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Friedman’s self-embedding theorem

.

Theorem (Friedman 1973)

.
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If M is a countable model of PA, there exists a self-embedding
f : M → M such that f(M) (e M.
(f(M) is a proper cut of M.)

Starting from Friedman’s theorem, several different/precise
versions of self-embedding theorems are studied.
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“From Friedman”
“To Tanaka and beyond”

Optimal self-embedding theorem for IΣn
Some more variations

.

.

Fragments of PA (Induction and bounding)

Σn-induction: for ϕ ∈ Σn,

ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n + 1))→ ∀nϕ(n).

Σn-bounding: for ϕ ∈ Σn,

∀u∃v[∀n ≤ u∃m ϕ(n,m)→ ∀n ≤ u∃m ≤ v ϕ(n,m)].

IΣn := “basic axioms” + Σn-induction.

BΣn := “basic axioms” + Σn-bounding.

PA :=
∪
n∈ω

IΣn =
∪
n∈ω

BΣn.

.

Theorem (Paris, etc.)

.

.

.

. ..

.

.

IΣ0 < BΣ1 < IΣ1 < BΣ2 < IΣ2 < BΣ3 < · · · < PA.

Keita Yokoyama Self-embedding theorems 5 / 25



“From Friedman”
“To Tanaka and beyond”

Optimal self-embedding theorem for IΣn
Some more variations

.

.

Friedman’s self-embedding theorem

Original self-embedding theorem.

.

Theorem (Friedman 1973)

.

.

.

. ..

.

.

If M is a countable model of PA, there exists a self-embedding
f : M → M such that f(M) (e M.
(f(M) is a proper cut of M.)

We can sharpen this theorem as follows.

.

Theorem (In Kaye’s book (1991) )

.

.

.

. ..

.

.

Let n ≥ 0.
If M is a countable model of IΣn+1, there exists a Σn-elementary
self-embedding f : M → M such that f(M) (e M.
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“To Tanaka and beyond”

Optimal self-embedding theorem for IΣn
Some more variations

.

.

Friedman’s self-embedding theorem

.

Question

.

.

.

. ..

.

.

If a countable model M has a Σn-elementary self-embedding
f : M → M such that f(M) (e M, then, is M a model of IΣn+1?

No!
We can show that M |= BΣn+1, but,

.

Proposition (folklore)

.

.

.

. ..

.

.

Let M be a countable recursively saturated model of IΣ0. Then, the
following are equivalent.

M is a model of BΣn+1.

M has a Σn-elementary self-embedding f : M → M such that
f(M) (e M.

⇒ There should be a “stronger” self-embedding theorem for IΣn.
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“From Friedman”
“To Tanaka and beyond”

Optimal self-embedding theorem for IΣn
Some more variations

.

.

Self-embedding theorem for IΣn

We can add an extra condition for f(M).

.

Definition

.

.

.

. ..

.

.

Let M be a model of IΣ0, and I (e M.
Then, I is said to be semi-regular if for any M-finite set X ⊆ M,

|X | ∈ I ⇒ X ∩ I is bounded in I.

Note that semi-regular cut is very useful in the model theory of
arithmetic. (It is called “finiteness” in nonstandard arithmetic.)

.

Theorem

.

.

.

. ..

.

.

Let M be a countable model of IΣ0. Then, the following are
equivalent.

M is a model of IΣn+1.

M has a Σn-elementary self-embedding f : M → M such that
f(M) (e M and f(M) is semi-regular.
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“To Tanaka and beyond”

Optimal self-embedding theorem for IΣn
Some more variations

.

.

Q-semi-regular embedding

Fix a Σ0
0-definable Q : [M]<M → M such that

X ⊆ Y ⇒ Q(X) ≤ Q(Y).

.

Definition

.

.

.

. ..

.

.

I (e M is said to be Q-semi-regular if for any X ⊆fin M,

Q(X) ∈ I ⇒ X ∩ I is bounded in I.

For any definable X ⊆ M,

Q(X) = sup{Q(X ∩ [0, a]) | a ∈ M}.

.

Theorem

.

.

.

. ..

.

.

Let M |= IΣ0. Then, the following are equivalent.

M |= “Q(X) < ∞ ↔ X is bounded”
for any Σ1-definable X ⊆ M.

M has a Q-semi-regular self-embedding.
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Optimal self-embedding theorem for IΣn
Some more variations

.

.

Q-semi-regular embedding

Fix a Σ0
0-definable Q : [M]<M → M such that

X ⊆ Y ⇒ Q(X) ≤ Q(Y).

.

Corollary

.

.

.

. ..

.

.

Let

(M,S) |= RCA0+“∀X Q(X) < ∞ ↔ X is bounded”.

Then, there exists S′ ⊇ S such that

(M,S′) |= WKL0+“∀X Q(X) < ∞ ↔ X is bounded”.

Thus, for any Π1
1-formula ϕ,

RCA0+“∀X Q(X) < ∞ ↔ X is bounded” ` ϕ
if and only if

WKL0+“∀X Q(X) < ∞ ↔ X is bounded” ` ϕ.
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“From Friedman”
“To Tanaka and beyond”

Optimal self-embedding theorem for IΣn
Some more variations

.

.

Self-embedding theorem for PA

.

Definition

.

.

.

. ..

.

.

Let M be a model of Iz, and I (e M.
Then, I is said to be strong if for any b ∈ M \ I and M-finite
sequence 〈ci ∈ M | i < b〉,

∃d ∈ M(ci < d ⇔ ci ∈ I).

.

Theorem (folklore)

.

.

.

. ..

.

.

Let M be a countable model of IΣ0. Then, the following are
equivalent.

M is a model of PA.

M has a Σn-elementary self-embedding f : M → M such that
f(M) (e M and f(M) is strong.
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Optimal self-embedding theorem for IΣn
Some more variations

.

.

When there is a self-embedding between a < b?

.

Theorem (In Kaye’s book)

.

.

.

. ..

.

.

Let M be a countable model of IΣn+1, and let a, b ∈ M.
If for any Σn-definable partial function ν : ⊆M → M, ν(a) < b, then
there exists a Σn-elementary self-embedding f : M → M such that
a ∈ f(M) (e M and b < f(M).

However, this condition was not optimal for the above question.
Recently, an optimal version is proved.

.

Theorem (Enayat 201X)

.

.

.

. ..

.

.

Let M be a countable model of IΣn+1, and let a, b ∈ M. Then the
following are equivalent.

For any Σn-definable total function ν : M → M, ν(a) < b.

There exists a Σn-elementary self-embedding f : M → M such
that a ∈ f(M) (e M and b < f(M).
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“From Friedman”
“To Tanaka and beyond”

Optimal self-embedding theorem for IΣn
Some more variations

.

.

Self-embedding theorem for IΣn

Here is another characterization of IΣn.

.

Theorem

.

.

.

. ..

. .

Let M be a countable model of IΣ0. Then, the following are
equivalent.

M is a model of IΣn+1.

For any a ∈ M, M has a Σn-elementary self-embedding
f : M → M such that f(M) (e M and f(x) = x for any x < a.
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Outline

.

. .
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Some more variations
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“From Friedman”
“To Tanaka and beyond”

Self-embedding theorems for SOSOA
Nonstandard arithmetic

.

.

Subsystems of second-order arithmetic

Big five plus one
RCA0: “discrete ordered semi-ring”+Σ0

1 induction
+∆0

1 comprehension.

WWKL0: RCA0 + weak weak König’s lemma.
(Any tree which has a positive measure has a path.)

WKL0: RCA0 + weak König’s lemma.

ACA0: RCA0 + Σ1
0 comprehension.

ATR0: RCA0 + arithmetical transfinite recursion.

Π1
1CA0: RCA0 + Π1

1 comprehension.
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“From Friedman”
“To Tanaka and beyond”

Self-embedding theorems for SOSOA
Nonstandard arithmetic

.

.

Self-embedding theorem for second-order arithmetic

‘For second-order arithmetic, Tanaka’s theorem is the “only and
definitive” version.’ (Enayat)

.

Theorem (Tanaka)

.

.

.

. ..

. .

Let (M,S) be a countable model of RCA0. Then, the following are
equivalent.

(M,S) is a model of WKL0.

There exists a self-embedding f : (M,S)→ (M,S) such that
f(M) (e M and f(S) � f(M) = S � f(M).

(S � I = {X ∩ I | X ∈ S}.)
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“From Friedman”
“To Tanaka and beyond”

Self-embedding theorems for SOSOA
Nonstandard arithmetic

.

.

Self-embedding theorem for second-order arithmetic

.

Theorem (Wong’s note)

.

.

.

. ..

.

.

Let (M,S) be a countable recursively saturated model of RCA∗0.
Then, the following are equivalent.

(M,S) is a model of WKL∗0.

There exists a self-embedding f : (M,S)→ (M,S) such that
f(M) (e M and f(S) � f(M) = S � f(M).

(S � I = {X ∩ I | X ∈ S}.)
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“From Friedman”
“To Tanaka and beyond”

Self-embedding theorems for SOSOA
Nonstandard arithmetic

.

.

Self-embedding theorem for second-order arithmetic

With the notion of strong cut or elementarity, we can characterize
ACA0.

.

Corollary

.

.

.

. ..

.

.

Let (M,S) be a countable model of RCA0, and let n ≥ 1. Then, the
following are equivalent.

(M,S) is a model of ACA0.

There exists a self-embedding f : (M,S)→ (M,S) such that
f(M) (e M, f(M) is strong and f(S) � f(M) = S � f(M).

There exists a Σ0
n-elementary self-embedding

f : (M,S)→ (M,S) such that f(M) (e M and
f(S) � f(M) = S � f(M).

However, I want some more versions!

Keita Yokoyama Self-embedding theorems 18 / 25



“From Friedman”
“To Tanaka and beyond”

Self-embedding theorems for SOSOA
Nonstandard arithmetic

.

.

Self-embedding theorem for second-order arithmetic

With the notion of strong cut or elementarity, we can characterize
ACA0.

.

Corollary

.

.

.

. ..

.

.

Let (M,S) be a countable model of RCA0, and let n ≥ 1. Then, the
following are equivalent.

(M,S) is a model of ACA0.

There exists a self-embedding f : (M,S)→ (M,S) such that
f(M) (e M, f(M) is strong and f(S) � f(M) = S � f(M).

There exists a Σ0
n-elementary self-embedding

f : (M,S)→ (M,S) such that f(M) (e M and
f(S) � f(M) = S � f(M).

However, I want some more versions!

Keita Yokoyama Self-embedding theorems 18 / 25



“From Friedman”
“To Tanaka and beyond”

Self-embedding theorems for SOSOA
Nonstandard arithmetic

.

.

M-finite complexity

.

Definition (M-finite complexity)

.

.

.

. ..

.

.

Let M be a model of IΣ0.

An M-finite complexity is an M-finite partial function
k : ⊆2<M → M such that

∑
σ∈dom(k) 2−k(σ) ≤ 1. We define

k(σ) = ∞ if σ < dom(k).

.

Definition

.

.

.

. ..

.

.

Let (M,S) be a model of RCA0 and N be a model of IΣ0 such that
M (e N.

(M,S) ⊆e,r N if for any finite complexity k ∈ N there exists a
set X ∈ S and c ∈ M such that ∀n ∈ M k(X � n) > n − c.

(M,S) ⊆e,d N if for any finite complexity k ∈ N there exists a
set f ,X ∈ S such that ∀n ∈ M k(X � n) > f(n).
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“To Tanaka and beyond”

Self-embedding theorems for SOSOA
Nonstandard arithmetic

.

.

Self-embedding theorem for second-order arithmetic

.

Theorem

.

.

.

. ..

.

.

Let (M,S) be a countable model of RCA0. Then, the following are
equivalent.

.

.

.

1 (M,S) is a model of WWKL0.

.

.

.

2 There exists a self-embedding f : (M,S)→ (M,S) such that
(f(M), f(S) � f(M)) ⊆e,r M.

.

Theorem

.

.

.

. ..

.

.

Let (M,S) be a countable model of RCA0. Then, the following are
equivalent.

.

.

.

1 (M,S) is a model of RCA0 + DNR.

.

.

.

2 There exists a self-embedding f : (M,S)→ (M,S) such that
(f(M), f(S) � f(M)) ⊆e,d M.

Keita Yokoyama Self-embedding theorems 20 / 25



“From Friedman”
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Self-embedding theorems for SOSOA
Nonstandard arithmetic

.

.

With elementarity

.

Theorem (Avigad, Dean, Rute)

.

.

.

. ..

.

.

n-WWKL0 consists of RCA0 plus the following assertion:

any ∆0
n-definable tree which has a positive measure has a

path.

Note that 2-WWKL0 is equivalent to the Lebesgue convergence
theorem. (A.D.R.)

.

Theorem

.

.

.

. ..

.

.

Let (M,S) be a recursively saturated countable model of RCA0,
and let n ≥ 1. Then, the following are equivalent.

.

.

.

1 (M,S) is a model of WWKL0.

.

.

.

2 There exists a Σ0
n−1-elementary self-embedding

f : (M,S)→ (M,S) such that (f(M), f(S) � f(M)) ⊆e,r M.
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Self-embedding theorems for SOSOA
Nonstandard arithmetic

.

.

Self-embedding theorem for second-order arithmetic

With the stronger notion of cut, we have the following.

.

Theorem

.

.

.

. ..

.

.

Let (M,S) be a countable model of RCA0. Then, the following are
equivalent.

.

.

.

1 (M,S) is a model of Π1
1-CA0.

.

.

.

2 There exists a self-embedding f : (M,S)→ (M,S) such that
f(M) (e M is a Ramsey strong cut and
f(S) � f(M) = S � f(M).
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Self-embedding theorems for SOSOA
Nonstandard arithmetic

.

.

Nonstandard arithmetic

Tanaka’s idea:

Self-embedding theorem is very useful to construct a “good
end-extension” to do nonstandard analysis within weak
arithmetic.

.

Theorem (nonstandard arithmetic)

.

.

.

. ..

.

.

.

.

.

1 The system consists of STP (standard part principle) and
Σ0

1-overspill is a conservative extension of WKL0. (Tanaka)

.

.

.

2 The system consists of STP (standard part principle) and
Σ1

0-transfer principle is a conservative extension of ACA0.

.

.

.

3 The system consists of LMP (for nonstandard measure
theory), Σ0

1-overspill and Σ0
n−1-transfer principle is a

conservative extension of n-WWKL0. (Simpson/Y)
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.

.

Open questions

Find self-embedding theorems which can characterize ATR0,
RT2

2, etc.

Show stronger conservation results for nonstandard arithmetic
by using self-embedding theorems.

What is the relation between self-embedding theorems and
saturation principles?
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Thank you!
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