Classical provability of uniform versions and intuitionistic provability

Makoto Fujiwara (joint work with Ulrich Kohlenbach)

Mathematical Institute, Tohoku University

CTFM2014 19, February, 2014

Introduction

Many mathematical statements have Π_2 form:

$$\forall X \left(A(X) \to \exists Y B(X, Y) \right).$$

Intermediate Value Theorem.

For any continuous function $f : [0, 1] \to \mathbb{R}$ s.t. f(0) < 0 < f(1), then there exists a point $m \in [0, 1]$ s.t. f(m) = 0.

For Π_2 statements, we study the relationship between uniform provability in classical reverse mathematics and intuitionistic (constructive) reverse mathematics.

Introduction

Many mathematical statements have Π_2 form:

$$\forall X \left(A(X) \to \exists Y B(X, Y) \right).$$

Intermediate Value Theorem.

For any continuous function $f : [0, 1] \to \mathbb{R}$ s.t. f(0) < 0 < f(1), then there exists a point $m \in [0, 1]$ s.t. f(m) = 0.

For Π_2 statements, we study the relationship between uniform provability in classical reverse mathematics and intuitionistic (constructive) reverse mathematics.

• Many Π_2^1 statements are provable in RCA(RCA₀+full induction).

- In some of their proofs, however, the construction of the solution Y from given X is not uniform.
- To reveal the non-uniformity, the following sequential version has been investigated.

	Pointwise	Sequential
JD (The existence of Jordan decomposi-	RCA	ACA
tion for real square matrices)		
IPP (Infinite pigeonhole principle)	RCA	ACA
IVT (Intermediate value theorem)	RCA	WKL
TET (Tietze extension theorem)	RCA	RCA

- Many Π_2^1 statements are provable in RCA(RCA₀+full induction).
- In some of their proofs, however, the construction of the solution ${\cal Y}$ from given ${\cal X}$ is not uniform.
- To reveal the non-uniformity, the following sequential version has been investigated.

	Pointwise	Sequential
JD (The existence of Jordan decomposi-	RCA	ACA
tion for real square matrices)		
IPP (Infinite pigeonhole principle)	RCA	ACA
IVT (Intermediate value theorem)	RCA	WKL
TET (Tietze extension theorem)	RCA	RCA

- Many Π_2^1 statements are provable in RCA(RCA₀+full induction).
- In some of their proofs, however, the construction of the solution Y from given X is not uniform.
- To reveal the non-uniformity, the following sequential version has been investigated.

	Pointwise	Sequential
JD (The existence of Jordan decomposi-	RCA	ACA
tion for real square matrices)		
IPP (Infinite pigeonhole principle)	RCA	ACA
IVT (Intermediate value theorem)	RCA	WKL
TET (Tietze extension theorem)	RCA	RCA

- Many Π_2^1 statements are provable in RCA(RCA₀+full induction).
- In some of their proofs, however, the construction of the solution Y from given X is not uniform.
- To reveal the non-uniformity, the following sequential version has been investigated.

	Pointwise	Sequential
JD (The existence of Jordan decomposi-	RCA	ACA
tion for real square matrices)		
IPP (Infinite pigeonhole principle)	RCA	ACA
IVT (Intermediate value theorem)	RCA	WKL
TET (Tietze extension theorem)	RCA	RCA

Uniform Versions

• The following uniform version seems to be rather acceptable than the sequential version as representation of uniformity.

$\exists \Phi \forall X (A(X) \to B(X, \Phi(X))).$

(Note that uniform version implies sequential version.)

- However, for a Π^1_2 sentence, its uniform version is not naturally represented in the language of second-order arithmetic.
- To treat uniform versions, the system of arithmetic in all finite types is employed.

Uniform Versions

• The following uniform version seems to be rather acceptable than the sequential version as representation of uniformity.

$\exists \Phi \forall X (A(X) \to B(X, \Phi(X))).$

(Note that uniform version implies sequential version.)

- However, for a Π_2^1 sentence, its uniform version is not naturally represented in the language of second-order arithmetic.
- To treat uniform versions, the system of arithmetic in all finite types is employed.

Uniform Versions

• The following uniform version seems to be rather acceptable than the sequential version as representation of uniformity.

$\exists \Phi \forall X (A(X) \to B(X, \Phi(X))).$

(Note that uniform version implies sequential version.)

- However, for a Π^1_2 sentence, its uniform version is not naturally represented in the language of second-order arithmetic.
- To treat uniform versions, the system of arithmetic in all finite types is employed.

- Hilbert-type system E-HA^ω (resp. E-PA^ω) is the finite type extension of HA (resp. PA).
- $E-PA^{\omega} := E-HA^{\omega} + LEM(A \vee \neg A).$

•
$$\mathsf{RCA}^{\omega} := \mathsf{E}-\mathsf{PA}^{\omega} + \mathrm{QF}-\mathrm{AC}^{1,0}$$

Proposition. (Kohlenbach 2001)

 RCA^{ω} is a conservative extension of RCA.

- Hilbert-type system E-HA^ω (resp. E-PA^ω) is the finite type extension of HA (resp. PA).
- $E-PA^{\omega} := E-HA^{\omega} + LEM(A \vee \neg A).$

•
$$\mathsf{RCA}^{\omega} := \mathsf{E}-\mathsf{PA}^{\omega} + \mathrm{QF}-\mathrm{AC}^{1,0}$$

Proposition. (Kohlenbach 2001)

 RCA^{ω} is a conservative extension of RCA.

Strength of Uniform Versions

• $\mathsf{RCA}^{\omega} \vdash \mathrm{UWKL} \leftrightarrow \mathrm{UACA}$. (Kohlenbach 2001)

		Pointwise	Sequential	Uniform (over RCA^ω)
	JD	RCA	ACA	
•	IPP	RCA	ACA	UACA
	IVT	RCA	WKL	
	TET	RCA	RCA	RCA^ω

- UWKL is the uniform version of WKL.
- UACA: $\exists E^2 \forall f^1 \left(E(f) = 0 \leftrightarrow \exists x^0 (f(x) = 0) \right)$.

Remark.

 RCA^{ω} is too strong as base system for investigating uniform versions!

Strength of Uniform Versions

• $\mathsf{RCA}^{\omega} \vdash \mathrm{UWKL} \leftrightarrow \mathrm{UACA}$. (Kohlenbach 2001)

		Pointwise	Sequential	Uniform (over RCA^ω)
	JD	RCA	ACA	
•	IPP	RCA	ACA	UACA
	IVT	RCA	WKL	
	TET	RCA	RCA	RCA^ω

- UWKL is the uniform version of WKL.
- UACA: $\exists E^2 \forall f^1 \left(E(f) = 0 \leftrightarrow \exists x^0 (f(x) = 0) \right)$.

Remark.

 RCA^ω is too strong as base system for investigating uniform versions!

The Systems with Weak Extensionality

• Our systems have only $=_0$ as predicate symbol and $s^\rho =_\rho t^\rho$ is the abbreviation for

$$\forall v_1^{\rho_1}, \dots, v_k^{\rho_k} \left(s(v_1 \dots v_k) =_0 t(v_1 \dots v_k) \right)$$

where $\rho = \rho_1 \rightarrow \dots \rightarrow \rho_k \rightarrow 0$.

• E-PA $^{\omega}$ have the **extensionality** axiom (E):

$$\forall z^{\rho \to \tau}, x^{\rho}, y^{\rho}(x =_{\rho} y \to z(x) =_{\tau} z(y)).$$

• WE-PA^{ω} (resp. WE-HA^{ω}) is the subsystem of E-PA^{ω} (resp. E-HA^{ω}) where (E) is replaced by the **weak extensionality rule**:

$$\frac{A_{qf} \to s =_{\rho} t}{A_{qf} \to r^{\tau}[s/x^{\rho}] =_{\tau} r[t/x^{\rho}]}.$$

- WRCA^{ω} := WE-PA^{ω} + QF-AC^{1,0}.
- WRCA^{\u03c6} is a conservative extension of RCA.

Strength of Uniform Versions over WRCA^ω

• By comparing the provably recursive functions, we have $\mathsf{WRCA}^\omega + \mathrm{UWKL} \nvDash \mathrm{UACA}.$

	Pointwise	Sequential	Uniform (over WRCA $^{\omega}$)
JD	RCA	ACA	UACA
IPP	RCA	ACA	UACA
IVT	RCA	WKL	UWKL
TET	RCA	RCA	$WRCA^\omega$

Strength of Uniform Versions over WRCA^ω

• By comparing the provably recursive functions, we have $\mathsf{WRCA}^\omega + \mathrm{UWKL} \nvDash \mathrm{UACA}.$

		Pointwise	Sequential	Uniform (over $WRCA^{\omega}$)
•	JD	RCA	ACA	UACA
	IPP	RCA	ACA	UACA
	IVT	RCA	WKL	UWKL
	TET	RCA	RCA	$WRCA^\omega$

Observation from Classical Reverse Mathematics

For the statements non-uniformly provable in RCA, the shift of the strength by uniformization seems to be caused from the use of $\mathbf{LEM} : A \lor \neg A$ for undecidable A.

The following result expresses the informal idea that if a Π_2 statement is provable without the use of LEM, then it has a uniform proof.

Theorem. (Hirst-Mummert 2011)

For a Π_2 sentence $S := \forall x^{\rho} (A(x) \rightarrow \exists y^{\tau} B(x, y))$ where A is purely universal and B has the suitable syntactical form, if

WE-HA^{ω} + AC^{ω} + IP^{ω} + M^{ω} \vdash S, then

WRCA^{ω} \vdash Uni(S).

• $\operatorname{IP}^{\rho,\tau}_{\forall}$: $(\forall z^{\rho}A_{qf} \to \exists x^{\tau}B(x)) \to \exists x^{\tau}(\forall z^{\rho}A_{qf} \to B(x^{\rho})).$

•
$$\mathbf{M}^{\rho}: \neg \neg \exists x^{\rho} A_0(x) \to \exists x^{\rho} A_0(x).$$

The proof is straightforward by the usual Dialectica interpretation (which extracts the term constructing y from x).

The following result expresses the informal idea that if a Π_2 statement is provable without the use of LEM, then it has a uniform proof.

Theorem. (Hirst-Mummert 2011)

For a Π_2 sentence $S := \forall x^{\rho} (A(x) \rightarrow \exists y^{\tau} B(x, y))$ where A is purely universal and B has the suitable syntactical form, if

WE-HA^{ω} + AC^{ω} + IP^{ω} + M^{ω} \vdash S, then

 $WRCA^{\omega} \vdash Uni(S).$

•
$$\operatorname{IP}_{\forall}^{\rho,\tau}$$
: $(\forall z^{\rho}A_{qf} \to \exists x^{\tau}B(x)) \to \exists x^{\tau}(\forall z^{\rho}A_{qf} \to B(x^{\rho})).$

•
$$\mathbf{M}^{\rho}: \neg \neg \exists x^{\rho} A_0(x) \to \exists x^{\rho} A_0(x).$$

The proof is straightforward by the usual Dialectica interpretation (which extracts the term constructing y from x).

Corollary. For a Π_2 sentence S of the previous syntactical form, if WE-HA^{ω} + AC^{ω} + IP^{ω}_{\forall} + M^{ω} \vdash S, then RCA \vdash Seq(S).

Application. VT, IPP, JD are not provable in E-HA^{ω} + AC^{ω} + IP^{ω} + M^{ω}.

Corollary.

For a Π_2 sentence S of the previous syntactical form, if

 $WE-HA^{\omega} + AC^{\omega} + IP^{\omega}_{\forall} + M^{\omega} \vdash S$, then

 $\mathsf{RCA} \vdash \mathrm{Seq}(\mathrm{S}).$

Application.

IVT, IPP, JD are not provable in E-HA^{ω} + AC^{ω} + IP^{ω}_{\forall} + M^{ω}.

Motivating Results

Hierarchy of LEM over HA (Akama et al., 2004)

Some equivalences over intuitionistic systems (like WE-HA $^{\omega}$) have been established.

Proposition. (Ishihara, 2005)

- ACA $\leftrightarrow \Sigma_1^0$ -LEM + Π_1^0 -AC^{0,0}.
- $(WKL \leftrightarrow \Sigma_1^0 DML + \Pi_1^0 AC^{\vee} .$

Motivating Results

Hierarchy of LEM over HA (Akama et al., 2004)

Some equivalences over intuitionistic systems (like WE-HA $^{\omega}$) have been established.

Proposition. (Ishihara, 2005) • ACA $\leftrightarrow \Sigma_1^0$ -LEM + Π_1^0 -AC^{0,0}. • WKL $\leftrightarrow \Sigma_1^0$ -DML + Π_1^0 -AC^{\vee}.

Question.

Can we extract stronger unprovability for the statement whose sequential version implies $\rm ACA$ rather than only $\rm WKL$?

Theorem. (Kohlenbach-F.)

For a Π_2 sentence S of the previous syntactical form, if

WE-HA^{ω} + AC^{ω} + IP^{ω} + M^{ω} + UWKL + KL \vdash S, then

 $WRCA^{\omega} + UWKL \vdash Uni(S).$

Application. (Note that WRCA^{ω} + UWKL \nvdash ACA.)

IPP, JD are not provable in WE-HA^{ω} + AC^{ω} + IP^{ω} + M^{ω} + UWKL + KL.

Question.

Can we extract stronger unprovability for the statement whose sequential version implies $\rm ACA$ rather than only $\rm WKL$?

Theorem. (Kohlenbach-F.)

For a Π_2 sentence S of the previous syntactical form, if

 $WE-HA^{\omega} + AC^{\omega} + IP^{\omega}_{\forall} + M^{\omega} + UWKL + KL \vdash S$, then

 $WRCA^{\omega} + UWKL \vdash Uni(S).$

Application. (Note that WRCA^{ω} + UWKL \nvDash ACA.)

 $\mathsf{WE}^{-}\mathsf{HA}^{\omega} + \mathrm{AC}^{\omega} + \mathrm{IP}_{\forall}^{\omega} + \mathrm{M}^{\omega} + \mathrm{UWKL} + \mathrm{KL}.$

Question.

Can we extract stronger unprovability for the statement whose sequential version implies $\rm ACA$ rather than only $\rm WKL$?

Theorem. (Kohlenbach-F.)

For a Π_2 sentence S of the previous syntactical form, if

 $WE-HA^{\omega} + AC^{\omega} + IP^{\omega}_{\forall} + M^{\omega} + UWKL + KL \vdash S$, then

 $WRCA^{\omega} + UWKL \vdash Uni(S).$

Application. (Note that WRCA^{ω} + UWKL \nvDash ACA.) IPP, JD are not provable in WE-HA^{ω} + AC^{ω} + IP^{ω} + M^{ω} + UWKL + KL.

- However, we can extract further stronger unprovability if each uniform version implies UACA over WRCA^{\u03c0}.
- That is the merit to investigate uniform versions rather than sequential versions!

Main Theorem. (Kohlenbach-F.) For a Π_2 sentence S of the previous syntactical form, if WRCA^{ω} + Uni(S) \vdash UACA, then

 $\mathsf{WE}\text{-}\mathsf{HA}^{\omega} + \mathrm{AC}^{\omega} + \mathrm{IP}^{\omega}_{\forall} + \mathrm{M}^{\omega} + \mathrm{UWKL} + \mathrm{KL} + \mathrm{BI}^{\omega} \nvDash \mathrm{S}.$

• ${\rm BI}^\omega$ is the bar induction scheme in all finite type.

Application.

IPP, JD are not provable in WE-HA^ω + AC^ω + IP^ω_∀ + M^ω + UWKL + KL + BI^ω.

Remark.

- WRCA^{ω} cannot be replaced by RCA^{ω}.
- IACA cannot be replaced by ACA.

Main Theorem. (Kohlenbach-F.) For a Π_2 sentence S of the previous syntactical form, if WRCA^{ω} + Uni(S) \vdash UACA, then

 $\mathsf{WE}\text{-}\mathsf{HA}^{\omega} + \mathrm{AC}^{\omega} + \mathrm{IP}^{\omega}_{\forall} + \mathrm{M}^{\omega} + \mathrm{UWKL} + \mathrm{KL} + \mathrm{BI}^{\omega} \nvDash \mathrm{S}.$

• BI^{\u03c6} is the bar induction scheme in all finite type.

Application.

$$\begin{split} \mathrm{IPP, \ JD \ are \ not \ provable \ in} \\ \mathsf{WE-HA}^{\omega} + \mathrm{AC}^{\omega} + \mathrm{IP}_{\forall}^{\omega} + \mathrm{M}^{\omega} + \mathrm{UWKL} + \mathrm{KL} + \mathrm{BI}^{\omega}. \end{split}$$

Remark.

- WRCA^{ω} cannot be replaced by RCA^{ω}.
 - IACA cannot be replaced by ACA.

Main Theorem. (Kohlenbach-F.) For a Π_2 sentence S of the previous syntactical form, if WRCA^{ω} + Uni(S) \vdash UACA, then

 $\mathsf{WE}\text{-}\mathsf{HA}^{\omega} + \mathrm{AC}^{\omega} + \mathrm{IP}^{\omega}_{\forall} + \mathrm{M}^{\omega} + \mathrm{UWKL} + \mathrm{KL} + \mathrm{BI}^{\omega} \nvDash \mathrm{S}.$

• BI^{\u03c6} is the bar induction scheme in all finite type.

Application.

$$\begin{split} \mathrm{IPP, \ JD \ are \ not \ provable \ in} \\ \mathsf{WE-HA}^{\omega} + \mathrm{AC}^{\omega} + \mathrm{IP}_{\forall}^{\omega} + \mathrm{M}^{\omega} + \mathrm{UWKL} + \mathrm{KL} + \mathrm{BI}^{\omega}. \end{split}$$

Remark.

- WRCA^{ω} cannot be replaced by RCA^{ω}.
- IACA cannot be replaced by ACA.

Tools for the proof of main theorem.

- WE-HA^{ω} + AC^{ω} + IP^{ω}_{\forall} + M^{ω} + BR^{ω}(bar recursion) \vdash BI^{ω} (Howard 1968).
- Negative translation.
- The Dialectica interpretation without extracting terms.
- \bullet A non-standard principle F^- related to the fan principle.
- \bullet The model \mathcal{M}^ω of all strongly majorizable functionals.

Corollary. (due to Luckhard's technique) For a Π_2^1 sentence S of the previous syntactical form, if WRCA^{ω} + Uni(S) \vdash UACA, then E-HA^{ω} + AC^{ω *} + IP^{1,1}_{\forall} + M¹ + KL + BI¹ \nvDash S.

- $AC^{\omega*} := AC!^{1,\tau} + AC^{0,\tau}$.
- BI^1 is the restriction of BI^{ω} to type 1 objects.

Summary.

Review. ACA $\leftrightarrow \Sigma_1^0$ -LEM + Π_1^0 -AC^{0,0}. WKL $\leftrightarrow \Sigma_1^0$ -DML + Π_1^0 -AC^{\vee}.

• Σ_1^0 -LEM $\leftrightarrow \Pi_1^0$ -LEM by M^0 .

Roughly speaking, our meta-theorem allows one to detect using classical reasoning on Uni(S) that S implies at least the Π_1^0 -LEM rather than only the strictly weaker principle Σ_1^0 -DML.

Future Work.

- In intuitionistic reverse mathematics, a lot of relationships between non-constructive principles still remain to be open.
- Theorems of this kind might be strong tools to analyze the structure of hierarchy between non-constructive principles for constructive reverse mathematics.

⇒ Analyze relationships between non-constructive principles by using theorems of this kind and uniform reverse mathematics!

Future Work.

- In intuitionistic reverse mathematics, a lot of relationships between non-constructive principles still remain to be open.
- Theorems of this kind might be strong tools to analyze the structure of hierarchy between non-constructive principles for constructive reverse mathematics.

 \Rightarrow Analyze relationships between non-constructive principles by using theorems of this kind and uniform reverse mathematics!

Thank you for your attention!