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Constructive Mathematics

By constructive mathematics I mean a mathematics which
I uses intuitionistic logic.
I is predicative: the class of Pow(X) of the subsets of an inhabited

set X is not set.
I accepts some constructive choice principles, e.g. the axiom of

Dependent Choice:
DC. Given a set A, a total relation R ⊆ A× A and a0 ∈ A, there exists a

function f : N→ A such that f (0) = a0 and for all n ∈ N,
f (n)Rf (n + 1).

I is compatible with other schools of constructivism. In particular,
Fan theorem is not acceptable.
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Topology in Constructive mathematics

Metric space
The theory of metric spaces as described in Bishop’s Foundations of
Constructive Analysis is well established in constructive mathematics.
However, its extension to general topology has a major difficulty.

I Most of the compact metric spaces fail to be topologically
compact without recourse to Fan theorem.

Point-free topology
A promising approach to general topology (without relying on Fan
theorem) is formal topology (Sambin, 1987).

I A point-free topology adapted from the theory of locale (frame).
I Many spaces behave better in formal topology. Formal Cantor

space and Formal unit interval are topologically compact.
I Successfully constructivised many results of classical topology:

Tychonoff’s theorem for compact topologies (without choice).

3 / 21



Connection between metric spaces and formal topology

The connection between Bishop’s metric space and formal topology
has been unclear until recently.

I The compactness in formal topology via open cover and
compactness in Bishop’s metric space via completeness and
totally boundedness.

Theorem (Palmgren, 2007). There exists a full and faithful functor
from the category of locally compact metric spaces to the category of
locally compact regular formal topologies.

Our work. Characterise the image of the compact metric spaces of
the Palmgren’s functor in formal topologies – point-free
characterisation of compact metric spaces.

Classically, this a special case of Urysohn’s metrisation theorem.

Theorem. The following are equivalent for a topological space X:
1. X is second countable and compact Hausdorff.
2. X is can be embedded as a compact subspace of

∏
n∈N[0, 1].

3. X is compact and metrisable.
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Formal topology

A formal topology S is a triple S = (S, � ,≤) where (S,≤) is a
preorder and � ⊆ S× Pow(S) is a covering relation on S such that

AU = {a ∈ S | a � U}

is a set for each U ⊆ S and that

a ∈ U
a � U

,
a ≤ b
a � b

,
a � U U � V

a � V
,

a � U a � V
a � U ↓ V

,

for all a, b ∈ S and U,V ⊆ S where

U � V def⇐⇒ (∀a ∈ U) a � V,

U ↓ V def
= ↓U ∩ ↓V = {c ∈ S | (∃a ∈ U) (∃b ∈ V) c ≤ a & c ≤ b} .

Example. Let (X,B) be a topological space presented by a family of
basic opens B. Then, (B, � X,≤X) defined by a ≤X b def⇐⇒ a ⊆ b and
a � X U def⇐⇒ a ⊆

⋃
U is a formal topology.
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Formal topology

Let S = (S, � ,≤) be a formal topology. The operator

A : Pow(S)→ Pow(S) : U 7→ AU = {a ∈ S | a � U}

is a closure operation on Pow(S). The class of fixed points of the
operation, denoted by Sat(S), forms a frame (or a complete Heyting
algebra), a complete lattice where finite meets distribute over
arbitrary joins:

AU ∧
∨
i∈I

AUi =
∨
i∈I

AU ∧ AUi

for all U ⊆ S and a family of subsets Ui ⊆ S (i ∈ I).
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Formal topology map

Let S and S ′ be formal topologies. A (formal topology) map from S
to S ′ is a relation r ⊆ S× S′ such that

1. S � r−S′,
2. r−{a} ↓ r−{b} � r−({a} ↓′ {b}),
3. a � ′ U =⇒ r− {a} � r−U

for all a, b ∈ S′ and U ⊆ S′. The class Hom(S,S ′) of formal topology
maps is equipped with the equality r = s def⇐⇒ A r−{a} = A s−{a}
(a ∈ S′). A formal topology map r : S → S ′ induces a frame map

A r−(−) : Sat(S ′)→ Sat(S).

A point of a formal topology S is a subset α ⊆ S such that
1. (∃a ∈ S) a ∈ α,
2. a, b ∈ α =⇒ (c ∈ a ↓ b) c ∈ α,
3. a � U & a ∈ α =⇒ (∃b ∈ U) b ∈ α.

The collection of points of S is denoted by Pt(S).
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Inductively generated formal topology

Let S be a set. An axiom-set on S is a pair (I,C), where (I(a))a∈S is a
family of sets, and C is a family (C(a, i))a∈S,i∈I(a) of subsets of S.

Theorem (Coquand, Sambin, Smith, and Valentini, 2003). Let
(S,≤) be a preordered set, and let (I,C) be an axiom-set on S. Then,
there exists a covering relation � I,C inductively generated by the
following rules:

a ∈ U
a � I,C U

(reflexivity),
a ≤ b b � I,C U

a � I,C U
(≤-left),

a ≤ b i ∈ I(b) a ↓ C(b, i) � I,C U
a � I,C U

(≤-infinity).

The relation � I,C is the least covering relation on S which satisfies
(≤-left) and a � I,C C(a, i) for each a ∈ S and i ∈ I(a).
The formal topology S = (S, � I,C,≤) together with the axiom set
(I,C) which generates � I,C is called an inductively generated
formal topology. A pair (a,C(a, i)) for each a ∈ S and i ∈ I(a) is
called an axiom of S and will be written a � I,C C(a, i).
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I.g formal topology – Points and Examples

Let S = (S, � I,C,≤) be an inductively generated formal topology with
an axiom set (I,C). A point of S is a subset α ⊆ S such that

1. (∃a ∈ S) a ∈ α,
2. a, b ∈ α =⇒ (c ∈ a ↓ b) c ∈ α,
3. a ∈ α =⇒ (∃b ∈ C(a, i)) b ∈ α

for each a, b ∈ S and i ∈ I(a).

Formal Cantor space. Let S = {0, 1}∗ be ordered by
l ≤ l′ def⇐⇒ (∃k ∈ S) l′ ∗ k = l. Formal Cantor space C is generated by
the following axiom-set on S:

l � {l ∗ 〈0〉, l ∗ 〈1〉}

Explicitly, define I(l) = {∗} and C(l, ∗) = {l ∗ 〈0〉, l ∗ 〈1〉} for each l ∈ S.
We have Pt(C) ∼= 2N.
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Examples

Formal Reals. Let S = {(p, q) ∈ Q×Q | p < q} be ordered by
(r, s) ≤ (p, q) def⇐⇒ r ≤ p & q ≤ s. Formal reals R is generated by the
following axiom set on S.
(R1) (p, q) �R {(r, s) ∈ S | p < r < s < q},
(R2) (p, q) �R {(p, s), (r, q)} for each p < r < s < q.
We have Pt(R) ∼= R, where R is the Dedekind cuts.

A formal topology map r : S ′ → S is an embedding if it is
(impredicatively) a regular monomorphim. A subtopology S ′ of a
formal topology S = (S, � ,≤) is the image of an embedding: a
subtopology S ′ is of form (S, � ′,≤) such that � ⊆ � ′ which implies
Pt(S ′) ⊆ Pt(S).
Example. The formal unit interval I[0, 1] is a subtopology of the
formal reals R determined by the axioms (R1) and (R2) together
with the additional axiom
(R3) (p, q) � I[0,1] {(p, q) | p < 1 & 0 < q},
for each rational interval (p, q). More axioms implies bigger covering
and fewer points. We have Pt(I[0, 1]) ∼= [0, 1].
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Overt formal topology

Let S be a formal topology. A positivity predicate on S is a subset
Pos ⊆ S which satisfies

(Mon) a � U & Pos(a) =⇒ (∃b ∈ U)Pos(b),
(Pos) a � {x ∈ S | x = a & Pos(a)}

for all a ∈ S, where Pos(a) def⇐⇒ a ∈ Pos. Intuitively, Pos(a) if “the basic
open a is inhabited”. Every formal topology admits at most one
positivity predicate. A formal topology is overt if it is equipped with a
positivity predicate.

Example. Formal Cantor space C and Formal reals R are overt with
Pos = S. The formal unit interval I[0, 1] is overt with the positivity

Pos = {(p, q) ∈ S | p < 1 & 0 < q} .

Note. Classically, every formal topology is overt. Constructively,
overtness is non-trivial.
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Localic completion (Vickers, 2005; Palmgren, 2007)

Let X = (X, ρ) be a metric space, and let Q>0 be the set of positive
rationals. A formal ball b(x, ε) is a pair (x, ε) ∈ X ×Q>0. We write MX

for X ×Q>0. Define an order ≤X and a strict order <X on MX by

b(x, δ) ≤X b(y, ε) def⇐⇒ ρ(x, y) + δ ≤ ε,

b(x, δ) <X b(y, ε) def⇐⇒ ρ(x, y) + δ < ε.

Note. The conditions are not equivalent to the (strict) inclusion of
between the actual balls B(x, ε) = {y ∈ X | ρ(x, y) < ε}.

The localic completion of a metric space (X, ρ) is a formal topology
M(X) = (MX, � X,≤X) inductively generated by the following
axiom-set on MX:
(M1) a � X {b ∈ MX | b <X a},
(M2) a � X Cε for each ε ∈ Q>0

for all a ∈ MX, where we define Cε = {b(x, ε) ∈ MX | x ∈ X}, the set of
formal balls with radius ε.
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Localic completion

For any metric space X = (X, ρ)
I its localic completionM(X) is always overt.
I the points Pt(M(X)) is a completion of X: Pt(M(X)) is isometric

to the set X̃ of Cauchy sequences on X modulo the standard
equality.

I if Y ⊆ X is a dense subset of X, thenM(Y) ∼=M(X).
I M(2N) ∼= C,M(R) ∼= R andM([0, 1]) ∼= I[0, 1].

A metric space is compact if it is complete and totally bounded.

A formal topology S is compact if

S � U =⇒ (∃U0 ∈ Fin(U)) S � U0

for all U ⊆ S.

Theorem (Palmgren, 2007). The localic completionM restricts to a
full and faithful functorM : Comp→ KFTop, where

Comp the category of compact metric spaces and uniformly
continuous functions.

KFTop the category of compact formal topologies and maps.
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Compact overt sub-topologies a localic completion

Spitters (2010) and Coquand, Palmgren, and Spitters (2011)
observed that a compact subspace of a Bishop locally compact
metric space gives rise to a compact overt subtopologies of its localic
completion, and vise versa.

Theorem. Let X = (X, ρ) be a compact metric space. Then, up to
isomorphism, the localic completionM : Comp→M(Comp) induces
an order isomorphism between the compact subspaces of X and the
compact overt subtopologies ofM(X).

Proof. Given a compact subspace Y ⊆ X, its localic completionM(Y)
embeds intoM(X) as an overt compact subtopology.
Conversely, given a compact overt subtopology S ofM(X), the points
Pt(S) is metrically isomorphic to a compact subset of X. �

Corollary. The following are equivalent for a formal topology S.
1. S is isomorphic toM(X) of some compact metric space X.
2. S is isomorphic to a compact overt subtopology ofM(X) of

some compact metric space X.
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The image of countable products

For any set-indexed family (Si)i∈I of inductively generated formal
topologies, its product

∏
i∈I Si can be defined predicatively.

Proposition. Let (Xn, ρn)n∈N be a sequence of compact metric
spaces. The canonical map r :M(

∏
n∈N Xn)→

∏
n∈NM(Xn)

corresponding to the projectionsM(πn) :M(
∏

n∈N Xn)→M(Xn)
(n ∈ N) is an embedding. Moreover, the image ofM(

∏
n∈N Xn) in∏

n∈NM(Xn) is the largest overt subtopology of
∏

n∈NM(Xn).

M(
∏

n∈N Xn)
� � r //

M(πn) ''

∏
n∈NM(Xn)

pn

��
M(Xn)

Example. M(
∏

n∈N[0, 1]) is the largest overt subtopology of∏
n∈NM([0, 1]) ∼=

∏
n∈N I[0, 1].
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Compact Regular Formal Topology

Let S be a formal topology, and U,V ⊆ S. Define

U ≪ V def⇐⇒ S � U∗ ∪ V

where U∗ = {a ∈ S | a ↓ U � ∅}.

A formal topology S is regular if there exists a function
wc : S→ Pow(S) such that for all a ∈ S

I (∀b ∈ wc(a)) {b}≪ {a},
I a � wc(a).

Let I = {q ∈ Q | 0 ≤ q ≤ 1}. A scale from U to V is a family (Uq)q∈I of
subsets of S such that

I U � U0, U1 � V,
I (∀p, q ∈ I) p < q =⇒ Up ≪ Uq.

A scale (Uq)q∈I from U to V is finitary if Uq ∈ Fin(S) for all q ∈ I. Let

U≺≺≺Fin V def⇐⇒ there exists a finitary scale from U to V.
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Compact Regular Formal Topology

Proposition. Let S be a compact regular formal topology. Then, for
any U,V ⊆ S,

U ≪ V =⇒ U≺≺≺Fin V.

Note. The proof relies on the axiom of Dependent Choice.

Proposition (Johnstone, 1982). Let S be a formal topology, and let
U,V ⊆ S. Then, the following are equivalent.

1. There exists a scale from U to V.
2. There exists a formal topology map r : S → I[0, 1] such that

I r−(0,∞) ↓ U � ∅,
I r−(−∞, 1) � V.

where

(−∞, 0) def
= {(p, q) ∈ SR | q = 0} , (1,∞)

def
= {(p, q) ∈ SR | p = 1} .
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Compact enumerably completely regular formal topology

A compact formal topology S is enumerably completely regular if
I there exists a function wc : S→ Pow(S) which makes S regular,
I the relation wc = {(a, b) ∈ S× S | a ∈ wc(b)} is countable,
I for each (a, b) ∈ wc, there exists a choice of finitary scales from
{a} to {b}.

Lemma. The localic completionM(X) of a compact metric space X is
isomorphic to an overt compact enumerably completely regular
formal topology.
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Point-free characterisation of compact metric spaces

Theorem. Let S be a formal topology. Then, the following are
equivalent:

1. S is isomorphic to an overt compact enumerably completely
regular formal topology.

2. S is isomorphic to a compact overt subtopology of
∏

n∈N I[0, 1].
3. S is isomorphic to a localic completion of some compact metric

space.

Proof. (3⇒ 1). The previous Lemma.
(1⇒ 2). If S is overt compact enumerably completely regular, then
the relation wc associated with its function wc : S→ Pow(S) is
countable. Since each (a, b) ∈ wc have a choice of scales, wc defines
a sequence of maps S → I[0, 1], and thus it determines a map
r : S →

∏
n∈N I[0, 1]. Regularity of S ensures that r is an embedding.

(2⇒ 3). If S is an overt compact subtopology of
∏

n∈N I[0, 1], then it
is a subtopology ofM(

∏
n∈N[0, 1]).

∏
n∈N[0, 1] is a compact metric

space, S is isomorphic to a localic completion of some compact
metric space. �
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Classical observations

Classically, the following notions are equivalent:
1. An overt compact enumerably completely regular formal

topology.
2. A compact regular frame with a countable base.
3. A countable normal distributive lattice.
4. A second countable compact Hausdorff space.
5. A compact metric space.

I (1⇔ 2). The previous theorem + classical logic + impredicativity.
I (2⇔ 3). Every compact regular frame can be represented as the

ideals of the normal distributive lattice which is freely generated
by its base.

I (2⇔ 4). Compact regular frames are sober (by Prime Ideal
Theorem).

I (4⇔ 5). Urysohn’s metrisation theorem.
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