e M and f(M) is semi-regular.

We can add an extra condition for f(M).

Definition

Let *M* be a model of $I\Sigma_0$, and $I \subsetneq_e M$.

Then, *I* is said to be semi-regular if for any *M*-finite set $X \subseteq M$,

 $|X| \in I \Rightarrow X \cap I$ is bounded in *I*.

Note that semi-regular cut is very useful in the model theory of arithmetic. (It is called "finiteness" in nonstandard arithmetic.)

Theorem

- *M* is a model of $I\Sigma_{n+1}$.
- M has a Σ_n-elementary self-embedding f : M → M such that f(M) ⊊_e M and f(M) is semi-regular.

We can add an extra condition for f(M).

Definition

Let *M* be a model of $I\Sigma_0$, and $I \subsetneq_e M$.

Then, *I* is said to be semi-regular if for any *M*-finite set $X \subseteq M$,

 $|X| \in I \Rightarrow X \cap I$ is bounded in *I*.

Note that semi-regular cut is very useful in the model theory of arithmetic. (It is called "finiteness" in nonstandard arithmetic.)

Theorem

- *M* is a model of $I\Sigma_{n+1}$.
- *M* has a Σ_n -elementary self-embedding $f : M \to M$ such that $f(M) \subsetneq_e M$ and f(M) is semi-regular.

Optimal self-embedding theorem for $I\Sigma_n$ Some more variations

Q-semi-regular embedding

Fix a Σ_0^0 -definable $Q : [M]^{<M} \to M$ such that $X \subseteq Y \Rightarrow Q(X) \le Q(Y)$.

Definition

• $I \subsetneq_e M$ is said to be *Q*-semi-regular if for any $X \subseteq_{\text{fin}} M$,

 $Q(X) \in I \Rightarrow X \cap I$ is bounded in *I*.

• For any definable $X \subseteq M$,

$$Q(X) = \sup\{Q(X \cap [0, a]) \mid a \in M\}.$$

Theorem

Let $M \models I\Sigma_0$. Then, the following are equivalent.

- M ⊨ "Q(X) < ∞ ↔ X is bounded" for any Σ₁-definable X ⊆ M.
- *M* has a *Q*-semi-regular self-embedding.

Optimal self-embedding theorem for $I\Sigma_n$ Some more variations

Q-semi-regular embedding

Fix a Σ_0^0 -definable $Q : [M]^{<M} \to M$ such that $X \subseteq Y \Rightarrow Q(X) \le Q(Y)$.

Definition

• $I \subsetneq_e M$ is said to be *Q*-semi-regular if for any $X \subseteq_{\text{fin}} M$,

 $Q(X) \in I \Rightarrow X \cap I$ is bounded in *I*.

• For any definable $X \subseteq M$,

$$Q(X) = \sup\{Q(X \cap [0, a]) \mid a \in M\}.$$

Theorem

Let $M \models I\Sigma_0$. Then, the following are equivalent.

- M ⊨ "Q(X) < ∞ ↔ X is bounded" for any Σ₁-definable X ⊆ M.
- *M* has a *Q*-semi-regular self-embedding.

Optimal self-embedding theorem for $I\Sigma_n$ Some more variations

Q-semi-regular embedding

Fix a
$$\Sigma_0^0$$
-definable $Q : [M]^{< M} \to M$ such that $X \subseteq Y \Rightarrow Q(X) \le Q(Y)$.

Corollary

Let

$$(M, S) \models \mathsf{RCA}_0 + "\forall X \ Q(X) < \infty \leftrightarrow X \text{ is bounded"}.$$

Then, there exists $S' \supseteq S$ such that

 $(M, S') \models \mathsf{WKL}_0 + \mathsf{``} \forall X \ Q(X) < \infty \leftrightarrow X \text{ is bounded''}.$

Thus, for any Π_1^1 -formula φ ,

$$\mathsf{RCA}_0 + `\forall X \ Q(X) < \infty \leftrightarrow X \text{ is bounded}" \vdash \varphi$$

if and only if

 $\mathsf{WKL}_0 + ``\forall X \ Q(X) < \infty \leftrightarrow X \text{ is bounded}" \vdash \varphi.$

Self-embedding theorem for PA

Definition

Let *M* be a model of *Iz*, and $I \subsetneq_e M$. Then, *I* is said to be strong if for any $b \in M \setminus I$ and *M*-finite sequence $\langle c_i \in M | i < b \rangle$,

 $\exists d \in M(c_i < d \Leftrightarrow c_i \in I).$

Theorem (folklore)

- M is a model of PA.
- *M* has a Σ_n -elementary self-embedding $f : M \to M$ such that $f(M) \subsetneq_e M$ and f(M) is strong.

When there is a self-embedding between a < b?

Theorem (In Kaye's book)

Let M be a countable model of $I\Sigma_{n+1}$, and let $a, b \in M$. If for any Σ_n -definable partial function $v : \subseteq M \to M$, v(a) < b, then there exists a Σ_n -elementary self-embedding $f : M \to M$ such that $a \in f(M) \subsetneq_e M$ and $b \notin f(M)$.

However, this condition was not optimal for the above question. Recently, an optimal version is proved.

Theorem (Enayat 201X)

Let M be a countable model of $I\Sigma_{n+1}$, and let $a, b \in M$. Then the following are equivalent.

- For any Σ_n -definable total function $v : M \to M, v(a) < b$.
- There exists a Σ_n-elementary self-embedding f : M → M such that a ∈ f(M) ⊊_e M and b ∉ f(M).

When there is a self-embedding between a < b?

Theorem (In Kaye's book)

Let M be a countable model of $I\Sigma_{n+1}$, and let $a, b \in M$. If for any Σ_n -definable partial function $\nu : \subseteq M \to M$, $\nu(a) < b$, then there exists a Σ_n -elementary self-embedding $f : M \to M$ such that $a \in f(M) \subsetneq_e M$ and $b \notin f(M)$.

However, this condition was not optimal for the above question. Recently, an optimal version is proved.

Theorem (Enayat 201X)

Let M be a countable model of $I\Sigma_{n+1}$, and let $a, b \in M$. Then the following are equivalent.

- For any Σ_n -definable total function $v : M \to M, v(a) < b$.
- There exists a Σ_n-elementary self-embedding f : M → M such that a ∈ f(M) ⊊_e M and b ∉ f(M).

When there is a self-embedding between a < b?

Theorem (In Kaye's book)

Let M be a countable model of $I\Sigma_{n+1}$, and let $a, b \in M$. If for any Σ_n -definable partial function $v : \subseteq M \to M$, v(a) < b, then there exists a Σ_n -elementary self-embedding $f : M \to M$ such that $a \in f(M) \subseteq_e M$ and $b \notin f(M)$.

However, this condition was not optimal for the above question. Recently, an optimal version is proved.

Theorem (Enayat 201X)

Let M be a countable model of $I\Sigma_{n+1}$, and let $a, b \in M$. Then the following are equivalent.

- For any Σ_n -definable total function $v : M \to M, v(a) < b$.
- There exists a Σ_n-elementary self-embedding f : M → M such that a ∈ f(M) ⊊_e M and b ∉ f(M).

Optimal self-embedding theorem for $I\Sigma_n$ Some more variations

Self-embedding theorem for $I\Sigma_n$

Here is another characterization of $I\Sigma_n$.

Theorem

- *M* is a model of $I\Sigma_{n+1}$.
- For any a ∈ M, M has a Σ_n-elementary self-embedding
 f : M → M such that f(M) ⊊_e M and f(x) = x for any x < a.

Optimal self-embedding theorem for $I\Sigma_n$ Some more variations

Self-embedding theorem for $I\Sigma_n$

Here is another characterization of $I\Sigma_n$.

Theorem

- *M* is a model of $I\Sigma_{n+1}$.
- For any a ∈ M, M has a Σ_n-elementary self-embedding
 f : M → M such that f(M) ⊊_e M and f(x) = x for any x < a.

Outline

- From Friedman": self-embedding for first-order arithmetic
 - Optimal self-embedding theorem for $I\Sigma_n$
 - Some more variations
- 2 "To Tanaka": self-embedding for second-order arithmetic
 - Self-embedding theorems for subsystems of second-order arithmetic
 - Nonstandard arithmetic

Subsystems of second-order arithmetic

Big five plus one

- RCA₀: "discrete ordered semi-ring"+ Σ_1^0 induction + Δ_1^0 comprehension.
- WWKL₀: RCA₀ + weak weak König's lemma. (Any tree which has a positive measure has a path.)
- WKL₀: RCA₀ + weak König's lemma.
- ACA₀: RCA₀ + Σ_0^1 comprehension.
- ATR₀: RCA₀ + arithmetical transfinite recursion.
- $\Pi_1^1 CA_0$: RCA₀ + Π_1^1 comprehension.

'For second-order arithmetic, Tanaka's theorem is the "only and definitive" version.' (Enayat)

Theorem (Tanaka)

Let (M, S) be a countable model of RCA₀. Then, the following are equivalent.

• (M, S) is a model of WKL₀.

• There exists a self-embedding $f : (M, S) \to (M, S)$ such that $f(M) \subsetneq_e M$ and $f(S) \upharpoonright f(M) = S \upharpoonright f(M)$.

 $(S \upharpoonright I = \{X \cap I \mid X \in S\}.)$

Theorem (Wong's note)

Let (M, S) be a countable recursively saturated model of RCA_0^* . Then, the following are equivalent.

- (*M*, *S*) is a model of WKL₀^{*}.
- There exists a self-embedding $f : (M, S) \to (M, S)$ such that $f(M) \subsetneq_e M$ and $f(S) \upharpoonright f(M) = S \upharpoonright f(M)$.
- $(S \upharpoonright I = \{X \cap I \mid X \in S\}.)$

With the notion of strong cut or elementarity, we can characterize ACA_0 .

Corollary

Let (M, S) be a countable model of RCA₀, and let $n \ge 1$. Then, the following are equivalent.

- (*M*, *S*) is a model of ACA₀.
- There exists a self-embedding $f : (M, S) \to (M, S)$ such that $f(M) \subsetneq_e M$, f(M) is strong and $f(S) \upharpoonright f(M) = S \upharpoonright f(M)$.
- There exists a Σ_n^0 -elementary self-embedding $f: (M, S) \to (M, S)$ such that $f(M) \subsetneq_e M$ and $f(S) \upharpoonright f(M) = S \upharpoonright f(M)$.

However, I want some more versions!

With the notion of strong cut or elementarity, we can characterize ACA_0 .

Corollary

Let (M, S) be a countable model of RCA₀, and let $n \ge 1$. Then, the following are equivalent.

- (*M*, *S*) is a model of ACA₀.
- There exists a self-embedding $f : (M, S) \to (M, S)$ such that $f(M) \subsetneq_e M$, f(M) is strong and $f(S) \upharpoonright f(M) = S \upharpoonright f(M)$.
- There exists a Σ_n^0 -elementary self-embedding $f: (M, S) \to (M, S)$ such that $f(M) \subsetneq_e M$ and $f(S) \upharpoonright f(M) = S \upharpoonright f(M)$.

However, I want some more versions!

M-finite complexity

Definition (*M*-finite complexity)

Let *M* be a model of $I\Sigma_0$.

An *M*-finite complexity is an *M*-finite partial function $k : \subseteq 2^{<M} \to M$ such that $\sum_{\sigma \in \text{dom}(k)} 2^{-k(\sigma)} \le 1$. We define $k(\sigma) = \infty$ if $\sigma \notin \text{dom}(k)$.

Definition

Let (M, S) be a model of RCA₀ and *N* be a model of I Σ_0 such that $M \subsetneq_e N$.

- (M, S) ⊆_{e,r} N if for any finite complexity k ∈ N there exists a set X ∈ S and c ∈ M such that ∀n ∈ M k(X ↾ n) > n − c.
- (M, S) ⊆_{e,d} N if for any finite complexity k ∈ N there exists a set f, X ∈ S such that ∀n ∈ M k(X ↾ n) > f(n).

Theorem

Let (M, S) be a countable model of RCA₀. Then, the following are equivalent.

• (M, S) is a model of WWKL₀.

② There exists a self-embedding $f : (M, S) \to (M, S)$ such that $(f(M), f(S) \upharpoonright f(M)) \subseteq_{e,r} M.$

Theorem

Let (M, S) be a countable model of RCA₀. Then, the following are equivalent.

- (M, S) is a model of $RCA_0 + DNR$.
- ② There exists a self-embedding $f : (M, S) \to (M, S)$ such that $(f(M), f(S) \upharpoonright f(M)) \subseteq_{e,d} M$.

With elementarity

Theorem (Avigad, Dean, Rute)

n-WWKL₀ consists of RCA₀ plus the following assertion: any Δ_n^0 -definable tree which has a positive measure has a

path.

Note that 2-WWKL $_0$ is equivalent to the Lebesgue convergence theorem. (A.D.R.)

Theorem

Let (M, S) be a recursively saturated countable model of RCA₀, and let $n \ge 1$. Then, the following are equivalent.

(M, S) is a model of WWKL₀.

② There exists a Σ_{n-1}^{0} -elementary self-embedding $f : (M, S) \to (M, S)$ such that $(f(M), f(S) \upharpoonright f(M)) \subseteq_{e,r} M$.

With the stronger notion of cut, we have the following.

Theorem

Let (M, S) be a countable model of RCA₀. Then, the following are equivalent.

• (M, S) is a model of Π_1^1 -CA₀.

② There exists a self-embedding $f : (M, S) \rightarrow (M, S)$ such that $f(M) \subsetneq_e M$ is a Ramsey strong cut and $f(S) \upharpoonright f(M) = S \upharpoonright f(M)$.

Nonstandard arithmetic

Tanaka's idea:

• Self-embedding theorem is very useful to construct a "good end-extension" to do nonstandard analysis within weak arithmetic.

Theorem (nonstandard arithmetic)

- The system consists of STP (standard part principle) and Σ⁰₁-overspill is a conservative extension of WKL₀. (Tanaka)
- 2 The system consists of STP (standard part principle) and Σ₀¹-transfer principle is a conservative extension of ACA₀.
- The system consists of LMP (for nonstandard measure theory), Σ⁰₁-overspill and Σ⁰_{n-1}-transfer principle is a conservative extension of n-WWKL₀. (Simpson/Y)

- Find self-embedding theorems which can characterize ATR_0 , RT_2^2 , etc.
- Show stronger conservation results for nonstandard arithmetic by using self-embedding theorems.
- What is the relation between self-embedding theorems and saturation principles?

- Find self-embedding theorems which can characterize ATR_0 , RT_2^2 , etc.
- Show stronger conservation results for nonstandard arithmetic by using self-embedding theorems.
- What is the relation between self-embedding theorems and saturation principles?

- Find self-embedding theorems which can characterize ATR_0 , RT_2^2 , etc.
- Show stronger conservation results for nonstandard arithmetic by using self-embedding theorems.
- What is the relation between self-embedding theorems and saturation principles?

- Find self-embedding theorems which can characterize ATR_0 , RT_2^2 , etc.
- Show stronger conservation results for nonstandard arithmetic by using self-embedding theorems.
- What is the relation between self-embedding theorems and saturation principles?

Thank you!