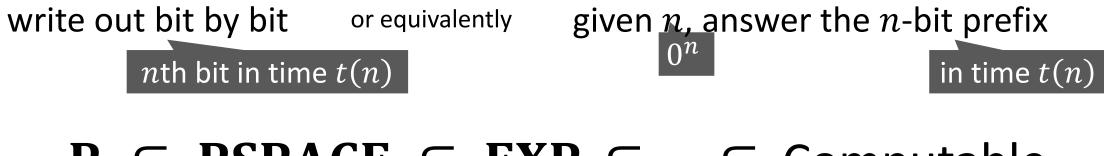
Resource-bounded randomness and differentiability

Akitoshi Kawamura (Tokyo) CTFM, Tokyo, February 18, 2014

(Joint work with Kenshi Miyabe)

Computability and resource bounds



$P \subseteq PSPACE \subseteq EXP \subseteq \cdots \subseteq Computable$

Computable real numbers (Turing 1936) real $z \in [0,1] \leftarrow \rightarrow$ its binary expansion

Computable real functions

Definition (Grzegorczyk 1955, Ko-Friedman 1982)

- $\varphi: \Sigma^* \to \Sigma^*$ is a name of $t \in \mathbf{R}$ if $\varphi(0^n)$ encodes a rational within distance 2^{-n} of t.
- An oracle TM *M* computes $f: [0, 1] \rightarrow \mathbf{R}$ if M^{φ} is a name of f(t) for every name φ of $t \in \mathbf{R}$.

The function computed by M with oracle φ

[Equivalent to "Type-Two Machine" (infinite strings model)+ signed digit representation]

any reasonable encoding of rationals 0^n $\sqrt{2^{-n}}$ -approx. of tmachine 0^m $\sqrt{2^{-m}}$ -approx. of f(t)Computing $f: [0, 1] \rightarrow \mathbf{R}$

Computability and Randomness

computability – building the sequence

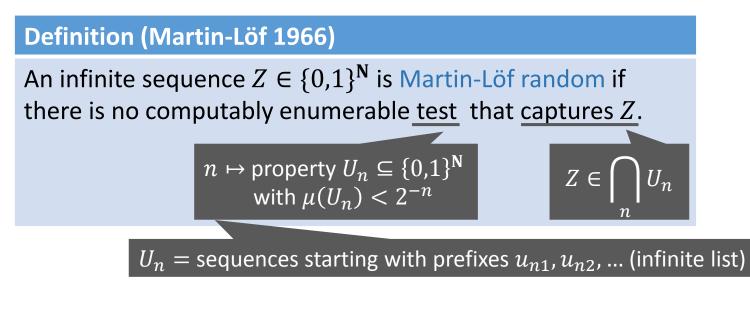
randomness – (not) finding rules about the sequence

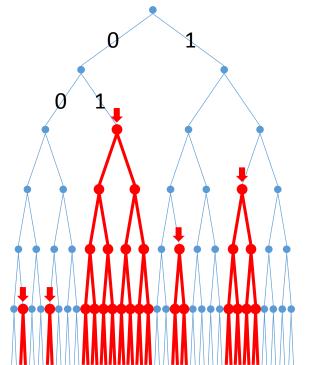
- has no rare property
- cannot predict

Martin-Löf Randomness

• Random = no rare property

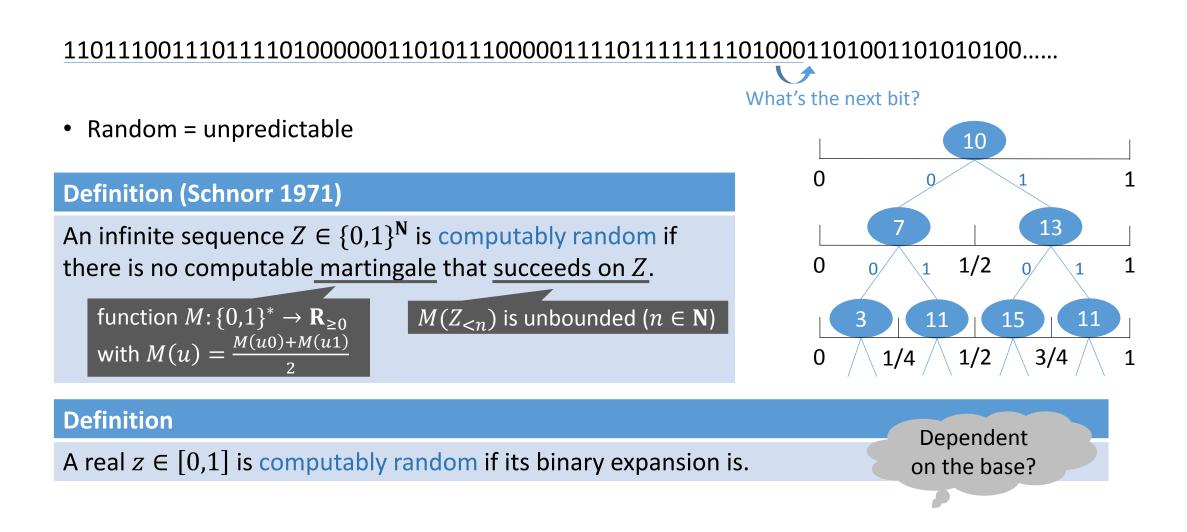
Most sequences are random.



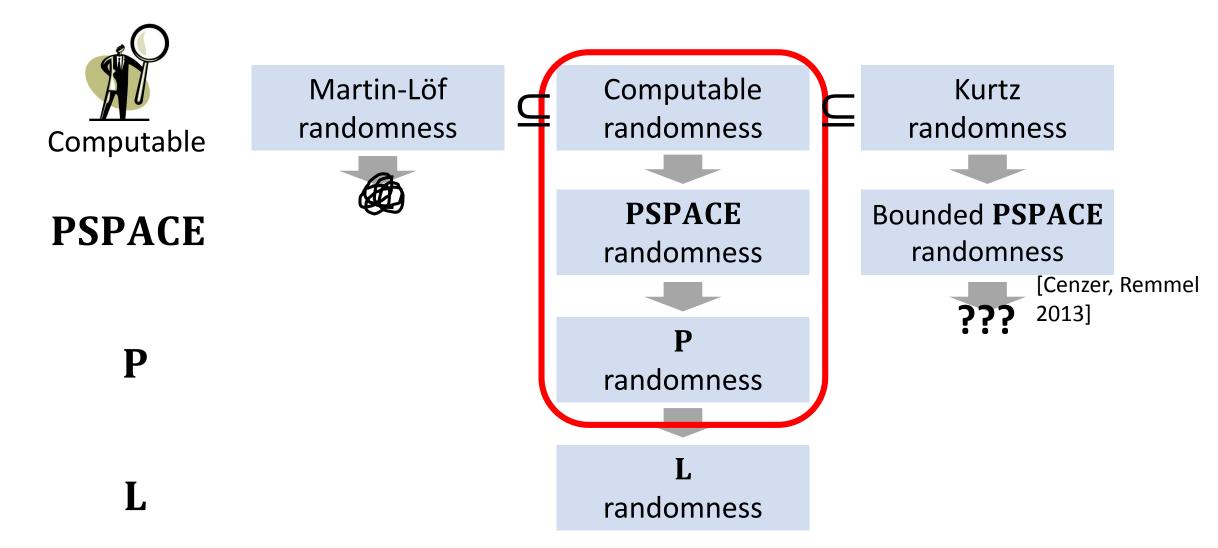


finite list \rightarrow Kurtz randomness

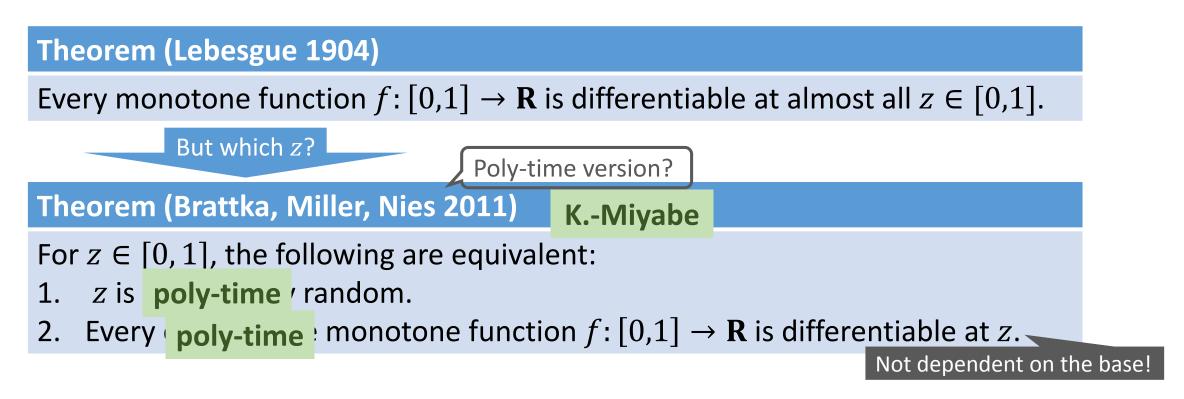
Computable randomness



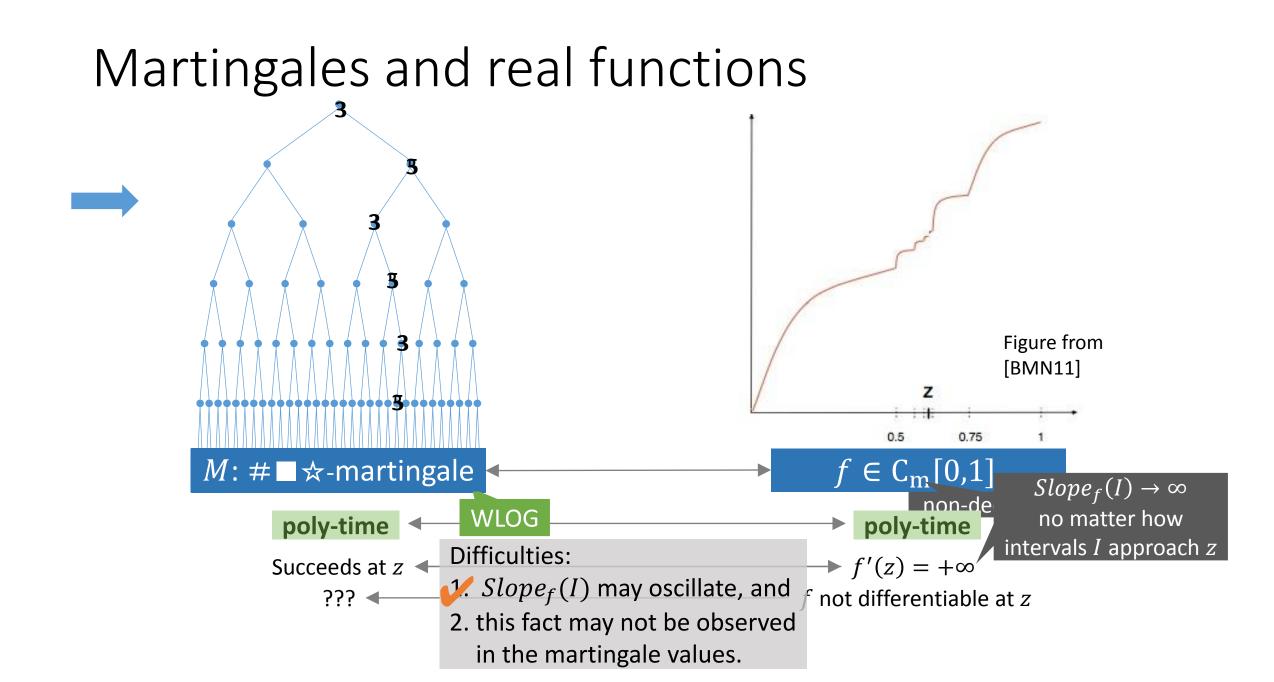
Resource-bounded randomness



Randomness and differentiability



Independently by A. Nies (private communication), using the idea of *porosity*.



Generalized martingales

Instead of the binary tree T_2 of intervals...

Definition

An interval tree T is pair of functions

- $children_T : \subseteq \{0\}^* \times \mathbf{Q} \times \mathbf{Q} \to \mathbf{Q}^*$ The interval [l, r] at level d is divided at level d + 1 at the points listed in $children(0^d, l, r)$.
- $modulus_T: \{0\}^* \to \{0\}^*$ If $modulus(0^n) = 0^d$, every interval at depth d has length $\leq 2^{-n}$.

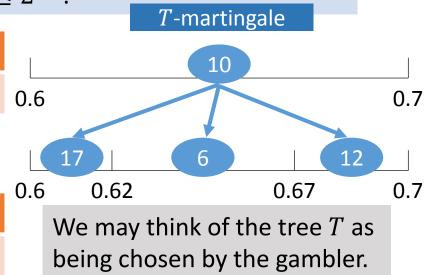
Lemma

What's said so far holds for T-martingales, for any poly-time T.

• In particular, poly-time *T*-randomness does not depend on *T*.

Lemma

Any oscillation is detected on some poly-time T.



Work to be done

- Lipschitz \rightarrow 2-D?
- Log-space
- Simplify the proofs randomness wrt general measure
 - Done for Martin-Löf randomness since Levin (70s)
- Similar characterization of other randomness