Determinacy and Turing Determinacy within second-order arithmetic.

Antonio Montalbán (joint work with Richard A. Shore)

University of California, Berkeley

Computability Theory and Foundations of Mathematics Tokyo, Japan, February 2014

Outline

(1) Determinacy

How much determinacy can be proved without using uncountable objects?

Outline

(1) Determinacy

How much determinacy can be proved without using uncountable objects?

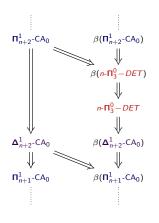
(2) Turing Determinacy

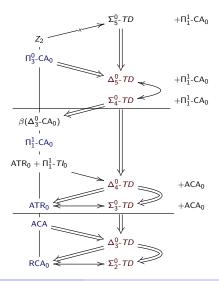
What is the strength of the various levels of Turing determinacy?

A preview

Turing Determinacy

Determinacy





Antonio Montalbán (U.C. Berkeley)

Determinacy and Turing Det. in S.O.A.

Countable mathematics

Second order arithmetic, Z₂, consist of

- $\bullet\,$ ordered semi-ring axioms for $\mathbb N$
- induction for all 2nd-order formulas
- comprehension for all 2nd-order formulas

Countable mathematics

Second order arithmetic, Z₂, consist of

- \bullet ordered semi-ring axioms for $\mathbb N$
- induction for all 2nd-order formulas
- comprehension for all 2nd-order formulas

Most of classical mathematics can be expressed and proved in Z_2 .

Countable mathematics

Second order arithmetic, Z₂, consist of

- \bullet ordered semi-ring axioms for $\mathbb N$
- induction for all 2nd-order formulas
- comprehension for all 2nd-order formulas

Most of classical mathematics can be expressed and proved in Z_2 .

Thm: ZFC^- is Π_4^1 -conservative over Z_2 , where ZFC^- is ZFC without the Power-set axiom.

```
(Obs: Borel-DET and \Pi_k^0-DET are \Pi_3^1-statements.)
```

The main question of Reverse Mathematics is: What axioms of Z_2 are necessary for classical mathematics?

The main question of Reverse Mathematics is: What axioms of Z_2 are necessary for classical mathematics?

Using a base theory as RCA_0 , one can often prove that

• theorems are equivalent to axioms.

The main question of Reverse Mathematics is: What axioms of Z_2 are necessary for classical mathematics?

Using a base theory as RCA_0 , one can often prove that

- theorems are equivalent to axioms.
- Most theorems are equivalent to one of 5 subsystems.

The main question of Reverse Mathematics is: What axioms of Z_2 are necessary for classical mathematics?

Using a base theory as RCA_0 , one can often prove that

- theorems are equivalent to axioms.
- Most theorems are equivalent to one of 5 subsystems.

Most theorems of classical mathematics can be proved in $\Pi^1_1\text{-}\mathsf{CA}_0.$ where in

 Π_1^1 -*CA*₀, induction and comprehension are restricted to Π_1^1 -formulas.

The main question of Reverse Mathematics is: What axioms of Z_2 are necessary for classical mathematics?

Using a base theory as RCA_0 , one can often prove that

- theorems are equivalent to axioms.
- Most theorems are equivalent to one of 5 subsystems.

Most theorems of classical mathematics can be proved in $\Pi^1_1\text{-}\mathsf{CA}_0.$ where in

 Π_1^1 -CA₀, induction and comprehension are restricted to Π_1^1 -formulas.

No example of a classical theorem of Z_2 needed more than Π_3^1 -CA₀.

The main question of Reverse Mathematics is: What axioms of Z_2 are necessary for classical mathematics?

Using a base theory as RCA_0 , one can often prove that

- theorems are equivalent to axioms.
- Most theorems are equivalent to one of 5 subsystems.

Most theorems of classical mathematics can be proved in $\Pi^1_1\text{-}\mathsf{CA}_0.$ where in

 Π_1^1 -*CA*₀, induction and comprehension are restricted to Π_1^1 -formulas.

No example of a classical theorem of Z_2 needed more than Π_3^1 -CA₀. We provide a hierarchy of natural statements

that need axioms all the way up in Z_2 .

Fix a set $A \subseteq \omega^{\omega}$.

Fix a set $A \subseteq \omega^{\omega}$.

Player I	<i>a</i> 0		<i>a</i> 2		
Player II		a_1		a ₃	•••

let
$$\bar{a} = (a_0, a_1, a_2, a_3, ...)$$

Fix a set $A \subseteq \omega^{\omega}$.

Player I	<i>a</i> 0		a 2		•••
Player II		a_1		a3	• • •

let
$$\bar{a} = (a_0, a_1, a_2, a_3, ...)$$

Player I wins is $\bar{a} \in A$,

Fix a set $A \subseteq \omega^{\omega}$.

Player I	<i>a</i> 0		a 2		•••	let $\bar{a} = (a_0, a_1, a_2, a_3,)$
Player II		a_1		аз	•••	$a = (a_0, a_1, a_2, a_3,)$

Player I wins is $\bar{a} \in A$, and Player II wins if $\bar{a} \in \omega^{\omega} \setminus A$.

Fix a set $A \subseteq \omega^{\omega}$.

Player I	<i>a</i> 0	a 2		•••	let $\bar{a} = (a_0, a_1, a_2, a_3,)$
Player II	a ₁		a ₃	•••	$a = (a_0, a_1, a_2, a_3, \dots)$

Player I wins is $\bar{a} \in A$, and Player II wins if $\bar{a} \in \omega^{\omega} \setminus A$. A strategy is a function $s \colon \omega^{<\omega} \to \omega$.

Fix a set $A \subseteq \omega^{\omega}$.

Player I	<i>a</i> 0	a ₂	• • •	let $\bar{a} = (a_0, a_1, a_2, a_3,)$
Player II	a_1	a ₃	•••	$a = (a_0, a_1, a_2, a_3,)$

Player I wins is $\bar{a} \in A$, and Player II wins if $\bar{a} \in \omega^{\omega} \setminus A$. A strategy is a function $s: \omega^{<\omega} \to \omega$. It's a winning strategy for I if $\forall a_1, a_3, a_5,(f(\emptyset), a_1, f(a_1), a_3, ...) \in A$

Fix a set $A \subseteq \omega^{\omega}$.

Player I	<i>a</i> 0	<i>a</i> ₂		•••	let $\bar{a} = (a_0, a_1, a_2, a_3,)$
Player II	â	p_1	a ₃	•••	$a = (a_0, a_1, a_2, a_3,)$

Player I wins is $\bar{a} \in A$, and Player II wins if $\bar{a} \in \omega^{\omega} \setminus A$. A strategy is a function $s \colon \omega^{<\omega} \to \omega$. It's a winning strategy for I if $\forall a_1, a_3, a_5, \dots (f(\emptyset), a_1, f(a_1), a_3, \dots) \in A$

 $A \subseteq \omega^{\omega}$ is *determined* if there is a strategy for either player I or II.

Fix a set $A \subseteq \omega^{\omega}$.

Player I	a ₀	<i>a</i> 2	• • •	- let $\bar{a} = (a_0, a_1, a_2, a_3,)$
Player II	a ₁	a ₃	•••	$a = (a_0, a_1, a_2, a_3, \dots)$

Player I wins is $\bar{a} \in A$, and Player II wins if $\bar{a} \in \omega^{\omega} \setminus A$. A strategy is a function $s \colon \omega^{<\omega} \to \omega$. It's a winning strategy for I if $\forall a_1, a_3, a_5, \dots (f(\emptyset), a_1, f(a_1), a_3, \dots) \in A$

 $A \subseteq \omega^{\omega}$ is *determined* if there is a strategy for either player I or II.

For a class of sets of reals $\Gamma \subseteq \mathcal{P}(\omega^{\omega})$, let Γ -DET: Every $A \in \Gamma$ is determined.

Г	Γ-DET	remark
Open (Σ_1^0)	[Gale Stwart 53]	
$G_{\delta} (\Pi_2^0)$		
$F_{\sigma\delta}$ (Π_3^0)		
$G_{\delta\sigma\delta}$ (Π_4^0)		
$F_{\sigma\delta\sigma\delta}$ (Π_5^0)		
Borel (Δ_1^1)		
Analitic (Σ_1^1)		
Full (ω^{ω})	False in ZFC	
	[Gale Stwart 53]	

Г	Γ-DET	remark
Open (Σ_1^0)	[Gale Stwart 53]	
$G_{\delta} (\Pi_2^0)$	[Wolfe 55]	
$F_{\sigma\delta}$ (Π_3^0)	[Davis 64]	
$G_{\delta\sigma\delta}$ (Π_4^0)		
$F_{\sigma\delta\sigma\delta}$ (Π_5^0)		
Borel (Δ_1^1)		
Analitic (Σ_1^1)		
Full (ω^{ω})	False in ZFC	
	[Gale Stwart 53]	

Г	Γ-DET	remark
Open (Σ_1^0)	[Gale Stwart 53]	
$G_{\delta} (\Pi_2^0)$	[Wolfe 55]	
$F_{\sigma\delta}$ (Π_3^0)	[Davis 64]	
$G_{\delta\sigma\delta}$ (Π_4^0)	[Paris 72]	
$F_{\sigma\delta\sigma\delta}$ (Π_5^0)		
Borel (Δ_1^1)		
Analitic (Σ_1^1)	$\forall x(x^{\sharp} exists) \vdash$	
	[Martin 70]	
Full (ω^{ω})	False in ZFC	
	[Gale Stwart 53]	

Г	Γ-DET	remark
Open (Σ_1^0)	[Gale Stwart 53]	
$G_{\delta} (\Pi_2^0)$	[Wolfe 55]	
$F_{\sigma\delta}$ (Π_3^0)	[Davis 64]	
$G_{\delta\sigma\delta}$ (Π_4^0)	[Paris 72]	
$F_{\sigma\delta\sigma\delta}$ (Π_5^0)		needs Power-set axiom [Friedman 71]
Borel (Δ_1^1)		needs \aleph_1 iterations of Power-set axiom
		[Friedman 71]
Analitic (Σ_1^1)	$\forall x(x^{\sharp} exists) \vdash$	
	[Martin 70]	
Full (ω^{ω})	False in ZFC	
	[Gale Stwart 53]	

Г	Γ-DET	remark
Open (Σ_1^0)	[Gale Stwart 53]	
$G_{\delta} (\Pi_2^0)$	[Wolfe 55]	
$F_{\sigma\delta}$ (Π_3^0)	[Davis 64]	
$G_{\delta\sigma\delta}$ (Π_4^0)	[Paris 72]	
$F_{\sigma\delta\sigma\delta}$ (Π_5^0)		needs Power-set axiom [Friedman 71]
Borel (Δ_1^1)	[Martin 75]	needs \aleph_1 iterations of Power-set axiom
		[Friedman 71]
Analitic (Σ_1^1)	$\forall x(x^{\sharp} exists) \vdash$	
	[Martin 70]	
Full (ω^{ω})	False in ZFC	
	[Gale Stwart 53]	

Empirical observation:

Natural statements are well-ordered by consistency strength.

Empirical observation:

Natural statements are well-ordered by consistency strength.

In some other contexts, this phenomenon can proved to be true.

Empirical observation:

Natural statements are well-ordered by consistency strength.

In some other contexts, this phenomenon can proved to be true.

Thm: [Uniform Martin's conjecture][Slaman Steel] (AD) Uniformly degree-invariant functions from $\omega^{\omega} \rightarrow \omega^{\omega}$

are well-ordered by comparability on a cone.

Empirical observation:

Natural statements are well-ordered by consistency strength.

In some other contexts, this phenomenon can proved to be true.

Thm: [Uniform Martin's conjecture][Slaman Steel] (AD) Uniformly degree-invariant functions from $\omega^{\omega} \rightarrow \omega^{\omega}$ are well-ordered by comparability on a cone.

Thm: [Wadge] Borel sets of reals are well-ordered by Wadge reducibility.

Empirical observation:

Natural statements are well-ordered by consistency strength.

In some other contexts, this phenomenon can proved to be true.

Thm: [Uniform Martin's conjecture][Slaman Steel] (AD) Uniformly degree-invariant functions from $\omega^{\omega} \rightarrow \omega^{\omega}$ are well-ordered by comparability on a cone.

Thm: [Wadge] Borel sets of reals are well-ordered by Wadge reducibility.

Question: [Nemoto 08]

What is the strength of determinacy along the Wadge hierarchy?

Empirical observation:

Natural statements are well-ordered by consistency strength.

In some other contexts, this phenomenon can proved to be true.

Thm: [Uniform Martin's conjecture][Slaman Steel] (AD) Uniformly degree-invariant functions from $\omega^{\omega} \rightarrow \omega^{\omega}$ are well-ordered by comparability on a cone.

Thm: [Wadge] Borel sets of reals are well-ordered by Wadge reducibility.

Question: [Nemoto 08]

What is the strength of determinacy along the Wadge hierarchy?

Determinacy, along the Wadge hierarchy, provides a naturally defined spine of statements

How much determinacy can be proved

without using uncountable objects?

How much determinacy can be proved

without using uncountable objects?

Equivalently:

How much determinacy can be proved in Z_2 ?

Previously known results

Г	strength of Γ-DET		base
Δ_1^0	ATR ₀	[Steel 78]	RCA ₀
Σ_1^0	ATR ₀	[Steel 78]	RCA ₀
$\Sigma_1^0 \wedge \Pi_1^0$	Π_1^1 -CA ₀	[Tanaka 90]	RCA ₀
Δ_2^0	Π_1^1 -TR ₀	[Tanaka 91]	RCA ₀
Π_2^0	Σ_1^1 -ID ₀	[Tanaka 91]	ATR_0
Δ_3^0	$[\Sigma_1^1]^{TR}$ -ID ₀	[MedSalem, Tanaka 08]	Π^1_1 - TI_0
Π_3^0	Π ₃ ¹ -CA ₀ ⊢	Δ_3^1 -CA ₀ $\not\vdash$ [Welch 09]	
Π_4^0	$Z_2 \not\vdash$	[Martin] [Friedman 71]	

Our results on determinacy

Our main results on determinacy

11 / 27

Our main results on determinacy

Thm: [Friedman 71, Martin] $Z_2 \not\vdash \Pi_4^0$ -DET.

Thm: [Friedman 71, Martin] $Z_2 \not\vdash \Pi_4^0$ -DET.

Theorem (essentially due to Martin)

Given $n \in \mathbb{N}$, $Z_2 \vdash$ every Boolean combination of $\mathbf{n} \, \Pi_3^0$ sets is determined

Thm: [Friedman 71, Martin] $Z_2 \not\vdash \Pi_4^0$ -DET.

Theorem (essentially due to Martin)

Given $n \in \mathbb{N}$, $Z_2 \vdash$ every Boolean combination of $n \Pi_3^0$ sets is determined

But...

Thm: [Friedman 71, Martin] $Z_2 \not\vdash \Pi_4^0$ -DET.

Theorem (essentially due to Martin)

Given $n \in \mathbb{N}$, $Z_2 \vdash$ every Boolean combination of $n \Pi_3^0$ sets is determined

But... The larger the *n*, the more axioms are needed.

Thm: [Friedman 71, Martin] $Z_2 \not\vdash \Pi_4^0$ -DET.

Theorem (essentially due to Martin)

Given $n \in \mathbb{N}$, $Z_2 \vdash$ every Boolean combination of $n \Pi_3^0$ sets is determined

But... The larger the *n*, the more axioms are needed.

Theorem ([MS 12])

 $Z_2 \not\vdash$ every Boolean combination of Π^0_3 sets is determined

Thm: [Friedman 71, Martin] $Z_2 \not\vdash \Pi_4^0$ -DET.

Theorem (essentially due to Martin)

Given $n \in \mathbb{N}$, $Z_2 \vdash$ every Boolean combination of $n \Pi_3^0$ sets is determined

But... The larger the *n*, the more axioms are needed.

```
Theorem ([MS 12])
```

 $Z_2 \not\vdash$ every Boolean combination of Π^0_3 sets is determined

Theorem ([MS 14] The following are equiconsistent)

- *Z*₂
- *ZFC*⁻

• The scheme { "Every Boolean combination of $n \Pi_3^0$ sets is determined.": $n \in \mathbb{N}$ }

Def: $A \subseteq \omega^{\omega}$ is m- Π_3^0 if there are Π_3^0 sets $A_0 \supseteq A_1 \supseteq ... \supseteq A_m = \emptyset$ s.t.: $A = (...(((A_0 \setminus A_1) \cup A_2) \setminus A_3) \cup ...)$

Def:
$$A \subseteq \omega^{\omega}$$
 is m - Π_3^0 if there are Π_3^0 sets $A_0 \supseteq A_1 \supseteq ... \supseteq A_m = \emptyset$
s.t.: $A = (...(((A_0 \setminus A_1) \cup A_2) \setminus A_3) \cup ...)$
i.e. $x \in A \iff (\text{least } i \ (x \notin A_i))$ is odd.

Def:
$$A \subseteq \omega^{\omega}$$
 is m - Π_3^0 if there are Π_3^0 sets $A_0 \supseteq A_1 \supseteq ... \supseteq A_m = \emptyset$
s.t.: $A = (...(((A_0 \setminus A_1) \cup A_2) \setminus A_3) \cup ...)$
i.e. $x \in A \iff (\text{least } i \ (x \notin A_i))$ is odd.

Obs: (Boolean combinations of Π_3^0) = $\bigcup_{m \in \omega} m \cdot \Pi_3^0$

Def:
$$A \subseteq \omega^{\omega}$$
 is $m \cdot \Pi_3^0$ if there are Π_3^0 sets $A_0 \supseteq A_1 \supseteq ... \supseteq A_m = \emptyset$
s.t.: $A = (...(((A_0 \setminus A_1) \cup A_2) \setminus A_3) \cup ...)$
i.e. $x \in A \iff (\text{least } i \ (x \notin A_i))$ is odd.

Obs: (Boolean combinations of Π_3^0) = $\bigcup_{m \in \omega} m \cdot \Pi_3^0 = \omega \cdot \Pi_3^0$.

Def:
$$A \subseteq \omega^{\omega}$$
 is $m \cdot \Pi_3^0$ if there are Π_3^0 sets $A_0 \supseteq A_1 \supseteq ... \supseteq A_m = \emptyset$
s.t.: $A = (...(((A_0 \setminus A_1) \cup A_2) \setminus A_3) \cup ...)$
i.e. $x \in A \iff (\text{least } i \ (x \notin A_i))$ is odd.

Obs: (Boolean combinations of Π_3^0) = $\bigcup_{m \in \omega} m \cdot \Pi_3^0 = \omega \cdot \Pi_3^0$.

The difference hierarchy extends through the transfinite.

Def:
$$A \subseteq \omega^{\omega}$$
 is m - Π_3^0 if there are Π_3^0 sets $A_0 \supseteq A_1 \supseteq ... \supseteq A_m = \emptyset$
s.t.: $A = (...(((A_0 \setminus A_1) \cup A_2) \setminus A_3) \cup ...)$
i.e. $x \in A \iff (\text{least } i \ (x \notin A_i))$ is odd.

Obs: (Boolean combinations of Π_3^0) = $\bigcup_{m \in \omega} m \cdot \Pi_3^0 = \omega \cdot \Pi_3^0$.

The difference hierarchy extends through the transfinite.

Thm: [Kuratowski 58]
$$\mathbf{\Delta}_{k}^{0} = \bigcup_{\alpha \in \omega_{1}} \alpha \cdot \mathbf{\Pi}_{k}^{0}.$$

Def:
$$A \subseteq \omega^{\omega}$$
 is m - Π_3^0 if there are Π_3^0 sets $A_0 \supseteq A_1 \supseteq ... \supseteq A_m = \emptyset$
s.t.: $A = (...(((A_0 \setminus A_1) \cup A_2) \setminus A_3) \cup ...)$
i.e. $x \in A \iff (\text{least } i \ (x \notin A_i))$ is odd.

Obs: (Boolean combinations of Π_3^0) = $\bigcup_{m \in \omega} m \cdot \Pi_3^0 = \omega \cdot \Pi_3^0$.

The difference hierarchy extends through the transfinite.

Thm: [Kuratowski 58]
$$\mathbf{\Delta}_{k}^{0} = \bigcup_{\alpha \in \omega_{1}} \alpha \cdot \mathbf{\Pi}_{k}^{0}.$$

The effective version is due to MedSalem and Tanaka, and holds in ACA_0 .

Def:
$$A \subseteq \omega^{\omega}$$
 is m - Π_3^0 if there are Π_3^0 sets $A_0 \supseteq A_1 \supseteq ... \supseteq A_m = \emptyset$
s.t.: $A = (...(((A_0 \setminus A_1) \cup A_2) \setminus A_3) \cup ...)$
i.e. $x \in A \iff (\text{least } i \ (x \notin A_i))$ is odd.

Obs: (Boolean combinations of Π_3^0) = $\bigcup_{m \in \omega} m \cdot \Pi_3^0 = \omega \cdot \Pi_3^0$.

The difference hierarchy extends through the transfinite.

Thm: [Kuratowski 58]
$$\mathbf{\Delta}_{k}^{0} = \bigcup_{\alpha \in \omega_{1}} \alpha \cdot \mathbf{\Pi}_{k}^{0}.$$

The effective version is due to MedSalem andTanaka, and holds in ACA₀.

Q: What is the strength of $n-\Pi_3^0$ -DET?

Recall:

 Π_n^1 -CA₀ is Z_2 with induction and comprehension restricted to Π_n^1 formulas.

 Δ_n^1 -CA₀ is Z₂ with induction and comprehension restricted to Δ_n^1 sets.

Recall: Π_n^1 -CA₀ is Z_2 with induction and comprehension restricted to Π_n^1 formulas. Δ_n^1 -CA₀ is Z_2 with induction and comprehension restricted to Δ_n^1 sets.

Theorem ([MS 12], following Martin's proof) Π^{1}_{n+2} - $CA_0 \vdash n-\Pi^{0}_3 - DET.$

Recall: Π_n^1 -CA₀ is Z_2 with induction and comprehension restricted to Π_n^1 formulas. Δ_n^1 -CA₀ is Z_2 with induction and comprehension restricted to Δ_n^1 sets.

Theorem ([MS 12], following Martin's proof) $\Pi_{n+2}^1 - CA_0 \vdash n - \Pi_3^0 - DET.$

Theorem ([MS 12]) $\Delta_{n+2}^1 - CA_0 \not\vdash n - \Pi_3^0 - DET.$

Recall: Π_n^1 -CA₀ is Z_2 with induction and comprehension restricted to Π_n^1 formulas. Δ_n^1 -CA₀ is Z_2 with induction and comprehension restricted to Δ_n^1 sets.

Theorem ([MS 12], following Martin's proof) $\Pi_{n+2}^1 - CA_0 \vdash n - \Pi_3^0 - DET.$

Theorem ([MS 12]) $\Delta_{n+2}^1 - CA_0 \quad \forall \quad n - \Pi_3^0 - DET.$

[Welch 09] had already proved the cases n = 1.

Recall: Π_n^1 -CA₀ is Z_2 with induction and comprehension restricted to Π_n^1 formulas. Δ_n^1 -CA₀ is Z_2 with induction and comprehension restricted to Δ_n^1 sets.

Theorem ([MS 12], following Martin's proof) $\Pi_{n+2}^1 - CA_0 \vdash n - \Pi_3^0 - DET.$

Theorem ([MS 12]) $\Delta_{n+2}^1 - CA_0 \quad \forall \quad n - \Pi_3^0 - DET.$

[Welch 09] had already proved the cases n = 1.

Corollary:
$$(\forall n), Z_2 \vdash n \cdot \Pi_3^0 - DET$$
, but $Z_2 \not\vdash (\forall n) n \cdot \Pi_3^0 - DET$.

Reversals aren't possible:

Reversals aren't possible:

Theorem: [MedSalem, Tanaka 07] Π_1^1 -CA₀ + Borel-DET $\neq \Delta_2^1$ -CA₀.

Reversals aren't possible:

Theorem: [MedSalem, Tanaka 07] Π_1^1 -CA₀ + Borel-DET $\neq \Delta_2^1$ -CA₀.

Theorem ([MS 12]) Let T be a true Σ_4^1 sentence. Then, for $n \ge 2$, • $\Pi_n^1 - CA_0 + T \not\vdash \Delta_{n+1}^1 - CA_0$

Reversals aren't possible:

Theorem: [MedSalem, Tanaka 07] Π_1^1 -CA₀ + Borel-DET $\neq \Delta_2^1$ -CA₀.

Theorem ([MS 12])

Let T be a true Σ_4^1 sentence. Then, for $n \ge 2$,

•
$$\Pi_n^1 - CA_0 + T \not\vdash \Delta_{n+1}^1 - CA_0$$

•
$$\Delta_n^1 - CA_0 + T \not\vdash \Pi_n^1 - CA_0$$

Reversals aren't possible:

Theorem: [MedSalem, Tanaka 07] Π_1^1 -CA₀ + Borel-DET $\neq \Delta_2^1$ -CA₀.

Theorem ([MS 12])

Let T be a true Σ_4^1 sentence. Then, for $n \ge 2$,

- $\Pi_n^1 CA_0 + T \not\vdash \Delta_{n+1}^1 CA_0$
- Δ_n^1 -CA₀ + T $\nvdash \Pi_n^1$ -CA₀

Obs: Borel-DET and $m-\Pi_3^0$ -DET are Π_3^1 theorems of ZFC.

But if we look at consitency strength, reversals are possible:

But if we look at consitency strength, reversals are possible:

Theorem ([MS 14]) For every $n \in \mathbb{N}$ we have the following consistency strength relations: $\cdots \prod_{n+1}^{1} - CA_{0} <_{c} \Delta_{n+2}^{1} - CA_{0} <_{c} n - \prod_{3}^{0} - DET <_{c} \prod_{n+2}^{1} - CA_{0} \cdots$

But if we look at consitency strength, reversals are possible:

Theorem ([MS 14]) For every $n \in \mathbb{N}$ we have the following consistency strength relations: $\cdots \prod_{n+1}^{1} - CA_{0} <_{c} \Delta_{n+2}^{1} - CA_{0} <_{c} n - \prod_{3}^{0} - DET <_{c} \prod_{n+2}^{1} - CA_{0} \cdots$

Theorem ([MS 14]) Z_2

 $<_{c} \omega$ - Π_{3}^{0} -DET.

But if we look at consitency strength, reversals are possible:

Theorem ([MS 14]) For every $n \in \mathbb{N}$ we have the following consistency strength relations: $\cdots \prod_{n+1}^{1} - CA_{0} <_{c} \Delta_{n+2}^{1} - CA_{0} <_{c} n - \prod_{3}^{0} - DET <_{c} \prod_{n+2}^{1} - CA_{0} \cdots$

Theorem ([MS 14])

 $Z_2 <_c Z_2 + Con(Z_2) <_c Z_2 + Con(Z_2) + Con(Z_2 + Con(Z_2)) <_c \cdots <_c \omega - \Pi_3^0 - DET.$

Def: A β -model is an ω -model where Σ_1^1 -formulas are absolute.

Def: A β -model is an ω -model where Σ_1^1 -formulas are absolute.

Def: Given a theory T, we let $\beta(T)$: " $(\forall X)$ there is a β -model of T containing X."

Def: A β -model is an ω -model where Σ_1^1 -formulas are absolute.

Def: Given a theory T, we let $\beta(T)$: " $(\forall X)$ there is a β -model of T containing X."

Obs: $\beta(T)$ is much stronger version of *con*(*T*).

Def: A β -model is an ω -model where Σ_1^1 -formulas are absolute.

Def: Given a theory T, we let $\beta(T)$: " $(\forall X)$ there is a β -model of T containing X."

Obs: $\beta(T)$ is much stronger version of *con*(*T*).

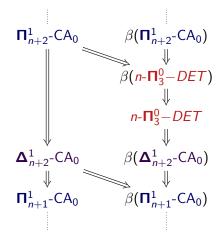
Thm: [Friedman] $\operatorname{RCA}_0 \vdash \beta(\operatorname{ATR}_0) \iff \Pi_1^1 \operatorname{-CA}_0$.

The precise theorem

Thm: [MS 14] The following are strict implications over RCA₀:

The precise theorem

Thm: [MS 14] The following are strict implications over RCA₀:



The techniques for the first theorem

First theorem (repeated): Δ_{n+2}^1 -CA₀ \nvdash *n*- Π_3^0 -DET.

The techniques for the first theorem

First theorem (repeated): Δ_{n+2}^1 -CA₀ $\not\vdash$ *n*- Π_3^0 -DET.

Connected question: Given a class $\Gamma \subseteq \mathcal{P}(2^{\omega})$, how far in Gödel's *L*-hierarchy do the strategies for Γ -games appear?

First theorem (repeated): Δ_{n+2}^1 -CA₀ $\not\vdash$ *n*- Π_3^0 -DET.

Connected question: Given a class $\Gamma \subseteq \mathcal{P}(2^{\omega})$, how far in Gödel's *L*-hierarchy do the strategies for Γ -games appear? or in other words

First theorem (repeated): Δ_{n+2}^1 -CA₀ $\not\vdash$ *n*- Π_3^0 -DET.

Connected question: Given a class $\Gamma \subseteq \mathcal{P}(2^{\omega})$, how far in Gödel's *L*-hierarchy do the strategies for Γ -games appear? or in other words

what is the least ordinal β such that $L_{\beta} \models \Gamma$ -DET?

First theorem (repeated): Δ_{n+2}^1 -CA₀ $\not\vdash$ *n*- Π_3^0 -DET.

Connected question: Given a class $\Gamma \subseteq \mathcal{P}(2^{\omega})$, how far in Gödel's *L*-hierarchy do the strategies for Γ -games appear? or in other words

what is the least ordinal β such that $L_{\beta} \models \Gamma$ -DET?

Lemma: [Friedman 71] The least ordinal such that $L_{\beta} \models \Pi^{0}_{4+\beta}$ -DET is greater than or equal the least ordinal such that $L_{\beta} \models$ ZFC+ β -iterates of Power set.

Definitoin: An ordinal α is *n*-admissible if

it satisfies any of the following equivalent statements:

• $L_{\alpha} \models \Sigma_{m-1}$ -separation and Δ_{m-1} -collection.

Definitoin: An ordinal α is *n*-admissible if

it satisfies any of the following equivalent statements:

- $L_{\alpha} \models \Sigma_{m-1}$ -separation and Δ_{m-1} -collection.
- No Σ_n -over- L_α -definable function $f: \delta \to \alpha$, with $\delta < \alpha$, is cofinal.

Definitoin: An ordinal α is *n*-admissible if

it satisfies any of the following equivalent statements:

- $L_{\alpha} \models \Sigma_{m-1}$ -separation and Δ_{m-1} -collection.
- No Σ_n -over- L_α -definable function $f: \delta \to \alpha$, with $\delta < \alpha$, is cofinal.

Definitoin: An ordinal α is *n*-admissible if

it satisfies any of the following equivalent statements:

- $L_{\alpha} \models \Sigma_{m-1}$ -separation and Δ_{m-1} -collection.
- No Σ_n -over- L_{α} -definable function $f: \delta \to \alpha$, with $\delta < \alpha$, is cofinal.

Fact: If α is *n*-admissible, $2^{\omega} \cap L_{\alpha} \models \Delta_{n+1}^1$ -CA₀.

Definitoin: An ordinal α is *n*-admissible if

it satisfies any of the following equivalent statements:

- $L_{\alpha} \models \Sigma_{m-1}$ -separation and Δ_{m-1} -collection.
- No Σ_n -over- L_α -definable function $f: \delta \to \alpha$, with $\delta < \alpha$, is cofinal.

Fact: If α is *n*-admissible, $2^{\omega} \cap L_{\alpha} \models \Delta_{n+1}^{1}$ -CA₀. **Def:** Let α_{n} be the least *n*-admissible ordinal.

Definitoin: An ordinal α is *n*-admissible if

it satisfies any of the following equivalent statements:

- $L_{\alpha} \models \Sigma_{m-1}$ -separation and Δ_{m-1} -collection.
- No Σ_n -over- L_α -definable function $f: \delta \to \alpha$, with $\delta < \alpha$, is cofinal.

Fact: If α is *n*-admissible, $2^{\omega} \cap L_{\alpha} \models \Delta_{n+1}^{1}$ -CA₀. **Def:** Let α_{n} be the least *n*-admissible ordinal. **Obs:** $Th(L_{\alpha_{n}}) \notin L_{\alpha_{n}}$ using Gödel-Tarski undefinability of truth.

Definitoin: An ordinal α is *n*-admissible if

it satisfies any of the following equivalent statements:

- $L_{\alpha} \models \Sigma_{m-1}$ -separation and Δ_{m-1} -collection.
- No Σ_n-over-L_α-definable function f: δ → α, with δ < α, is cofinal.

Fact: If α is *n*-admissible, $2^{\omega} \cap L_{\alpha} \models \Delta_{n+1}^1$ -CA₀. **Def:** Let α_n be the least *n*-admissible ordinal. **Obs:** $Th(L_{\alpha_n}) \notin L_{\alpha_n}$ using Gödel-Tarski undefinability of truth.

Lemma ([MS 12])

For $n \ge 2$, there is a $(n-1)-\Pi_3^0$ game where players play sets of sentences,

- if I plays $Th(L_{\alpha_n})$, he wins.
- if I does not play $Th(L_{\alpha_n})$ but II does, then II wins.

Definitoin: An ordinal α is *n*-admissible if

it satisfies any of the following equivalent statements:

- $L_{\alpha} \models \Sigma_{m-1}$ -separation and Δ_{m-1} -collection.
- No Σ_n-over-L_α-definable function f: δ → α, with δ < α, is cofinal.

Fact: If α is *n*-admissible, $2^{\omega} \cap L_{\alpha} \models \Delta_{n+1}^1$ -CA₀. **Def:** Let α_n be the least *n*-admissible ordinal. **Obs:** $Th(L_{\alpha_n}) \notin L_{\alpha_n}$ using Gödel-Tarski undefinability of truth.

Lemma ([MS 12])

For $n \ge 2$, there is a $(n-1)-\Pi_3^0$ game where players play sets of sentences,

- if I plays $Th(L_{\alpha_n})$, he wins.
- if I does not play $Th(L_{\alpha_n})$ but II does, then II wins.

A winning strategy for this game must compute $Th(L_{\alpha_n})$.

Definitoin: An ordinal α is *n*-admissible if

it satisfies any of the following equivalent statements:

- $L_{\alpha} \models \Sigma_{m-1}$ -separation and Δ_{m-1} -collection.
- No Σ_n-over-L_α-definable function f: δ → α, with δ < α, is cofinal.

Fact: If α is *n*-admissible, $2^{\omega} \cap L_{\alpha} \models \Delta_{n+1}^{1}$ -CA₀. **Def:** Let α_{n} be the least *n*-admissible ordinal. **Obs:** $Th(L_{\alpha_{n}}) \notin L_{\alpha_{n}}$ using Gödel-Tarski undefinability of truth.

Lemma ([MS 12])

For $n \ge 2$, there is a $(n-1)-\Pi_3^0$ game where players play sets of sentences,

- if I plays $Th(L_{\alpha_n})$, he wins.
- if I does not play $Th(L_{\alpha_n})$ but II does, then II wins.

A winning strategy for this game must compute $Th(L_{\alpha_n})$. Hence $2^{\omega} \cap L_{\alpha_n} \models \Delta^1_{n+1}$ - CA_0 & $\neg(n-1)$ - Π^0_3 -DET

What is the strength of the various levels of Turing determinacy?

Def: A *cone* is a set for the form $\{X \in \omega^{\omega} : X \ge_T Z\}$, for some $Z \in \omega^{\omega}$.

Def: A *cone* is a set for the form $\{X \in \omega^{\omega} : X \ge_T Z\}$, for some $Z \in \omega^{\omega}$. **Def:** $A \subseteq \omega^{\omega}$ is *degree invariant* if, whenever $X \equiv_T Y$, $X \in A \iff Y \in A$.

Def: A *cone* is a set for the form $\{X \in \omega^{\omega} : X \ge_T Z\}$, for some $Z \in \omega^{\omega}$. **Def:** $A \subseteq \omega^{\omega}$ is *degree invariant* if, whenever $X \equiv_T Y$, $X \in A \iff Y \in A$.

Theorem – Turing determinacy: [Martin] (AD) Every degree invariant $A \subseteq \omega^{\omega}$ either contains or is disjoint from a cone.

Def: A *cone* is a set for the form $\{X \in \omega^{\omega} : X \ge_T Z\}$, for some $Z \in \omega^{\omega}$. **Def:** $A \subseteq \omega^{\omega}$ is *degree invariant* if, whenever $X \equiv_T Y$, $X \in A \iff Y \in A$.

Theorem – Turing determinacy: [Martin] (AD)

Every degree invariant $A \subseteq \omega^{\omega}$ either contains or is disjoint from a cone. **Proof**:

If s is a winning strategy for I in the A-game, A contains the cone above s.

Def: A *cone* is a set for the form $\{X \in \omega^{\omega} : X \ge_T Z\}$, for some $Z \in \omega^{\omega}$. **Def:** $A \subseteq \omega^{\omega}$ is *degree invariant* if, whenever $X \equiv_T Y$, $X \in A \iff Y \in A$.

Theorem – Turing determinacy: [Martin] (AD)

Every degree invariant $A \subseteq \omega^{\omega}$ either contains or is disjoint from a cone. **Proof**:

If s is a winning strategy for I in the A-game, A contains the cone above s.

If s is a winning strategy for II in the A-game, A is disjoint from the cone above s.

Def: A *cone* is a set for the form $\{X \in \omega^{\omega} : X \ge_T Z\}$, for some $Z \in \omega^{\omega}$. **Def:** $A \subseteq \omega^{\omega}$ is *degree invariant* if, whenever $X \equiv_T Y$, $X \in A \iff Y \in A$.

Theorem – Turing determinacy: [Martin] (AD)

Every degree invariant $A \subseteq \omega^{\omega}$ either contains or is disjoint from a cone. **Proof**:

If s is a winning strategy for I in the A-game, A contains the cone above s.

If s is a winning strategy for II in the A-game, A is disjoint from the cone above s.

Observation: This induces a 0-1-valued measure on all degree-invariant sets.

Def: A *cone* is a set for the form $\{X \in \omega^{\omega} : X \ge_T Z\}$, for some $Z \in \omega^{\omega}$. **Def:** $A \subseteq \omega^{\omega}$ is *degree invariant* if, whenever $X \equiv_T Y$, $X \in A \iff Y \in A$.

Theorem – Turing determinacy: [Martin] (AD)

Every degree invariant $A \subseteq \omega^{\omega}$ either contains or is disjoint from a cone. **Proof**:

If s is a winning strategy for I in the A-game, A contains the cone above s.

If s is a winning strategy for II in the A-game, A is disjoint from the cone above s.

Observation: This induces a 0-1-valued measure on all degree-invariant sets.

For a class of sets of reals $\mathsf{\Gamma}\subseteq\mathcal{P}(\omega^\omega)$, let

\Gamma-TD: Every degree-invariant $A \in \Gamma$ either contains or is disjoint from a cone.

Obs: The computable sets form an ω -model of Γ -TD.

Obs: The computable sets form an ω -model of Γ -TD. So Γ -TD doesn't imply anything over RCA₀.

Obs: The computable sets form an ω-model of Γ-TD. So Γ-TD doesn't imply anything over RCA₀.

Theorem: [Harrington, Kechris 75]

• ATR₀ $\vdash \Sigma_3^0$ -TD

Obs: The computable sets form an ω -model of Γ -TD. So Γ -TD doesn't imply anything over RCA₀.

Theorem: [Harrington, Kechris 75]

- ATR₀ $\vdash \Sigma_3^0$ -TD
- $\mathsf{RCA}_0 \vdash \mathbf{\Pi}_n^0 \text{-}\mathsf{DET} \rightarrow \mathbf{\Pi}_{n+1}^0 \text{-}\mathsf{TD}$

Obs: The computable sets form an ω -model of Γ -TD. So Γ -TD doesn't imply anything over RCA₀.

Theorem: [Harrington, Kechris 75]

- ATR₀ $\vdash \Sigma_3^0$ -TD
- $\mathsf{RCA}_0 \vdash \mathbf{\Pi}_n^0 \text{-}\mathsf{DET} \rightarrow \mathbf{\Pi}_{n+1}^0 \text{-}\mathsf{TD}$

Theorem: [Martin]

• *Z*₂ *∀* Σ⁰₅-TD

Obs: The computable sets form an ω -model of Γ -TD. So Γ -TD doesn't imply anything over RCA₀.

Theorem: [Harrington, Kechris 75]

- ATR₀ $\vdash \Sigma_3^0$ -TD
- $\mathsf{RCA}_0 \vdash \mathbf{\Pi}_n^0 \text{-}\mathsf{DET} \rightarrow \mathbf{\Pi}_{n+1}^0 \text{-}\mathsf{TD}$

Theorem: [Martin]

- Z₂ ⊬ Σ₅⁰-TD
- *Z*₂ ⊢ Δ⁰₅-TD

Obs: The computable sets form an ω -model of Γ -TD. So Γ -TD doesn't imply anything over RCA₀.

Theorem: [Harrington, Kechris 75]

- ATR₀ $\vdash \Sigma_3^0$ -TD
- $\mathsf{RCA}_0 \vdash \mathbf{\Pi}_n^0 \text{-}\mathsf{DET} \rightarrow \mathbf{\Pi}_{n+1}^0 \text{-}\mathsf{TD}$

Theorem: [Martin]

- *Z*₂ *∀* Σ⁰₅-TD
- $Z_2 \vdash \Delta_5^0$ -TD
- Π_1^1 -CA₀ $\vdash \Pi_n^0$ -TD $\leftrightarrow \mathbf{\Delta}_{n+1}^0$ -TD

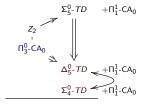
Obs: The computable sets form an ω -model of Γ -TD. So Γ -TD doesn't imply anything over RCA₀.

Theorem: [Harrington, Kechris 75]

- ATR₀ $\vdash \Sigma_3^0$ -TD
- $\mathsf{RCA}_0 \vdash \mathbf{\Pi}_n^0 \text{-}\mathsf{DET} \to \mathbf{\Pi}_{n+1}^0 \text{-}\mathsf{TD}$

Theorem: [Martin]

- Z₂ ⊭ Σ₅⁰-TD
- *Z*₂ ⊢ Δ⁰₅-TD
- Π_1^1 -CA₀ $\vdash \Pi_n^0$ -TD $\leftrightarrow \mathbf{\Delta}_{n+1}^0$ -TD



Lemma ([MS 15](RCA₀))

Every non-empty, degree-invariant Π_2^Z set contains the cone above Z.

Lemma ([MS 15](RCA₀))

Every non-empty, degree-invariant Π_2^Z set contains the cone above Z. Thus $RCA_0 \vdash \Sigma_2^0$ -TD.

Lemma ([MS 15](RCA₀))

Every non-empty, degree-invariant Π_2^Z set contains the cone above Z. Thus $RCA_0 \vdash \Sigma_2^0$ -TD.

Lemma ([MS 15](ACA₀))

Every non-empty degree-invariant Δ_2^Z set contains the cone above Z.

Lemma ([MS 15](RCA₀))

Every non-empty, degree-invariant Π_2^Z set contains the cone above Z. Thus $RCA_0 \vdash \Sigma_2^0$ -TD.

Lemma ([MS 15](ACA₀))

Every non-empty degree-invariant Δ_2^Z set contains the cone above Z. Thus $ACA_0 \vdash \Delta_2^0$ -TD.

Lemma ([MS 15](RCA₀))

Every non-empty, degree-invariant Π_2^Z set contains the cone above Z. Thus $RCA_0 \vdash \Sigma_2^0$ -TD.

Lemma ([MS 15](ACA₀))

Every non-empty degree-invariant Δ_2^Z set contains the cone above Z. Thus $ACA_0 \vdash \Delta_2^0$ -TD.

Lemma ([MS 15])

 $RCA_0 \not\vdash \Delta_2^0$ -TD.

Pf: Consider an initial segment of the degrees of order type ω with representatives that are uniformly Δ_2^0 as in [Lerman 83][Epstin 83]

Lemma ([MS 15](RCA₀))

Every non-empty, degree-invariant Π_2^Z set contains the cone above Z. Thus $RCA_0 \vdash \Sigma_2^0$ -TD.

Lemma ([MS 15](ACA₀))

Every non-empty degree-invariant Δ_2^Z set contains the cone above Z. Thus $ACA_0 \vdash \Delta_2^0$ -TD.

Lemma ([MS 15])

 $RCA_0 \not\vdash \Delta_2^0$ -TD.

Pf: Consider an initial segment of the degrees of order type ω with representatives that are uniformly Δ_2^0 as in [Lerman 83][Epstin 83]

Σ^0_3 and Δ^0_3 -TD

Theorem ([MS 15])

 $ACA_0 + \Sigma_3^0 - TD \vdash ATR_0.$

Pf: Uses $P = \{X | (\exists \beta < \alpha) (0^{\beta} \oplus X \equiv_{T} W^{X})\}$, Posner-Robinson, JS-Pseudo-jump inversion.

Σ_3^0 and Δ_3^0 -TD

Theorem ([MS 15])

 $ACA_0 + \Sigma_3^0 - TD \vdash ATR_0.$

Pf: Uses $P = \{X | (\exists \beta < \alpha) (0^{\beta} \oplus X \equiv_{T} W^{X})\}$, Posner-Robinson, JS-Pseudo-jump inversion.

Theorem ([MS 15])

 $ATR_0 + \Pi_1^1 - TI_0 \vdash \Delta_4^0 - TD.$

Pf: Uses Tanaka-MedSalem's theorem on the difference hierarchy.

Σ_3^0 and Δ_3^0 -TD

Theorem ([MS 15])

 $ACA_0 + \Sigma_3^0 - TD \vdash ATR_0.$

Pf: Uses $P = \{X | (\exists \beta < \alpha) (0^{\beta} \oplus X \equiv_{T} W^{X})\}$, Posner-Robinson, JS-Pseudo-jump inversion.

Theorem ([MS 15])

 $ATR_0 + \Pi_1^1 - TI_0 \vdash \Delta_4^0 - TD.$

Pf: Uses Tanaka-MedSalem's theorem on the difference hierarchy.

Theorem ([MS 15])

 $ATR_0 \nvDash \Delta_4^0$ -TD.

Pf: Uses Friedman's theorem on

 ω -models of $T \cup \{\neg \exists \text{countable coded } \omega \text{-model of } T\}$

Antonio Montalbán (U.C. Berkeley) Determinacy and Turing Det. in S.O.A.

Σ^0_3 and Δ^0_3 -TD

Theorem ([MS 15])

 $ACA_0 + \Sigma_3^0 - TD \vdash ATR_0.$

Pf: Uses $P = \{X | (\exists \beta < \alpha) (0^{\beta} \oplus X \equiv_T W^X)\}$, Posner-Robinson, JS-Pseudo-jump inversion.

Theorem ([MS 15])

 $ATR_0 + \Pi_1^1 - TI_0 \vdash \Delta_4^0 - TD.$

Pf: Uses Tanaka-MedSalem's theorem on the difference hierarchy.

Theorem ([MS 15]) $ATR_0 \nvDash \Delta_4^0 - TD.$ Pf: Uses Friedman's theorem on ω -models of $T \cup \{\neg \exists \text{countable coded } \omega \text{-model of } T\}$ Antonio Montalbán (U.C. Berkeley) Determinacy and Turing Det. in S.O.A. February 2014 24 / 27

Definition: α_2 is the least ordinal such that $L_{\alpha_2} \models \Delta_3^0$ -CA₀.

Definition: α_2 is the least ordinal such that $L_{\alpha_2} \models \Delta_3^0$ -CA₀. Thus, α_2 is the least 2-admissible ordinal.

Definition: α_2 is the least ordinal such that $L_{\alpha_2} \models \Delta_3^0$ -CA₀. Thus, α_2 is the least 2-admissible ordinal.

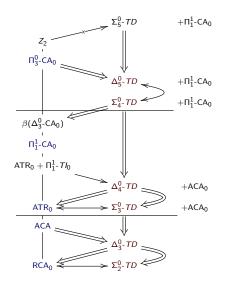
Lemma ([MS 15]) $\Pi_1^1 - CA_0 + \Sigma_4^0 - TD \vdash \alpha_2$ exists.

Definition: α_2 is the least ordinal such that $L_{\alpha_2} \models \Delta_3^0$ -CA₀. Thus, α_2 is the least 2-admissible ordinal.

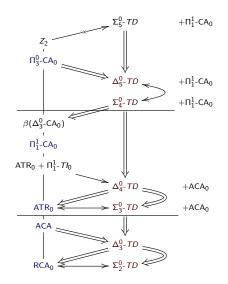
Lemma ([MS 15]) $\Pi_1^1 - CA_0 + \Sigma_4^0 - TD \vdash \alpha_2$ exists.

Corollary ([MS 15]) $\Pi_1^1 - CA_0 + \Sigma_4^0 - TD \vdash \beta(\Delta_3^0 - CA_0).$

The Picutre

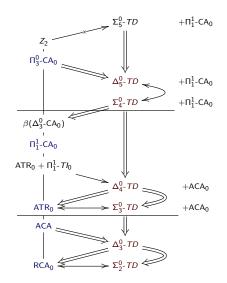


The Picutre



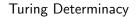
Q: WKL₀ + Δ_3^0 -*TD* \vdash ACA₀?

The Picutre



$$\begin{split} \mathbf{Q} &: \mathsf{WKL}_0 + \Delta_3^0 \text{-} \textit{TD} \vdash \mathsf{ACA}_0? \\ \\ \mathbf{Q} &: \mathsf{ATR}_0 + \Sigma_1^1 \text{-} \textit{IND} \vdash \Delta_4^0 \text{-} \textit{TD}? \\ \\ \\ \\ \mathbf{Q} &: \mathsf{ACA}_0 + \Delta_4^0 \text{-} \textit{TD} \vdash \Sigma_1^1 \text{-} \textit{IND}? \end{split}$$

Thank you



Determinacy

