The Order Dimensions of Degree Structures

Kojiro Higuchi*

*Chiba University

Feb. 19, 2014 @ Tokyo Institute of Technology

Contents

Order dimension

- definition and basic properties
- 2 Degree structures \mathcal{D}_{T} , $\mathcal{D}_{\mathrm{Med}}$, $\mathcal{D}_{\mathrm{Much}}$
 - definition and motivation
- The order dimensions of degree structures

•
$$\aleph_1 \leq \mathcal{D}_T \leq 2^{\aleph_0}$$

• $2^{\aleph_0} \leq \mathcal{D}_{Med} \leq 2^{2^{\aleph_0}}$

•
$$\mathcal{D}_{Much} = 2^{\kappa}$$

1. Order Dimension

A Fact

- Fact: Every partial order (P, ≤) is embeddable into the product order ∏_{i∈I}(Q_i, ≤_i) of linear orders (Q_i, ≤_i), i ∈ I.
- Proof. Consider $F: P \to \prod_{x \in P} 2$ defined via

$$F(y)_x := \begin{cases} 1 & \text{if } x \leq y, \\ 0 & \text{o.w.} \end{cases}$$

Observe that

$$y \leq z \iff \forall x \in P, \ F(y)_x \leq F(z)_x.$$

Order Dimension

- Dfn(Dushnik and Miller 1941, see also Ore 1962): The order dimension of a partial order (P, ≤) is defined as Dim(P, ≤):= (least κ)[∃ a set S of linear orders, κ = #(S) and (P, ≤) is embeddable into the product order ∏S].
- Prop: $Q \subset P \Longrightarrow \operatorname{Dim}(Q, \leq \restriction Q \times Q) \leq \operatorname{Dim}(P, \leq).$
- Prop: Dim(P, ≤) ≤ #P.
 ∴ (P, ≤) is embeddable into ∏_{x∈P} 2 via F defined as

$$F(y)_x = \begin{cases} 1 & \text{if } x \leq y, \\ 0 & \text{o.w.} \end{cases}$$

Some Properties of Order Dimension

Prop(Ore 1962): Dim(P, ≤) = (least κ)[∃ a set {≤_i}_{i∈I} of linear extensions of ≤, κ = #I and ≤= ∩_{i∈I} ≤_i].
Suppose ≤= ∩_{i∈I} ≤_i. ∏_{i∈I} Id embeds (P, ≤) into ∏_{i∈I}(P, ≤_i).
Suppose F embeds (P, ≤) into ∏_{i∈I}(Q_i, ≤_i). Then ≤'_i:=≤ ∪{(x, y) : F(x)_i <_i F(y)_i} lt ≤ is a partial order on P extending ≤. Choose a linear extension ≤_i of ≤'_i for each i ∈ I. We have ≤= ∩_{i∈I} ≤_i.

• Exm:

•
$$(P, \leq)$$
 is linear $\iff \operatorname{Dim}(P, \leq) = 1$.
• $\leq = \{(x, x) : x \in P\} \Longrightarrow \operatorname{Dim}(P, \leq) \leq 2$.
 \therefore Letting $P = \{x_{\alpha}\}_{\alpha < \lambda}$, define \leq_0, \leq_1 as
 $x_{\alpha} \leq_0 x_{\beta} : \iff \alpha \leq \beta$,
 $x_{\alpha} \leq_1 x_{\beta} : \iff \alpha \geq \beta$.
Then $\leq = \leq_0 \cap \leq_1$.

2. Degree Structures \mathcal{D}_{T} , \mathcal{D}_{Med} , \mathcal{D}_{Much}

\mathcal{D}_{T} , $\mathcal{D}_{\mathrm{Med}}$, $\mathcal{D}_{\mathrm{Much}}$

- For $f, g \in \omega^{\omega}$, $f \leq_{\mathrm{T}} g : \iff \exists \text{ comp. } \Phi, \Phi(g) = f$, For $M, N \subset \omega^{\omega}, M \leq_{\mathrm{Med}} N : \iff \exists \text{ comp. } \Phi : N \to M$, $M \leq_{\mathrm{Much}} N : \iff \forall g \in N, M \leq_{\mathrm{Med}} \{g\}.$
- Prop. $(\omega^{\omega}, \leq_{\mathrm{T}})$, $(\operatorname{Pow}(\omega^{\omega}), \leq_{\mathrm{Med}})$, $(\operatorname{Pow}(\omega^{\omega}), \leq_{\mathrm{Much}})$ are preorders.
- We use (D_T, ≤), (D_{Med}, ≤), (D_{Much}, ≤) to denote the naturally induced partial orders via (ω^ω, ≤_T), (Pow(ω^ω), ≤_{Med}), (Pow(ω^ω), ≤_{Much}), resp.
 They are called Turing degree structure, Medvedev degree structure and Muchnik degree structure.
- What are $\operatorname{Dim}(\mathcal{D}_T, \leq)$, $\operatorname{Dim}(\mathcal{D}_{\operatorname{Med}}, \leq)$ and $\operatorname{Dim}(\mathcal{D}_{\operatorname{Much}}, \leq)$? Before investigating the problem, let us talk on our motivation of this study!

Natural Structures such as \mathbb{N} , \mathbb{R} , $2^{<\mathbb{N}}$

- It is well-known that some theories concerning on $\mathbb{N},\,\mathbb{R}$ and $2^{<\mathbb{N}}$ are decidable.
 - Thm(Presburger): $Th(\mathbb{N}; +, 0, 1)$ is decidable.
 - Thm(Tarski): $Th(\mathbb{R}; +, \cdot, 0, 1)$ is decidable.
 - Thm(Rabin): $Th(2^{<\mathbb{N}}, Pow(2^{<\mathbb{N}}); \ \frown 0, \ \frown 1)$ is decidable.
- For me, next to N, R and 2^{<N}, the objects D_T, D_{Med} and D_{Much} are very natural to be studied.
 Do D_T, D_{Med}, D_{Much} also have some interesting "decidable aspects" such as N, R, 2^{<N}?

Theories of Degree Structures

- Let us see some known facts on \mathcal{D}_T , \mathcal{D}_{Med} and $\mathcal{D}_{Much}.$
 - Thm(Steve Simpson): $\operatorname{Th}(\mathcal{D}_{\mathrm{T}}; \leq)$ is recursively isomorphic to $\operatorname{Th}(\mathbb{N}, \mathbb{N}^{\mathbb{N}}; +, \cdot, 0, 1).$
 - Thm(Paul Shafer): Th(\mathcal{D}_{Med} ; \leq), Th(\mathcal{D}_{Much} ; \leq) and Th($\mathbb{N}, \mathbb{N}^{\mathbb{N}}, \mathbb{N}^{\mathbb{N}^{\mathbb{N}}}$; +, $\cdot, 0, 1$) are mutually recursively isomorphic.
 - Cor of their proofs: \mathcal{D}_T , \mathcal{D}_{Med} and \mathcal{D}_{Much} are strongly undecidable structures.
- It seems very difficult to find interesting "decidable aspects" of them by changing their language.
- How about decompose their orders into other partial orders?

Decomposition of Degree Structures

- As we saw, every partial order (P, ≤) is embeddable into ∏_{x∈P} 2. Here 2 = {0,1} with the natural order is a decidable structure.
- Thus, we can decompose \mathcal{D}_T , \mathcal{D}_{Med} and \mathcal{D}_{Much} into very, very easy linear orders.
- Question: are there decomposition of these degree structures into "natural" partially orders defined in terms of concepts relating computability, e.g., complexity, the Turing degree of its jump, etc.
- It is interesting if some or all factors of such decompositions has a decidable theory!
- To determine order dimensions, we know how many at least we need *linear* orders if we decompose them into *linear* orders.

3. The order dimensions of degree structures

 $\operatorname{Dim}(\mathcal{D}_{\operatorname{Much}},\leq)=2^{\aleph_0}$

- Thm(Pouzet 1969): Dim(EndSeg(P), ⊂) = the Chain Covering Number of P, where EndSeg(P) is the set of all end segments of P, and the chain covering number of P is the least cardinal κ s.t. ∃ a set C of chains of P, #C = κ and UC = P.
- Prop: $(\mathcal{D}_{Much}, \leq) \simeq (EndSeg(\mathcal{D}_T), \subset).$
- Prop: The chain covering number of D_T is 2^{ℵ₀}.
 ∴ At most 2^{ℵ₀} since #D_T = 2^{ℵ₀}.
 At least 2^{ℵ₀} since D_T has an antichain of cardinality 2^{ℵ₀}.
- Cor: $\operatorname{Dim}(\mathcal{D}_{\operatorname{Much}}, \leq) = 2^{\aleph_0}$.

Bounds of $\operatorname{Dim}(\mathcal{D}_{\operatorname{Med}},\leq)$

- Recall that $\operatorname{Dim}(P,\leq)\leq \#P$. Thus, $\operatorname{Dim}(\mathcal{D}_{\operatorname{Med}},\leq)\leq 2^{2^{\aleph_0}}$.
- Recall that if Q ⊂ P, then Dim(Q, ≤) ≤ Dim(P, ≤). Thus, Dim(D_{Much}, ≤) ≤ Dim(D_{Med}, ≤).
 ∴ M ≤_{Much} N ⇔ Up(M) ≤_{Med} Up(N), where Up(M) := {g : ∃f ∈ M, f ≤_T g}.
- Cor. $2^{\aleph_0} \leq \operatorname{Dim}(\mathcal{D}_{\operatorname{Med}}, \leq) \leq 2^{2^{\aleph_0}}.$

Bounds of $Dim(\mathcal{D}_T, \leq)$

- Recall that $\operatorname{Dim}(P, \leq) \leq \#P$. Thus, $\operatorname{Dim}(\mathcal{D}_{\mathrm{T}}, \leq) \leq 2^{\aleph_0}$.
- Thm: Suppose that a poset P contains an uncountable subset U s.t. ∀ cntb C ⊂ U, ∀x ∈ U \ C, ∃ upper bound y ∈ P of C, y ≱ x. Then Dim(P, ≤) ≥ ℵ₁.
- Thm: $(\mathcal{D}_{\mathrm{T}},\leq)$ satisfies the above property.
 - Fact: $\exists U \subset D_T$ of the cardinality \mathfrak{c}, \forall fin. $F \subset U, \forall x \in U \setminus F$, $\sup(F) \geq x$.
 - Fact: Suppose \forall ctbl $C \subset D_{\mathrm{T}}$, $\forall x \in D_{\mathrm{T}} \setminus C$, \forall fin. $F \subset C$, $\sup(F) \not\geq x$. Then, $\exists y \in D_{\mathrm{T}}$, y is an upper bound of C and $y \not\geq x$.

Final Comments

- Question: $\operatorname{Dim}_{\leq}(\mathcal{D}_{T}) = \aleph_{1} ? \operatorname{Dim}_{\leq}(\mathcal{D}_{T}) = 2^{\aleph_{0}} ?$ What is $\operatorname{Dim}(\mathcal{D}_{Med}, \leq)$? How about other degree structures?
- Since Dim(D_T, ≤) ≥ ℵ₁, I feel it is impossible to find "natural" linear orders s.t. D_T is embeddable into its product order and it is better to investigate its decomposition into partial orders.