

Parameterized Uniform
Complexity in Numerics:
from Smooth to Analytic,
from NP-hard to Polytime

Akitoshi Kawamura, Norbert Müller Carsten Rösnick

Martin Ziegler

Real Function Complexity

(GMP/

Function $f:[0,1] \rightarrow \mathbb{R}$ computable in time t(n)

if some TM can, on input of $n \in \mathbb{N}$ and of

 $(a_m)\subseteq \mathbb{Z}$ with $|x-a_m/2^{m+1}|<2^{-m}$ $=:\rho_{dy}\equiv_{p}\rho_{sd}$

in time t(n) output $b \in \mathbb{Z}$ with $|f(x)-b/2^{n+1}| < 2^{-n}$.

Examples: a) +, \times , exp polytime on [0;1]!

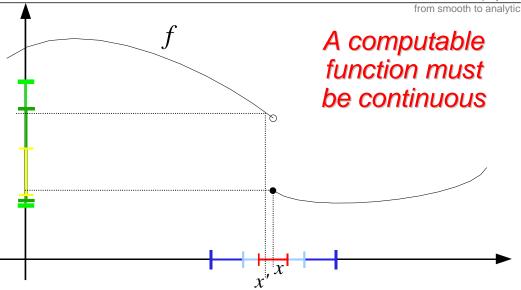
- b) $f(x) \equiv \sum_{n \in L} 4^{-n}$ iff $L \subseteq \{0,1\}^*$ polytime-decidable
- c) sign(eHeanistideolytitree-repretable

Observation i) If f computable \Rightarrow continuous.

- ii) If f computable in time t(n), then
- t(n+2) is a modulus of uniform continuity of f.

 $\mathbb{D}_n := \{ k/2^n : k \in \mathbb{Z} \}, \mathbb{D} = \bigcup_n \mathbb{D}_n \text{ dyadic rationals }$

Computable Real Functions



 $x \in \mathbb{R}$ computable $\Leftrightarrow |x - a_n/2^{n+1}| \le 2^{-n}$ for recursive $(a_n) \subseteq \mathbb{Z}$

3 Effects in Real Complexity

with

- Consider multivalued 'functions'
- additional <u>discrete</u> data ('enrichment').

Example c1): exp not computable on entire \mathbb{R} , **c2)** Evaluation $(f,x) \rightarrow f(x)$ is not computable in time depending only on output precision n.

Example b): Given real symmetric $d \times d$ matrix A, find <u>an</u> eigenvector: incomputable; but computable when knowing Card $\sigma(A)$ [Z+B'04]

parameterized real complexity.

Example a): Tests for in-/equality are undecidable

canonicalse4/f/x declaration/interface

Nonuniform Complexity of Operators W UNIVERSITATION OF COMPLEX OF THE PROPERTY OF THE PROPERTY

 $f:[0;1] \rightarrow [0;1]$ polytime computable (\Rightarrow continuous)

• Max: $f \to \text{Max}(f)$: $x \to \text{max}\{f(t): t \le x\}$

Max(f) computable in exponential time;

polytime-computable iff $\mathcal{P} = \mathcal{N}\mathcal{P}$

- $\int: f \to \int f: x \to \int_0^x f(t) dt$ uniform $\rfloor f$ computable in exponential time; "#P-complete" Negativistic !!
- even when restricting to $f \in \mathbb{C}^{\infty}$ but for analytic f polytime 2
- dsolve: C[0;1]×[-1;1] $\ni f \to z$: $\dot{z}(t)=f(t,z), z(0)=0$.
- in general no computable solution z(t)
- for $f \in \mathbb{C}^1$ " \mathcal{PSPACE} -complete" Positivistic!!
- for $f \in \mathbb{C}^k$ " \mathcal{CH} -hard" Phase transition $\mathbb{C}^{\omega} \to \mathbb{C}^{\omega}$

Representing Power Series

incomputable [ZhWe'01]

• radius of convergence $(R)=1/\limsup_{i}|c_{i}|^{1/j}$

- to 0 < r < R exist $C \in \mathbb{N}$: $|c_i| \le C/r^i$ (Cauchy-Hadamard)
- $\mathbb{N} \ni \overline{(R)} \ge 1/\log(r) = \Theta(1/(r-1))$ binary unary
- tail bound $|\sum_{j\geq N} c_j z^j| \leq C \cdot (|z|/r)^N/(1-|z|/r)$

Complexity uniform in $|z| \le 1$: (i.e. R > 1)

Convergence degrades es as $r\rightarrow 1$; quantitatively? parametrized running time

Theorem 1: Represent series $\sum_i c_i z^j$ with R > 1as [a $(\rho_{dv})^{\omega}$ -name of] (c_i) and $K, C \in \mathbb{N}$ as above.

The following are uniformly computable in time polyn. in $n+K+\log(C)$: i) eval, ii) sum, iii) product, iv) derivative, v) anti-derivative, vi) Max

'Max is \mathcal{NP} -hard'

 $\mathcal{NP} \ni L = \{ \underline{x} \in \{0,1\}^n \mid \exists \underline{y} \in \{0,1\}^{p(n)} : \langle \underline{x},\underline{y} \rangle \in V^{\text{byth}} \}$ \uparrow^1 C $^{\infty}$ 'pulse' function $\langle x,y\rangle \in V$ $\Phi(t) = \exp(-t^2/1-t^2), |t| < 1$ $\downarrow_{1/2}$ polytime computable $\langle \underline{x},\underline{y}\rangle \notin V$ $d^n/dx^n \ \varphi(C\cdot x-z)/C^n \le ?$ +1/4 too, uniformly in C,z

To every $L \in \mathcal{NP}$ there exists a polytime computable C^{∞} function $f_I:[0,1] \rightarrow \mathbb{R}$ s.t.: $[0,1] \ni y \longrightarrow \max f_L|_{[0,v]}$ polytime iff $L \in \mathcal{P}$

Parameterized Real Complexity

 Classical complexity theory: worst-case over all inputs of length *n* as parameter

- parametrized complexity (FPT etc): 2 param.s (n,k)
- Complexity of a single real: n = output precision
- of a real function f: n = output precisionin worst-case over all arguments $x \in [0,1]$ compact!
- or parameterized e.g. in $k=\lceil |x| \rceil$ or $k=\lceil \log |x| \rceil$
- TTE: encode x as *infinite* binary sequence, length= ∞
- $\underline{x}=(x_j)$ real sequence: access time polynom. in n+jMust 'skip' over 2^n entries to access $f(2^{-n})$
- Real operator/functional Λ : encode input $f \in \text{Lip}[0;1]$
- as values on dense sequence $0,1,\frac{1}{2},\frac{1}{4},\frac{3}{4},\frac{1}{8},\frac{3}{8},\frac{5}{8},...=:D$
- and Lipschitz constant l∈N as discrete data & advice

2nd Order Representations

From NP-hard to polytime

Meta-**Def**: representation of G is a surject. $\gamma:\subseteq 2^{\omega} \to G$

 γ -name $z:1*\rightarrow\{0,1\}$ communic. on tape

access time= input length Γ -name Z:{0,1}*→{0,1}* communic. via **oracle**

Kawamura&Cook'10 generalize to surject. $\Gamma: \subseteq \omega^{\omega} \to G$, $dom(\Gamma) \subseteq \mathcal{LM} := \{ Z: \{0,1\}^* \to \{0,1\}^*, \ |Z(\underline{u})| \le |Z(\underline{v})| \ \forall |\underline{u}| \le |\underline{v}| \}$ \Rightarrow extend from sequential to (realistic) random access

- TTE: encode x as *infinite* binary sequence, length= ∞
- $\underline{x}=(x_j)$ real sequence: access time polynom. in n+jMust 'skip' over 2^n entries to access $f(2^{-n})$
- Real operator/functional Λ : encode input $f \in \text{Lip}[0;1]$
- as values on dense sequence $0,1,\frac{1}{2},\frac{1}{4},\frac{3}{4},\frac{1}{8},\frac{3}{8},\frac{5}{8},...=:D$
- and Lipschitz constant l∈N as discrete data & advice

Real Analytic Functions on [0,1]

Definition: $C^{\omega}[-1,1] := \{ f:[-1;1] \to \mathbb{R} \text{ restriction of complex differentiable } g:U \to \mathbb{C}, [0,1] \subset U \subset \mathbb{C} \text{ open } \}$

• real sequence $f(\mathbb{D})$

• $L \subseteq \mathbb{N}$ unary: $R_L \subseteq U$

Theorem 2: These are mutually 2nd ord

• $G \in \mathbb{N}$ binary $\forall z \in R_L$: $|g'(z)| \leq G$ polytime equivalent

Equivalent: $f \in \mathbb{C}^{*}[-1,1]$ and $\exists k \in \mathbb{N} \ \forall j: ||f^{(j)}|| \leq 2^{k} \cdot k^{j} \cdot j!$

• real sequence $f(\mathbb{D})$ and $k \in \mathbb{N}$ unary

Equiv.: f finitely many local power series on [-1;1] $\sum_{j} c_{j,m} (z-x_m)^j$, m=1...M unary $C_m K_m \in \mathbb{N}$: $|c_{j,m}| \le C_m/2^{j/K_m}$

Theorem 3: On $C^{\omega}[0,1]$, i) eval ii) sum ... vi) max are computable within parameterized polyn. time

2nd Order Polyn.s & Time

'Long' names Z require much time to even read – cmp. evaluation of 'steep' real functions...

 γ -name $z:1*\rightarrow\{0,1\}$ communic. on tape

access time= input length Γ-name Z:{0,1}*→{0,1}* communic. via **oracle**

Kawamura&Cook'10 generalize to surject. $\Gamma: \subseteq \omega^{\omega} \to G$, $dom(\Gamma) \subseteq \mathcal{LM} := \{ Z: \{0,1\}^* \to \{0,1\}^*, |Z(\underline{u})| \le |Z(\underline{v})| \ \forall |\underline{u}| \le |\underline{v}| \}$ \Rightarrow extend from sequential to (realistic) random access

 $K:=|Z|:\mathbb{N}\to\mathbb{N}, |\underline{u}|\to |Z(\underline{u})|$ well-defined

term over $\mathbb{N}_{i}+\mathbf{x},n,K(i)$

- Consider 2nd order representation of C[0;1] s.t. steep functions have long names
- Permit 2nd order polynomial running times P(n,K)
- ⇒ closed under (both kinds of) composition, generalizes (parameterized) 1st order polynom. time

Overview

from smooth to analytic

Complexity of real functions

- Non-uniform complexity of real operators:
- \mathcal{NP} -hard on C^{∞} , polytime on analytic (= C^{ω})
- Enrichment rendering power series computable
- in parameterized polynomial time.
- 2nd order representation rendering computable
- <u>real analytic</u> functions in 2nd order polytime.
- Gevrey's function hierarchy between C^{ω} and C^{∞}
- and 2nd order representations with complexity.

Gevrey's Function Hierarchy

Definition (Maurice Gevrey 1918, studying PDEs) $g \in \mathcal{G}^{\ell}_{k}[-1;1] : \Leftrightarrow \forall j : ||g^{(j)}|| \leq 2^{k} \cdot k (j^{j \cdot \ell})$

2nd order repr.

Lead state of (D) and unary in apping N $\ni n \rightarrow k+n^{\ell}$

 $\Rightarrow \exists B \ \forall n \ \exists p \in \mathbb{D}[X]: \deg(p) < B \cdot n^{\ell} \ \|g - p\| \le 2^{-n} \Rightarrow g \in G^{2\ell-1}[-1;1]$

• sequence $p_n \in \mathbb{D}[X]$ with $\deg(p_n) < B \cdot n^{\ell} ||g - p_n|| \le 2^{-n}$

Equivalent: $f \in \mathbb{C}^{\infty}[-1;1]$ and $\exists k \in \mathbb{N} \ \forall j: ||f^{(j)}|| \leq 2^k \cdot k (j!)$

• real sequence $f(\mathbb{D})$ and $k \in \mathbb{N}$ unary

Example: The following g is not analytic but in $G^3[-1;1]$

$$g(x) := \exp\left(\frac{x^2}{x^2-1}\right) \text{ for } |x| \le 1,$$

g(x) := 0for $|x| \geq 1$

Conclusion and Perspectives

- Max and \int are nonuniformly \mathcal{NP} -hard on $\mathbb{C}^{\infty}[-1;1]$
- but nonunif. polytime on $C^{\omega}[-1;1]$, i.e. analytic f.

Today: uniform computability and parameterized complexity of operators on Gevrey's hierarchy G^{ℓ} climbing from C^{ω} to C^{∞} with <u>optimal</u> runtime $n^{\text{poly}(\ell)}$

Theorem 4 (our main result):

- a) Both 2nd order representations of $\bigcup_{k,\ell} \mathcal{G}^{\ell}_{k}$ are 2nd order polynomial-time equivalent and
- b) render i) eval, ii) sum, ... iv) d/dx, v) \int , vi) max computable within time polynomial in $(k+n)^{\text{poly}(\ell)}$
- c) Given $f(\mathbb{D})$, max on G^{ℓ} requires time $\Omega(n^{\ell})$.

Uniform Complexity on Gevrey's Hierarchy

from smooth to analytic **Definition** (Maurice Gevrey 1918, studying PDEs) $g \in \mathcal{G}^{\ell}_{k}[-1;1] : \Leftrightarrow \forall j : ||g^{(j)}|| \leq 2^{k} \cdot k^{j} \cdot j^{j \cdot \ell}$ 2nd order repr.

- real sequence $f(\mathbb{D})$ and unary mapping $\mathbb{N} \ni n \longrightarrow k+n^{\ell}$ $\Rightarrow \exists B \ \forall n \ \exists p \in \mathbb{D}[X]: \deg(p) < B \cdot n^{\ell} \ ||g - p|| \le 2^{-n}$
- sequence $p_n \in \mathbb{D}[X]$ with $\deg(p_n) < B \cdot n^{\ell} ||g p_n|| \le 2^{-n}$

Theorem 4 (our main result):

- a) Both 2nd order representations of $\bigcup_{k,\ell} G^{\ell}_{k}$ are 2nd order polynomial-time equivalent and
- b) render i) eval, ii) sum, ... iv) d/dx, v) \int , vi) max computable within time polynomial in $(k+n)^{\text{poly}(\ell)}$
- c) Given $f(\mathbb{D})$, max on G^{ℓ} requires time $\Omega(n^{\ell})$.

Conclusion and Perspectives

• Max and \int are nonuniformly \mathcal{NP} -hard on $\mathbb{C}^{\infty}[-1;\hat{1}]$

• but nonunif. polytime on $C^{\omega}[-1;1]$, i.e. analytic f.

Today: uniform computability and parameterized complexity of operators on Gevrey's hierarchy G^{ℓ} climbing from C^{ω} to C^{∞} with <u>optimal</u> runtime $n^{\text{poly}(\ell)}$

- Actually implement and evaluate these algorithms (irram)
- Quantitatively refine the upper complexity bounds
- Multivariate case?

