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From NP-hard to polytime

A from smooth to analytic

f A computable
/\ function must
1 be continuous

et — >
XI

XOR computable= [x-a /2"<2" for recursive(a,)[1Z
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Real Function Complexity

Function f:[0,1] - R computable (in time t(n)]“’aui
if some TM can, on input of nLIN and of
(a,)0Z with |x-g,/2™<2™  =:pg,=p Ps

in time t(n) output bJZ with [f(x)-b/21|<2",
Examples: a) +, x, exp polytime on [0;1]!
b) f(X)=X,, 4" iff LO{0,1} polytime-decidable
c) Sibr{d4e avisidelpttreompuabiEble

"Observation i) If f computable = continuous.
ii) If f computable in time t(n), then
t(n+2) is a modulus of uniform continuity of f.

D,:={k2':kez}, D= |, D, dyadicrationals

\a'a
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3 Effects in Real Complexity

From NP-hard to polytime

u COI’]SIder mUItlvalued 'functions'fromswtf-?ﬁalyﬂc

= additional discrete data (‘enrichment’).

Example cl1): expnot computable on entire R,

c2) Evaluation (f,X) - f(X) is not computable
in time depending only on output precision n.

Example b): Given real symmetric dxd
matrix A, find an eigenvector: incomputable;
but computable when knowing Cardco(A) [z+B'04]

=parameterized real comple |

Example a): Tests for in-

re=Ve 1aVeY lal-1 [Sidi AT
A TV A A | 1

/equa“ty are undecidable declaratio.n/inter'face
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Nonuniform Complexity of Operators® =}

f:[0;1] - [0;1] polytime computable (= continuous)

« Max: f - Max(f): x -~ max f(t): t<x} ;::
Max(f) computable in exponential time; g—
polytime-computable iff P=ANP (eéven when\g

. restricting S:2s°

i f o Ifix = Iy f(D) dt to fOC> ~
|f computable in exponential time; buf ftc_"‘ ; e
. - P analytic f |S
#P-complete” N EERAMIEATET \polytime /2

» dsolve C[0;1]x[-1;1] Of - z z(t)=f(t,2), z(0)=0—"
= in general no computable solution z(t)
= for fOOCY "PSPACE-complete" [EISSINASIAtRE
= for fOCK "CH-hard" [iESERIlpSIiAls) el o
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"Max is NP-hard'

From NP-hard to polytime

NP OL ={ x0{0,1}" | TyO{0, 1} P™: (x. Y30V}

g C~pulse’ function o XYV
P(t) = exp¢ti1-9), fl<1
Ly, polytime computable
d/dx' o(Cx-2)/C" <?
+Ya too, unifo)ggv/y in C,z Y
WL lygg00,0220 21 4 x50 |4 |7 X1\ |
T T nZ2 | jR00000L. ntj y-000,001.]

To every LONP there exists a polytime
computable C” function f, :[0,1] >R s.t.:
[0,1]0y—maxf, |, polytime iff LOP

&7, TECHNISCHE

§r@‘/@ UNIVERSITAT
9
%)~ DARMSTADT

From NP-hard to polytime

Representing Power Series

&7 TECHNISCHE

Parameterized Real Complexity " oW

From NP-hard to polytime

c &OmPUtable [Zhwe'® _from smooth to analytic
Zi@Z e radius of convergence 1/I|msu9 |cj|1/J

o toVO<@<R exist CON: [g|<C/r (%@uchy— )
. _ |

o N [K):= 1/log(r) = ©(2/(r-1)) A

« tail bound |2,y G 2| < C- (RINN(1-[Z1)

Complexity uniform in |z<1:(i.e. R>1)

Convergence degrades es as r - 1; quantitatively?
paramefrlze_d running time

Theorem 1: Represent s€ries 2 ¢ 2 with R>1
as [a (pgy)“-name o ;) and K,CLN as above.
The following are uhiformly computable in time
polyn. in n : i) eval, ii) sum, iii) product,
iv) derivative, v) anti-derivative, vi) Max

from smooth to analytic

e Classical complexity theory:
worst-case over all inputs of length n as parameter

e parametrized complexity (FPT etc): 2 param.s (n,Kk)
e Complexity of a single real: n = output precision
e of a real function f: n = output precision

in worst-case over all arguments x[J[0;1] compact!
e or parameterized - e.g. in k=] |x|| or k=/log [x]
e TTE: encode X as infinite binary sequence, length=co
e x=(x) real sequence: access time polynom. in n+j

Must 'skip' over 2" entries to access f(2") ]

e Real operator/functi Nencode input fOLip[0;1]
e as values on dense sequence 0,1,%2,%4,%44,%,%,...=1D
e and Lipschitz constant £00N as discrete data & advice
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2"d Order Representations’
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From NP-hard to polytime

from smooth to analytic

Meta-Def: representation of G is a surject. y.[12® -G
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2"d Order Polyn.s & Time ( u=m
'Long' names Z require much time to even read
- cmp. evaluation of 'steep' real functions...

I'-name Z:{0,1}* —»{0,1}*

y-name z1* -{0,1} ‘ access time=
communic. via oracle

communic. on tape input length

y-name z1* - {0,1} ‘ access time= | \I-name Z{0,1}* —{0,1}*
communic. on tape input length communic. via oracle

Kawamura&Cook'10 generalize to surject. I :Uo® -G,
dom(") O LM :={ Z{0,1}* —{0,1}*, [Z(u)I<[Z(v)| Dlul<v }
= extend from sequential to (realistic) random access

e TTE: encode X as infinite binary sequence, length=0c0
* X=(X) real sequence: access time polynom. in n+j
Must 'skip' over 2" entries to access f(2) |
e Real operator/functi ~encode input fOLip[0;1]
e as values on dense sequence 0,1,%2,Y4,%4,%%,%,...=D
e and Lipschitz constant £00N as discrete data & advice

Kawamura&Cook'10 generalize to surject. I :Lo® -G,

dom() O LM :={ Z{0,1}* —{0,1}*, [Z(u)|<[Z(v)| Dlul<v }
= extend from sequential to random access
K:=[Z[N>N, u—[Z(u)| well-defined

e Consider 2nd order representation of
C[0;1] s.t. steep functions have long names
e Permit 2nd order polynomial running times P(n,K)

= closed under (both kinds of) composition,
generalizes (parameterized) 1st order polynom. time

term over
INl-i-lxlﬂl K()
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Real Analytic Functions on [0,1] " J&

From ZN’—hard to polytime
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From NP-hard to polytime

Overview

from smooth to analytic

Definition: C9-1,1]:={ f:[-1;1] >R restriction o
complex differentiable g:U - C, [0,1]0UOC opelj_w}_._

e real sequence ____________________ g Theorem 2: These
eON unary: R OU \ <~ lare mutually 27 ord
o GON binary 0z0R : |9Y2)|<G RN lER e LN

[2nd order representation _ _
Equivalent: fUCR[-1:1] and [KON 0Oj: ||| < 24K-j!

e real sequence(f(D)]and(KDN unary
Equiv.: f finitely many local power series on [-1;1]

24 Gy (@' ML My S03VIESRAIN: [, <G/ 2

Theorem 3: On C¥0,1], i) eval ii) sum ... vi) max

are computable within parameterized polyn. time

/" UNIVERSITAT
. . from smooth to analytic
= Complexity of real functions
= Non-uniform complexity of real operators:

= NP-hard on C*®, polytime on analytic (=C®)

= Enrichment rendering power series computable

» in parameterized polynomial time.

= 2nd grder representation rendering computable
= real analytic functions in 279 order polytime.

= Gevrey's function hierarchy between C® and C®

= and 2"d order representations with complexity.
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Gevrey's Function Hierarchy
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rom NP-hard to polytime
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Uniform Complexity
On Gev rey's H Iera rChy From NP-hard to polytime
from smooth to analytic

from smooth to analytic

Definition (Maurice Gevrey 1918, studying PDEs)
guGN-151] i Ot g0 < 24k D) 2 order repr
o etith sHa@anem B} dideMonatyi magning NCh—k+n'
= [B On [pOD[X]: degp)<B-nt |g-p|k2" = gUG*-1;1]
e sequence p,0D[X] with degf,)<B-n* |jg-p|K2™"

Equivalent: fC”[-1;1] and KON 0j: [fO|< 2<Kj!
e real sequence f(D) and kLN unary Gi=Cv

Example: The following g is
not analytic but in G3[-1;1]
g(z) = exp( 22 ) for |z| < 1,

x2—1
glx) = 0 for |z| > 1

Definition (Maurice G_evrey 1_9_18, studying PDES)
g0G [-1:1] i = Oj: |lg0|| < 2k-ki-jit

2nd order repr.
e real sequence f(D) and unary mapping NCh—k+n!

= [B Un [pUD[X]: degp)<B-n* [jg-p[<2"
e sequence p,0D[X] with degf,)<B-n' |jg-p,|K2™"
Theorem 4 (our main result):
a) Both 2d order representations of |, , G%
are 2" order polynomial-time equivalent and
b) render i) eval, ii) sum ... iv) d/dx v) |, vi) max
computable within time polynomial in (k+n)rev(®
c) Given f(D), maxon G, requires time Q(nY).
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Conclusion and Perspectives " :v

From NP-hard to polytime

Conclusion and Perspectives ' -vi
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From NP-hard to polytime

from smooth to analytic

e Max and | are nonuniformly NP-hard on C°[-1;1]
e but nonunif. polytime on C%[-1;1], i.e. analytic f.

Today: uniform computability and parameterized
complexity of operators on Gevrey's hierarchy Gt
climbing from C® to C* with optimal runtime nPo®
Theorem 4 (our main result):
a) Both 2nd order representations of UJ,, G%
are 2nd order polynomial-time equivalent and
b) render i) eval ii) sum ... iv) d/dx v) |, vi) max
computable within time polynomial in (k+n)Po(©
c) Given f(D), maxon G', requires time Q(nY).

from smooth to analytic

e Max and | are nonuniformly NP-hard on C*[-1;1]
e but nonunif. polytime on C%[-1;1], i.e. analytic f.
Today: uniform computability and parameterized
complexity of operators on Gevrey's hierarchy Gt
climbing from C® to C* with optimal runtime nroly(®

e Actually implement and evaluate
these algorithms (i RRAM)

e Quantitatively refine the
upper complexity bounds

e Multivariate case?




