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Computability and resource bounds

110111001110111101000000110101110000011110111111711010001101001......

write out bit by bit  orequivalently  given ﬁnswer the n-bit prefix
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Computable real numbers (Turing 1936)
real z € [0,1] €~ its binary expansion
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Computable real functions g
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Definition (Grzegorczyk 1955, Ko-Friedman 1982)
e @:X" > Xisanameoft € Rif o™ 27 ™M-approx. of f(t)

@ (0™) encodes a rational within distance 27" of t.
* Anoracle TM M computes f:]0,1] - Rif
M2 is a name of f(t) for every name ¢ of t € R.

The function computed
by M with oracle ¢
Computable

[Equivalent to “Type-Two Machine” (infinite strings model) Analysis
+ signed digit representation]

Computing f:]0,1] - R

Klaus Weihrauch




Computability and Randomness

computability — building the sequence

110111001110111101000000110101110000011110111711111010001101001.......

randomness — (not) finding rules about the sequence

* has no rare property
e cannot predict

* cannotcompress  111100110011111100000000001111111100111111......




Martin-Lof Randomness

11011100111011110100000011010111000001111011111111010001101001101010100......

[ Most sequences are random. ]

 Random = no rare property

Definition (Martin-Lof 1966)

An infinite sequence Z € {0,1}N is Martin-L6f random if
there is no computably enumerable test that captures Z.

n v property U,, € {0,1}N
with u(U,,) < 27"
U,, = sequences starting with prefixes 1,1, U3, ... (infinite list) A ' ' A /\
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Computable randomness

1101110011101111010000001101011100000111101111111101000110100110101010¢0......
\\Ua
What’s the next bit?

 Random = unpredictable

Definition (Schnorr 1971)

An infinite sequence Z € {0,1}N is computably random if
there is no computable martingale that succeeds on Z.

function M: {0,1}" - R, M(Z.,) is unbounded (n € N)

with M (u) =

M(u0)+M(ul)
2

Dependent

Areal z € [0,1] is computably random if its binary expansion is. on the base?



Resource-bounded randomness

ﬁ Martin-Lof Computable Kurtz

Computable randomness randomness randomness
PSPACE Bounded PSPACE
PSPACE randomness randomness
[Cenzer, Remmel
P29 2013]
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Randomness and differentiability

Theorem (Lebesgue 1904)

Every monotone function f:[0,1] — Ris differentiable at almost all z € [0,1].

W Poly-time version?

Theorem (Brattka, Miller, Nies 2011)  FV@E VTV Y

For z € [0, 1], the following are equivalent:
1. zis poly-timerandom.

2. Every poly-time ' monotone function f:[0,1] — Ris differentiable at z.
Not dependent on the base!

Independently by A. Nies (private communication), using the idea of porosity.



Martingales and real functions
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M: # B 5<-martingale
WLOG

> poly-tim

Succeeds at z < Difficulties: > f1(2) = 4o

P97 4—0, Slopef(l) may oscillate, and [ not differentiable at z
2. this fact may not be observed

in the martingale values.

poly-time



Generalized martingales

Instead of the binary tree T, of intervals...

An interval tree T is pair of functions
o children;:€ {0}* xQxQ - Q"

The interval [[, 7] at level d is divided at level d + 1 at the points listed in children(Od, L, r).
* modulusy: {0} - {0}

If modulus(0™) = 0%, every interval at depth d has length < 27",

Lemma |

What's said so far holds for T-martingales, for any poly-timeT. 0.6

T-martingale

|
0.7

* In particular, poly-time T-randomness does not depend on T.

|
0.6  0.62 0.67 0.7
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Any oscillation is detected on some poly-time T. being chosen by the gambler.




Work to be done

* Lipschitz 2 2-D?
* Log-space

* Simplify the proofs — randomness wrt general measure
* Done for Martin-L6f randomness since Levin (70s)

* Similar characterization of other randomness



