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Basic question.

We wish to understand the logical content of Ramsey’s theorem.

RTnk . Every f : [N]2 → k has an infinite homogeneous set.

The cases n = 1 and n ≥ 3 are well-understood. Not so for n = 2.

Recall:

A coloring f : [N]2 → k is stable if limy f(x, y) exists for every x.

A set S is cohesive for ⟨Ai : i ∈ N⟩ if S ∩ Ai or S ∩ Ai is finite for every i.

SRT2k . Every stable f : [N]2 → k has an infinite homogeneous set.

COH. Every ⟨Ai : i ∈ N⟩ has an infinite cohesive set.

Cholak, Jockusch, and Slaman; Mileti. RCA0 ⊢ RT2k ↔ SRT2k + COH.



Basic question.

The decomposition has been used to obtain many results about RTnk .

Seetapun. Every computable f : [N]2 → k has an infinite homogeneous set
that does not compute a given non-computable set.

Cholak, Jockusch, and Slaman. Every computable f : [N]2 → k has a low2

infinite homogeneous set.

Dzhafarov and Jockusch. Every computable f : [N]2 → k has two low2 infinite
homogeneous sets whose Turing degrees form a minimal pair.

Liu. Every computable f : [N]2 → k has an infinite homogeneous set that is
not of PA Turing degree.

Hirschfeldt and Shore. Similar decompositions for ADS and CAC.



Basic question.

A long-standing open question asked whether this decomposition is proper.

Chong, Slaman, Yang. COH is not implied by SRT2k over RCA0.

This shows that COH and SRT2k have different proof-theoretic content. But the
separation is via a very non-standard model. As such, it leaves open the
question of the computability-theoretic relationship of these principles.

Question. Is every ω-model of SRT2k a model of COH?

The result of Chong, Slaman, and Yang suggests that if the answer is yes, it
should be via some kind of complicated construction. For instance, their
model satisfies BΣ0

2, which usually suffices to formalize finite injury arguments.

But in principle, the shape of the proof could be simple.



Computable and Weihrauch reductions.

Let P and Q be Π1
2 principles.

Q ≤c P if every instance A of Q computes an instance B of P, such that if S is
any solution to B then A⊕ S computes a solution T to A.

Q ≤sc P if every instance A of Q computes an instance B of P, such that if S is
any solution to B then S computes a solution T to A.

If the reduction from A to B uniform, and the reduction from S, or from A⊕ S,
to T is uniform, then ≤c becomes ≤W, and ≤sc becomes ≤sW.

Virtually all implications in RCA0 between Π1
2 principles are formalizations of

computable reductions. In fact, almost all are Weihrauch, and many are
strong Weihrauch. Often, the backwards reduction is the identity.



Computable and Weihrauch reductions.
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Computable and Weihrauch reductions.

Note: strong reductions need not be simple as arguments.

Clever combinatorial arguments:

Cholak, Jockusch, and Slaman. COH ≤sW RT22.

Hirschfeldt and Shore. COH ≤sW ADS.

Dzhafarov and Hirst. RT22 ≡c PT22.

Heavy computability-theoretic arguments:

Hirschfeldt, Shore, and Slaman. AMT ≤sW SADS.

Dzhafarov and Mummert. OPT ≤sW FIP.

In all these cases, the way instances of the one problem are computed
(coded) into instances of the other is not straightforward.



Computable and Weihrauch reductions.

Strong reductions give a finer analysis of known implications.

Jockusch. For all k, DNRk ≰W DNRk+1.

Dorais, Dzhafarov, Hirst, Mileti, and Shafer.

For j < k, RTnk ≰sW RTnj .

RT12 ≰W RRT2k .

Dorais, Dzhafarov, Hirst, Mileti, and Shafer; Brattka, Gherardi, and Hölzl.

For p < q ≤ 1, p-WWKL0 ≰W q-WWKL0.

Lack of strong reductions lends credence to open non-implications.

Dorais, Dzhafarov, Hirst, Mileti, and Shafer; Hirschfeldt and Jockusch.

For j < k, TSnj ≰W TSnk .



SRT2k and COH.

We want to analyze SRT2k and COH in this setting.

Question. Does COH reduce to SRT2k in any of the above ways?

One reason why this is difficult—and more generally, why contrasting SRT2k
and COH is difficult—is that the these principles are actually quite similar.
Namely, they can both be expressed as variants of RT1k:

SRT2k is RT
1
k for∆

0
2-definable colorings.

COH is SeqRT1k with homogeneous sets allowed to make finitely many
errors.

These definitions are Weihrauch equivalent to the originals, and this can be
formalized to give equivalences in RCA0. (Though for SRT2k , it takes quite a lot
of work to make this formalization go through in IΣ0

1 (Chong, Lempp, Yang).)



SRT2k and COH.

The easiest way to show that a strong reduction does not hold between two
principles is to exhibit a degree-theoretic difference between them.

RT2k ≰c SRT2k .

RT2k ≰c COH.

Jockusch. There is a computable instance of RT2k with no∆0
2 solution.

Every computable instance of SRT2k or COH has a∆0
2 solution.

SRT2k ≰c COH.

Hirschfeldt, Jockusch, Kjos-Hanssen, Lemp, and Slaman. There is a
computable instance of SRT2k every solution to which has DNR degree.
But this is not true of COH.

Every known degree fact about COH holds of some instance of SRT2k .



SRT2k and COH.

COH would be strongly computably reducible to SRT2k if given
A = ⟨Ai : i ∈ N⟩, there were a k and a partition ⟨B0, . . . ,Bk−1⟩ of N that
would be∆0

2 in A, such that any infinite subset of any Bi would compute a
cohesive set for A.

Key example.

Consider a finite family, A = ⟨A0, . . . ,An−1⟩.

Then the above holds with k = 2n, and the partition consisting of the 2n

many Boolean combinations of the Ai under intersection and
complementation.

Here there is a considerably stronger reduction. The partition is computable,
not merely∆0

2, in A, and any infinite subset of any Bi is itself a cohesive set for
A, rather than just computing one.



Cohesive avoidance.

What happens if we look instead at smaller partitions ⟨B0, . . . ,Bk−1⟩, k < 2n?
Certainly it will not be the case that any infinite subset of any Bi just is
cohesive. We might also expect to have to increase the complexity of the
partition.

Dzhafarov. Fix n and k < 2n. There is a family A = ⟨A0, . . . ,An−1⟩ such that
for any partition ⟨B0, . . . ,Bk−1⟩ of N, (hyper)arithmetical in A, there is an
infinite subset of one of the Bi that computes no cohesive set for A.

In particular, this is true for partitions that are∆0
2 in A.

Corollary. For all k, COH ≰sc SRT2k .

We can use this as a module to build more complicated instances of COH.

Corollary. COH ≰sc SRT2.



Cohesive avoidance.

Idea of proof. Take n = k = 2. The proof is an iterated forcing argument.

We build A = ⟨A0,A1⟩ by Cohen forcing.

For each arithmetical functional Φ such that ΦA is a stable coloring, we build
a pair of homogeneous sets, H0 and H1, by Mathias forcing.

For each pair of Turing functionals Γ0, Γ1, we make Γ
H0
0 or ΓH1

1 not cohesive.

Fix ⟨u0, u1⟩ ∈ {0, 1}2. We repeatedly ensure there is a large x in either ΓH0
0

or ΓH1
1 with A0(x) = u0 and A1(x) = u1.

By a counting argument, one of ΓH0
0 and ΓH1

1 intersects A0 and A0 infinitely
often, or A1 and A1 infinitely often.



Iterability and uniformity.

The construction of the Hi is essentially independent of A. We extend Hi to
find a new computation witnessing that x ∈ ΓHi

i , and then define A0(x) and
A1(x) as needed.

(We do need A to force facts about Hi, but we can delay these.)

This makes the forcing very robust, and insensitive to the addition of new sets,
so we can easily iterate it.

But since we are dealing with strong reductions, iterating does not produce a
sequence of reals closed under join.

To move to weak reductions, we need to look instead at computations
witnessing that x ∈ ΓA⊕Hi

i . In other words, the bits of A0 and A1 now need to
be built along with Hi. This is much harder.



Iterability and uniformity.

We can solve this problem by adding a little uniformity:

FixΦ. Build an infinite family ⟨Ai : i ∈ N⟩, and look at the stable coloringΦA.

For each pair of functionals Γ0, Γ1 and potential homogeneous sets
H0,H1, designate a pair of columns to play our strategy from before on.

Given ⟨u0, u1⟩ ∈ {0, 1}2, “lock” these columns by extending H0 only by u0,
and H1 only by u1, until we find a computation showing x ∈ ΓA⊕Hi

i .

The uniformity ensures that the H can be made homogeneous.

Dzhafarov. For each Φ, there is a family ⟨Ai : i ∈ N⟩ such that if ΦA is a stable
coloring then it has an infinite homogeneous set H such that A⊕ H computes
no cohesive set for A.

Corollary. COH ≰W SRT2.



Iterability and uniformity.

In connection with their work on the tournament principle, Lerman, Solomon,
and Towsner produced a direct forcing argument that RT2k ≰c SRT2k .
Unfortunately, their proof does not iterate.

The problem in their argument is the same as with extending the uniform
result above: there is too much feedback between the layers of the forcing.

The following question thus remains open:

Open question. Is it the case that COH ≰c SRT2k?

An iterable and relativiziable affirmative answer should give an ω-model of
COH+ ¬SRT2.



Thank you!


