

Infinite Games in the Cantor Space over Admissible Set Theories

Naohi Eguchi

Institute of Computer Science University of Innsbruck Austria

February 20, 2014, CTFM2014, Tokyo, Japan

- Axiom of determinacy for infinite games: Set-theoretic statement over second order language stemming from descriptive set theory.
- This work: A fine-grained analysis of Δ_2^0 -definable games in the Cantor space over admissible set theories.
 - Why Δ_2^0 -games? The first class for which the different hierarchy makes sense.
 - Why in the Cantor space? The logical strength of the axiom gets weaker than in the Baire space (Π_1^1 -TR₀ to ATR₀).
 - \bullet Why admissible set theories? A natural hierarchy reaching ATR_0 is known.

- Axiom of determinacy for infinite games: Set-theoretic statement over second order language stemming from descriptive set theory.
- This work: A fine-grained analysis of Δ_2^0 -definable games in the Cantor space over admissible set theories.
 - Why Δ_2^0 -games? The first class for which the different hierarchy makes sense.
 - Why in the Cantor space? The logical strength of the axiom gets weaker than in the Baire space (Π_1^1 -TR₀ to ATR₀).
 - Why admissible set theories? A natural hierarchy reaching ATR₀ is known.

- Axiom of determinacy for infinite games: Set-theoretic statement over second order language stemming from descriptive set theory.
- This work: A fine-grained analysis of Δ_2^0 -definable games in the Cantor space over admissible set theories.
 - Why Δ_2^0 -games? The first class for which the different hierarchy makes sense.
 - Why in the Cantor space? The logical strength of the axiom gets weaker than in the Baire space (Π₁¹-TR₀ to ATR₀).
 - ullet Why admissible set theories? A natural hierarchy reaching ${
 m ATR}_0$ is known.

- Axiom of determinacy for infinite games: Set-theoretic statement over second order language stemming from descriptive set theory.
- This work: A fine-grained analysis of Δ_2^0 -definable games in the Cantor space over admissible set theories.
 - Why Δ_2^0 -games? The first class for which the different hierarchy makes sense.
 - Why in the Cantor space? The logical strength of the axiom gets weaker than in the Baire space (Π₁¹-TR₀ to ATR₀).
 - \bullet Why admissible set theories? A natural hierarchy reaching ATR_0 is known.

Axiom of determinacy

Two players game
$$A: (x_0, x_1, \dots y_0, y_1, \dots \in X)$$

Player I
$$x_0$$
 x_1 ...
Player II y_0 y_1 ...

- A strategy σ for Player I is a partial function $X^{\leq \mathbb{N}} \to X$ s.t. $\sigma(\langle x_0, y_0, \dots, x_{j-1}, y_{j-1} \rangle) = x_j$.
- A strategy σ for Player II is a partial function $X^{\leq \mathbb{N}} \to X$ s.t. $\sigma(\langle x_0, y_0, \dots, x_{j-1}, y_{j-1}, x_j \rangle) = y_j$.

Player I wins the game $A \Longleftrightarrow \langle x_0, y_0, x_1, y_1, \ldots \rangle \in A$ for any strategy for Player II. Player II wins the game $A \Longleftrightarrow \langle x_0, y_0, x_1, y_1, \ldots \rangle \notin A$ for any strategy for Player II.

Axiom of determinacy

Two players game
$$A: (x_0, x_1, \dots y_0, y_1, \dots \in X)$$

Player I
$$x_0$$
 x_1 ...
Player II y_0 y_1 ...

- A strategy σ for Player I is a partial function $X^{<\mathbb{N}} \to X$ s.t. $\sigma(\langle x_0, y_0, \dots, x_{j-1}, y_{j-1} \rangle) = x_j$.
- A strategy σ for Player II is a partial function $X^{\leq \mathbb{N}} \to X$ s.t. $\sigma(\langle x_0, y_0, \dots, x_{i-1}, y_{i-1}, x_i \rangle) = y_i$.

Player I wins the game $A \Longleftrightarrow \langle x_0, y_0, x_1, y_1, \ldots \rangle \in A$ for any strategy for Player II. Player II wins the game $A \Longleftrightarrow \langle x_0, y_0, x_1, y_1, \ldots \rangle \not\in A$ for any strategy for Player I.

Axiom of determinacy

Two players game $A: (x_0, x_1, \dots, y_0, y_1, \dots \in X)$

Player I
$$x_0$$
 x_1 ...
Player II y_0 y_1 ...

- A strategy σ for Player I is a partial function $X^{<\mathbb{N}} \to X$ s.t. $\sigma(\langle x_0, y_0, \dots, x_{j-1}, y_{j-1} \rangle) = x_j$.
- A strategy σ for Player II is a partial function $X^{\leq \mathbb{N}} \to X$ s.t. $\sigma(\langle x_0, y_0, \dots, x_{i-1}, y_{i-1}, x_i \rangle) = y_i$.

Player I wins the game $A \iff \langle x_0, y_0, x_1, y_1, \ldots \rangle \in A$ for any strategy for Player II.

Player II wins the game $A \Longleftrightarrow \langle x_0, y_0, x_1, y_1, \ldots \rangle \not\in A$ for any strategy for Player I.

Axiom of determinacy in the Cantor space

Let Φ : class of sets.

Axiom of determinacy: Either Player I or II wins the game $A \in \Phi$.

- 1. Φ-Det: In case $X = \mathbb{N}$.
- 2. Φ -Det*: In case $X = 2 = \{0, 1\}$.

Theorem (Nemoto-MedSalem-Tanaka '07)

- 1. $RCA_0 \vdash \Sigma_1^0 \text{-}Det^* \leftrightarrow WKL_0$.
- 2. $RCA_0 \vdash \Delta_2^0$ - $Det^* \leftrightarrow ATR_0$.

Shoenfield Limit lemma

Any Δ_2^0 set can be approximated by the symmetric difference of recursively enumerable sets.

Theorem (Shoenfield)

For any Δ^0_2 -set, there exists a recursive function $f: \mathbb{N} \times \mathbb{N} \to \{0,1\}$ such that $\lim_s f(x,s) = A(x)$. $(A(x) \Leftrightarrow x \in A \Leftrightarrow \chi_A(x) = 1)$

This induces the Ershov hierarchy, the symmetric difference of a recursively enumerable sets for an element a of Klneene's ordinal notation system \mathcal{O} .

Shoenfield Limit lemma

Any Δ_2^0 set can be approximated by the symmetric difference of recursively enumerable sets.

Theorem (Shoenfield)

For any Δ_2^0 -set, there exists a recursive function $f: \mathbb{N} \times \mathbb{N} \to \{0,1\}$ such that $\lim_s f(x,s) = A(x)$. $(A(x) \Leftrightarrow x \in A \Leftrightarrow \chi_A(x) = 1)$

This induces the Ershov hierarchy, the symmetric difference of a recursively enumerable sets for an element a of Klneene's ordinal notation system \mathcal{O} .

Kleene's ${\cal O}$

Definition (Kleene's \mathcal{O})

The set $\mathcal{O} \subseteq \mathbb{N}$ of notations, a function $|\cdot|_{\mathcal{O}}: \mathcal{O} \to \mathit{Ord}$ and a strict partial order $<_{\mathcal{O}}$ on \mathcal{O} are defined simultaneously.

- 1. $1 \in \mathcal{O}$ and $|1|_{\mathcal{O}} = 0$.
- 2. If $a \in \mathcal{O}$ and $|a|_{\mathcal{O}} = \alpha$, then $2^a \in \mathcal{O}$ and $|2^a|_{\mathcal{O}} = \alpha + 1$.
- 3. If e is a code of a total recursive function such that $|\{e\}(n)|_{\mathcal{O}} = \alpha_n$ and $\{e\}(n) <_{\mathcal{O}} \{e\}(n+1)$ hold for all $n \in \mathbb{N}$, then $3 \cdot 5^e \in \mathcal{O}$ and $|3 \cdot 5^e|_{\mathcal{O}} = \lim_n \alpha_n$.

- 1. $<_{\mathcal{O}}$ and \mathcal{O} are Π_1^1 -definable sets.
- 2. $<_{\mathcal{O}}$ is a well-founded partial order on \mathcal{O}
- 3. $\langle o \rangle$ a is a linear order for any $a \in \mathcal{O}$,

Kleene's ${\cal O}$

Definition (Kleene's \mathcal{O})

The set $\mathcal{O} \subseteq \mathbb{N}$ of notations, a function $|\cdot|_{\mathcal{O}}: \mathcal{O} \to \mathit{Ord}$ and a strict partial order $<_{\mathcal{O}}$ on \mathcal{O} are defined simultaneously.

- 1. $1 \in \mathcal{O}$ and $|1|_{\mathcal{O}} = 0$.
- 2. If $a \in \mathcal{O}$ and $|a|_{\mathcal{O}} = \alpha$, then $2^a \in \mathcal{O}$ and $|2^a|_{\mathcal{O}} = \alpha + 1$.
- 3. If e is a code of a total recursive function such that $|\{e\}(n)|_{\mathcal{O}} = \alpha_n$ and $\{e\}(n) <_{\mathcal{O}} \{e\}(n+1)$ hold for all $n \in \mathbb{N}$, then $3 \cdot 5^e \in \mathcal{O}$ and $|3 \cdot 5^e|_{\mathcal{O}} = \lim_n \alpha_n$.

- 1. $<_{\mathcal{O}}$ and \mathcal{O} are Π_1^1 -definable sets.
- 2. $<_{\mathcal{O}}$ is a well-founded partial order on \mathcal{O} .
- 3. $\langle o \rangle$ a is a linear order for any $a \in \mathcal{O}$.

Kleene's ${\cal O}$

Definition (Kleene's \mathcal{O})

The set $\mathcal{O} \subseteq \mathbb{N}$ of notations, a function $|\cdot|_{\mathcal{O}} : \mathcal{O} \to \mathit{Ord}$ and a strict partial order $<_{\mathcal{O}}$ on \mathcal{O} are defined simultaneously.

- 1. $1 \in \mathcal{O}$ and $|1|_{\mathcal{O}} = 0$.
- 2. If $a \in \mathcal{O}$ and $|a|_{\mathcal{O}} = \alpha$, then $2^a \in \mathcal{O}$ and $|2^a|_{\mathcal{O}} = \alpha + 1$.
- 3. If e is a code of a total recursive function such that $|\{e\}(n)|_{\mathcal{O}} = \alpha_n$ and $\{e\}(n) <_{\mathcal{O}} \{e\}(n+1)$ hold for all $n \in \mathbb{N}$, then $3 \cdot 5^e \in \mathcal{O}$ and $|3 \cdot 5^e|_{\mathcal{O}} = \lim_n \alpha_n$.

- 1. $<_{\mathcal{O}}$ and \mathcal{O} are Π_1^1 -definable sets.
- 2. $<_{\mathcal{O}}$ is a well-founded partial order on \mathcal{O} .
- 3. $\langle \mathcal{O} \rangle$ a is a linear order for any $a \in \mathcal{O}$,

Kleene's \mathcal{O}

Definition (Kleene's \mathcal{O})

The set $\mathcal{O} \subseteq \mathbb{N}$ of notations, a function $|\cdot|_{\mathcal{O}} : \mathcal{O} \to \mathit{Ord}$ and a strict partial order $<_{\mathcal{O}}$ on \mathcal{O} are defined simultaneously.

- 1. $1 \in \mathcal{O}$ and $|1|_{\mathcal{O}} = 0$.
- 2. If $a \in \mathcal{O}$ and $|a|_{\mathcal{O}} = \alpha$, then $2^a \in \mathcal{O}$ and $|2^a|_{\mathcal{O}} = \alpha + 1$.
- 3. If e is a code of a total recursive function such that $|\{e\}(n)|_{\mathcal{O}} = \alpha_n$ and $\{e\}(n) <_{\mathcal{O}} \{e\}(n+1)$ hold for all $n \in \mathbb{N}$, then $3 \cdot 5^e \in \mathcal{O}$ and $|3 \cdot 5^e|_{\mathcal{O}} = \lim_n \alpha_n$.

- 1. $<_{\mathcal{O}}$ and \mathcal{O} are Π_1^1 -definable sets.
- 2. $<_{\mathcal{O}}$ is a well-founded partial order on \mathcal{O} .
- 3. $\langle \mathcal{O} |$ a is a linear order for any $a \in \mathcal{O}$, .

Definition (a-r.e. sets)

Let $a \in \mathcal{O}$. $A \subseteq \mathbb{N}$ is *a*-r.e. if there exist recursive functions $f : \mathbb{N} \times \mathbb{N} \to \{0,1\}$ and $o : \mathbb{N} \times \mathbb{N} \to \mathcal{O}$ s.t.

- 1. f(x,0) = 0 and $o(x,0) <_{\mathcal{O}} a$ for all x.
- 2. $o(x, s + 1) \leq_{\mathcal{O}} o(x, s)$ for all x and s.
- 3. For all x and for all s, if $f(x, s + 1) \neq f(x, s)$, then $o(x, s + 1) <_{\mathcal{O}} o(x, s)$.
- 4. $\lim_s f(x,s) = A(x)$ for all x.

Theorem (Stephan-Yang-Yu '10)

Definition (a-r.e. sets)

Let $a \in \mathcal{O}$. $A \subseteq \mathbb{N}$ is *a*-r.e. if there exist recursive functions $f : \mathbb{N} \times \mathbb{N} \to \{0,1\}$ and $o : \mathbb{N} \times \mathbb{N} \to \mathcal{O}$ s.t.

- 1. f(x,0) = 0 and $o(x,0) <_{\mathcal{O}} a$ for all x.
- 2. $o(x, s + 1) \leq_{\mathcal{O}} o(x, s)$ for all x and s.
- 3. For all x and for all s, if $f(x, s + 1) \neq f(x, s)$, then $o(x, s + 1) <_{\mathcal{O}} o(x, s)$.
- 4. $\lim_s f(x,s) = A(x)$ for all x.

Theorem (Stephan-Yang-Yu '10)

Definition (a-r.e. sets)

Let $a \in \mathcal{O}$. $A \subseteq \mathbb{N}$ is a-r.e. if there exist recursive functions $f : \mathbb{N} \times \mathbb{N} \to \{0,1\}$ and $o : \mathbb{N} \times \mathbb{N} \to \mathcal{O}$ s.t.

- 1. f(x,0) = 0 and $o(x,0) <_{\mathcal{O}} a$ for all x.
- 2. $o(x, s + 1) \leq_{\mathcal{O}} o(x, s)$ for all x and s.
- 3. For all x and for all s, if $f(x, s + 1) \neq f(x, s)$, then $o(x, s + 1) <_{\mathcal{O}} o(x, s)$.
- 4. $\lim_s f(x,s) = A(x)$ for all x.

Theorem (Stephan-Yang-Yu '10)

Definition (a-r.e. sets)

Let $a \in \mathcal{O}$. $A \subseteq \mathbb{N}$ is *a*-r.e. if there exist recursive functions $f: \mathbb{N} \times \mathbb{N} \to \{0,1\}$ and $o: \mathbb{N} \times \mathbb{N} \to \mathcal{O}$ s.t.

- 1. f(x,0) = 0 and $o(x,0) <_{\mathcal{O}} a$ for all x.
- 2. $o(x, s + 1) \leq_{\mathcal{O}} o(x, s)$ for all x and s.
- 3. For all x and for all s, if $f(x, s + 1) \neq f(x, s)$, then $o(x, s + 1) <_{\mathcal{O}} o(x, s)$.
- 4. $\lim_s f(x,s) = A(x)$ for all x.

Theorem (Stephan-Yang-Yu '10)

Definition (a-r.e. sets)

Let $a \in \mathcal{O}$. $A \subseteq \mathbb{N}$ is a-r.e. if there exist recursive functions $f : \mathbb{N} \times \mathbb{N} \to \{0,1\}$ and $o : \mathbb{N} \times \mathbb{N} \to \mathcal{O}$ s.t.

- 1. f(x,0) = 0 and $o(x,0) <_{\mathcal{O}} a$ for all x.
- 2. $o(x, s + 1) \leq_{\mathcal{O}} o(x, s)$ for all x and s.
- 3. For all x and for all s, if $f(x, s + 1) \neq f(x, s)$, then $o(x, s + 1) <_{\mathcal{O}} o(x, s)$.
- 4. $\lim_s f(x,s) = A(x)$ for all x.

Theorem (Stephan-Yang-Yu '10)

Definition (a-r.e. sets)

Let $a \in \mathcal{O}$. $A \subseteq \mathbb{N}$ is a-r.e. if there exist recursive functions $f : \mathbb{N} \times \mathbb{N} \to \{0,1\}$ and $o : \mathbb{N} \times \mathbb{N} \to \mathcal{O}$ s.t.

- 1. f(x,0) = 0 and $o(x,0) <_{\mathcal{O}} a$ for all x.
- 2. $o(x, s + 1) \leq_{\mathcal{O}} o(x, s)$ for all x and s.
- 3. For all x and for all s, if $f(x, s + 1) \neq f(x, s)$, then $o(x, s + 1) <_{\mathcal{O}} o(x, s)$.
- 4. $\lim_s f(x,s) = A(x)$ for all x.

Theorem (Stephan-Yang-Yu '10)

Remarks

- Original idea: to layer the Δ_2^0 -Det* by the Ershov hierarchy.
- Oversight of the speaker: The theorem fails for $A \subseteq 2^{\mathbb{N}}$ (addressed by T. Kihara).
 - Δ_2^0 subsets of $2^{\mathbb{N}}$ will not be exhausted at ω^2 .
 - The Ershov hierarchy might not be appropriate for fine-grained analysis of determinacy of Δ_2^0 -definable games.
- This talk presents very partial results.

$(\Sigma_1^0)_a$ -formula

Definition

Let $a \in \mathcal{O}$. Assume the relation $<_{\mathcal{O}} \upharpoonright a$ can be expressed in an underlying formal system.

Then we say a formula is $(\Sigma_1^0)_a$ -formula if it is of the form $(\exists b <_{\mathcal{O}} a) [\varphi(b) \land (\forall c <_{\mathcal{O}} b) \neg \varphi(c)]$ for some Σ_1^0 -formula φ .

Intuitively, a $(\Sigma_1^0)_a$ -formula expresses

$$(\exists b <_{\mathcal{O}} a) [\exists s \ f(s,b) = 0 \land (\forall c <_{\mathcal{O}} b) \forall s \ f(s,c) = 1]$$

$(\Sigma_1^0)_a$ -formula

Definition

Let $a \in \mathcal{O}$. Assume the relation $<_{\mathcal{O}} \upharpoonright a$ can be expressed in an underlying formal system.

Then we say a formula is $(\Sigma_1^0)_a$ -formula if it is of the form $(\exists b <_{\mathcal{O}} a) [\varphi(b) \land (\forall c <_{\mathcal{O}} b) \neg \varphi(c)]$ for some Σ_1^0 -formula φ .

Intuitively, a $(\Sigma_1^0)_a$ -formula expresses:

$$(\exists b <_{\mathcal{O}} a) [\exists s \ f(s,b) = 0 \land (\forall c <_{\mathcal{O}} b) \forall s \ f(s,c) = 1]$$

Admissible set theory

A system $\mathrm{KPu^0}$ of admissible set theory: Weak subsystem of ZF without (Power) over $\mathcal{L}_{\mathrm{ZF}} \cup \{\mathsf{Ad}\}$ s.t.

- 1. Axiom of Separation is limited to Δ_0 -formulas.
- 2. Axiom of Replacement is limited the axiom of Collection for Δ_0 formulas.
- 3. Axioms for Ad: Ad(z) means z is an admissible set, i.e., z satisfies (Δ_0 -Sep) and (Δ_0 -Col).

Note

- KPu⁰ ⊢ Δ₁¹-CA₀. Hence KPu⁰ is strong enough for a base system.
- Unlike KPu (or KP), transfinite induction holds in KPu only for Δ_0 -formulas.

Admissible set theory

A system $\mathrm{KPu^0}$ of admissible set theory: Weak subsystem of ZF without (Power) over $\mathcal{L}_{\mathrm{ZF}} \cup \{\mathsf{Ad}\}$ s.t.

- 1. Axiom of Separation is limited to Δ_0 -formulas.
- 2. Axiom of Replacement is limited the axiom of Collection for Δ_{0} formulas.
- 3. Axioms for Ad: Ad(z) means z is an admissible set, i.e., z satisfies (Δ_0 -Sep) and (Δ_0 -Col).

Note:

- $KPu^0 \vdash \Delta_1^1\text{-}CA_0$. Hence KPu^0 is strong enough for a base system.
- Unlike KPu (or KP), transfinite induction holds in KPu only for Δ_0 -formulas.

Admissible set theory

A system $\mathrm{KPu^0}$ of admissible set theory: Weak subsystem of ZF without (Power) over $\mathcal{L}_{\mathrm{ZF}} \cup \{\mathsf{Ad}\}$ s.t.

- 1. Axiom of Separation is limited to Δ_0 -formulas.
- 2. Axiom of Replacement is limited the axiom of Collection for Δ_0 formulas.
- 3. Axioms for Ad: Ad(z) means z is an admissible set, i.e., z satisfies (Δ_0 -Sep) and (Δ_0 -Col).

Note:

- $KPu^0 \vdash \Delta_1^1\text{-}CA_0$. Hence KPu^0 is strong enough for a base system.
- Unlike KPu (or KP), transfinite induction holds in KPu only for Δ_0 -formulas.

Admissible set theory with iterated admissible universes

$$\mathrm{KPu}^0 + (\mathcal{U}_n)$$
 (over $\mathcal{L}_{\mathrm{ZF}} \cup \{\mathsf{Ad}\} \cup \{\mathit{d}_0, \ldots, \mathit{d}_{n-1}\}$):

$$Ad(d_0) \wedge \cdots \wedge Ad(d_{n-1}) \wedge d_0 \in d_1 \wedge \cdots \wedge d_{n-2} \in d_{n-1}$$
 (\mathcal{U}_n)

The set d_0 could be interpreted as $L_{\omega_1^{\text{CK}}}$.

Theorem (Jäger '84)

|T|: maximal order type of recursive well ordering provable in T. $(\alpha, \beta) \mapsto \varphi(\alpha, \beta)$: Veblen function.

1.
$$|KPu^0 + (\mathcal{U}_1)| = \varphi(\varepsilon_0, 0)$$
.

2.
$$|KPu^0 + (\mathcal{U}_{n+2})| = \varphi(|KPu^0 + (\mathcal{U}_{n+1})|, 0)$$

Therefore $|\bigcup_{n<\omega} \mathrm{KPu}^0 + (\mathcal{U}_n)| = |\mathrm{ATR}_0| = \Gamma_0$

Admissible set theory with iterated admissible universes

$$\mathrm{KPu}^0 + (\mathcal{U}_n)$$
 (over $\mathcal{L}_{\mathrm{ZF}} \cup \{\mathrm{Ad}\} \cup \{d_0, \ldots, d_{n-1}\}$):

$$Ad(d_0) \wedge \cdots \wedge Ad(d_{n-1}) \wedge d_0 \in d_1 \wedge \cdots \wedge d_{n-2} \in d_{n-1}$$
 (\mathcal{U}_n)

The set d_0 could be interpreted as $L_{\omega_1^{\text{CK}}}$.

Theorem (Jäger '84)

|T|: maximal order type of recursive well ordering provable in T. $(\alpha, \beta) \mapsto \varphi(\alpha, \beta)$: Veblen function.

- 1. $|KPu^0 + (\mathcal{U}_1)| = \varphi(\varepsilon_0, 0)$.
- 2. $|KPu^0 + (\mathcal{U}_{n+2})| = \varphi(|KPu^0 + (\mathcal{U}_{n+1})|, 0).$

Therefore $|\bigcup_{n \leq \omega} \mathrm{KPu}^0 + (\mathcal{U}_n)| = |\mathrm{ATR}_0| = \Gamma_0$.

Fixed point axiom holds in $\bigcup_{n<\omega} \mathrm{KPu} + (\mathcal{U}_n)$

Admissible sets have a closure property: The fixed point axiom for arithmetically definably operators holds in $\bigcup_{n<\omega} \mathrm{KPu} + (\mathcal{U}_n)$.

Lemma (Jäger '84)

 $\varphi(X, \vec{Y}, x)$: X-positive arithmetical formula.

$$\mathrm{KPu} + (\mathcal{U}_{n+1}) \vdash (\forall \vec{Y} \in \frac{d_{n-1}}{(\exists X \in \frac{d_n}{(\forall X)} (\forall X) (x \in X \leftrightarrow \varphi(X, \vec{Y}, X))})$$

(Hence at most n-fold iterated application of fixed point axiom is possible)

Note: due to absence of transfinite recursion, the leastness of the fixed point is not provable.

Fixed point axiom holds in $\bigcup_{n<\omega} \mathrm{KPu} + (\mathcal{U}_n)$

Admissible sets have a closure property: The fixed point axiom for arithmetically definably operators holds in $\bigcup_{n<\omega} \mathrm{KPu} + (\mathcal{U}_n)$.

Lemma (Jäger '84)

 $\varphi(X, \vec{Y}, x)$: X-positive arithmetical formula.

$$\mathrm{KPu} + (\mathcal{U}_{n+1}) \vdash (\forall \vec{Y} \in d_{n-1})(\exists X \in d_n)(\forall x) \left(x \in X \leftrightarrow \varphi(X, \vec{Y}, x)\right)$$

(Hence at most n-fold iterated application of fixed point axiom is possible)

Note: due to absence of transfinite recursion, the leastness of the fixed point is not provable.

$\overline{ ext{ATR}_0}$ holds in $\bigcup_{n<\omega} ext{KPu} + (\mathcal{U}_n)$

 ATR_0 holds in $\bigcup_{n < \omega} KPu^0 + (\mathcal{U}_n)$.

. Lemma (Jäger '84)

 φ : arithmetical formula.

$$(\forall <, \vec{Y} \in d_n)$$

$$WO(<) \rightarrow$$

$$(\exists X \in d_n)(\forall \alpha \in field(<)) \forall x \left(x \in X_\alpha \leftrightarrow \varphi(X_{<\alpha}, \vec{Y}, x)\right)$$

holds in $KPu^0 + (\mathcal{U}_{n+1})$.

Well-ordering of $<_{\mathcal{O}}$ up to $\omega \cdot n$

Lemma

Let $n < \omega$ and $a_n = 3 \cdot 5^{e_n} \in \mathcal{O}$ represent $\omega \cdot (n+1)$.

- 1. $<_{\mathcal{O}} \upharpoonright a_n$ of $<_{\mathcal{O}}$ is definable in $KPu + (\mathcal{U}_{n+1})$.
- 2. $KPu + (\mathcal{U}_{n+1}) \vdash WO(<_{\mathcal{O}} \upharpoonright a_n)$.

Proof

By *n*-fold application of FP axiom, define a relation $<_n \in d_n$:

$$b <_0 a \leftrightarrow (b = 1 \land a = 2^1) \lor \exists c(b \leqslant_0 c \land a = 2^c)$$

$$b <_{n+1} a \leftrightarrow \begin{cases} b <_n a \lor \exists c(b \leqslant_{n+1} c \land a = 2^c) \lor \\ [a = a_n \land \forall m(\{e_n\}(m) <_n \{e_n\}(m+1)) \land \\ \exists m(b <_n \{e_n\}(m))] \end{cases}$$

See $<_n = <_{\mathcal{O}} \upharpoonright a_n$. Show $KPu + (\mathcal{U}_{n+1}) \vdash WO(<_n)$ by ind on n.

Well-ordering of $<_{\mathcal{O}}$ up to $\omega \cdot n$

Lemma

Let $n < \omega$ and $a_n = 3 \cdot 5^{e_n} \in \mathcal{O}$ represent $\omega \cdot (n+1)$.

- 1. $<_{\mathcal{O}} \upharpoonright$ a_n of $<_{\mathcal{O}}$ is definable in $KPu + (\mathcal{U}_{n+1})$.
- 2. KPu + (\mathcal{U}_{n+1}) \vdash WO $(<_{\mathcal{O}} \upharpoonright a_n)$.

Proof.

By *n*-fold application of FP axiom, define a relation $<_n \in d_n$:

$$b <_{0} a \leftrightarrow (b = 1 \land a = 2^{1}) \lor \exists c(b \leqslant_{0} c \land a = 2^{c})$$

$$b <_{n+1} a \leftrightarrow \begin{cases} b <_{n} a \lor \exists c(b \leqslant_{n+1} c \land a = 2^{c}) \lor \\ [a = a_{n} \land \forall m(\{e_{n}\}(m) <_{n} \{e_{n}\}(m+1)) \land \\ \exists m(b <_{n} \{e_{n}\}(m))] \end{cases}$$

See $<_n = <_{\mathcal{O}} \upharpoonright a_n$. Show $KPu + (\mathcal{U}_{n+1}) \vdash WO(<_n)$ by ind on n.

Theorem

Theorem

Let $1 \leq n$. Suppose that $a \in \mathcal{O}$ is a notation for $\omega \cdot n$. Then $\mathrm{KPu}^0 + (\mathcal{U}_n) \vdash (\Sigma_1^0)_a\text{-}\mathrm{Det}^*$.

Outline of Proof

Given a $(\Sigma_1^0)_a$ formula $\varphi(f)$, define a set $W_b \in d_{n-1}$ $(b <_{\mathcal{O}} \upharpoonright a)$ of winning positions $s \in 2^{<\mathbb{N}}$ by (ATR):

$$s \in W_b \leftrightarrow \psi(s, W_{\leq_{\mathcal{O}} b}),$$

where $\psi \in \Pi_0^1$ is defined from φ . Define a new Σ_1^0 game $\varphi'(f) :\equiv \exists m (\exists b <_{\mathcal{O}} a) \langle f(0), \dots, f(2m-1) \rangle \in W_b$.

- 1. If Player I wins $\varphi'(f)$, then I wins $\varphi(f)$
- 2. If Player II wins $\varphi'(f)$, then II wins $\varphi(f)$.

Note: Σ_1^0 -Det* holds in $KPu^0 + (\mathcal{U}_n)$.

Theorem

Theorem

Let $1 \leq n$. Suppose that $a \in \mathcal{O}$ is a notation for $\omega \cdot n$. Then $\mathrm{KPu}^0 + (\mathcal{U}_n) \vdash (\Sigma_1^0)_a\text{-}\mathrm{Det}^*$.

Outline of Proof.

Given a $(\Sigma_1^0)_a$ formula $\varphi(f)$, define a set $W_b \in d_{n-1}$ $(b <_{\mathcal{O}} \upharpoonright a)$ of winning positions $s \in 2^{<\mathbb{N}}$ by (ATR):

$$s \in W_b \leftrightarrow \psi(s, W_{<_{\mathcal{O}}b}),$$

where $\psi \in \Pi^1_0$ is defined from φ . Define a new Σ^0_1 game

$$ho'(f) :\equiv \exists m(\exists b <_{\mathcal{O}} a) \langle f(0), \dots, f(2m-1) \rangle \in W_b.$$

- 1. If Player I wins $\varphi'(f)$, then I wins $\varphi(f)$
- 2. If Player II wins $\varphi'(f)$, then II wins $\varphi(f)$.
- Note: Σ_1^0 -Det* holds in KPu⁰ + (\mathcal{U}_n)

Theorem

Theorem

Let $1 \leq n$. Suppose that $a \in \mathcal{O}$ is a notation for $\omega \cdot n$. Then $\mathrm{KPu}^0 + (\mathcal{U}_n) \vdash (\Sigma_1^0)_a\text{-}\mathrm{Det}^*$.

Outline of Proof.

Given a $(\Sigma_1^0)_a$ formula $\varphi(f)$, define a set $W_b \in d_{n-1}$ $(b <_{\mathcal{O}} \upharpoonright a)$ of winning positions $s \in 2^{<\mathbb{N}}$ by (ATR):

$$s \in W_b \leftrightarrow \psi(s, W_{<_{\mathcal{O}}b}),$$

where $\psi \in \Pi_0^1$ is defined from φ . Define a new Σ_1^0 game $\varphi'(f) :\equiv \exists m(\exists b <_{\mathcal{O}} a) \langle f(0), \dots, f(2m-1) \rangle \in W_b$.

- 1. If Player I wins $\varphi'(f)$, then I wins $\varphi(f)$.
- 2. If Player II wins $\varphi'(f)$, then II wins $\varphi(f)$.

Note: Σ_1^0 -Det* holds in $KPu^0 + (\mathcal{U}_n)$.

Conclusion

Summary

- Aiming fine-grained analysis of determinacy of Δ_2^0 -definable games in the Cantor space.
- Layering based on the Ershov hierarchy, which turns out to be questionable.
- Obtained partial results strongly rely on the definability and provability of the well ordering of <_O ↑ a.
- This observation is consistent with the results about $(\Sigma_1^0)_{\alpha}\text{-}\mathrm{Det}^*$ $(\alpha < \Gamma_0)$ by Nemoto-Sato.

Thank you for your listening!

Speaker is supported by JSPS postdoctoral fellowships for young scientists.

Conclusion

Summary

- Aiming fine-grained analysis of determinacy of Δ_2^0 -definable games in the Cantor space.
- Layering based on the Ershov hierarchy, which turns out to be questionable.
- Obtained partial results strongly rely on the definability and provability of the well ordering of <_O \ a.
- This observation is consistent with the results about $(\Sigma_1^0)_{\alpha}\text{-}\mathrm{Det}^*$ $(\alpha < \Gamma_0)$ by Nemoto-Sato.

Thank you for your listening!

Speaker is supported by JSPS postdoctoral fellowships for young scientists.