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What is Ramseyan factorization theorem?

We can find it in some books/papers in Automata Theory.

It is a Ramsey-type theorem about infinite sequences.
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What is Ramseyan factorization theorem? (2)

Let A and B be sets. We call A the set of letters and B the set of
colors. We also call sequences of elements from A words.

Then the Ramseyan factorization theorem for A and B is the
following statement:

Definition (Ramseyan factorization theorem RFA
B)

For every coloring of finite words f : A<N → B and every infinite
word u ∈ AN, we can cut u and divide it into infinitely many finite
words v0, v1, v2, ..., i.e. u = v⌢0 v⌢1 v⌢2 · · · , and every segment of u
of the form v⌢i v⌢i+1 · · ·⌢ vj (i ≤ j , i ≥ 1) is colored the same by f .

Here, we call such v = ⟨vi | i ∈ N⟩ a Ramseyan factorization for
f and u.
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What is Ramseyan factorization theorem? (3)

Definition (Ramseyan factorization theorem RFA
B)

For every coloring of finite words f : A<N → B and every infinite
word u ∈ AN, we can cut u and divide it into infinitely many finite
words v0, v1, v2, ..., i.e. u = v⌢0 v⌢1 v⌢2 · · · , and every segment of u
of the form v⌢i v⌢i+1 · · ·⌢ vj (i ≤ j , i ≥ 1) is colored the same by f .

Note: RTn
k : n denotes which tuples we consider (i.e. n-tuples).

RFs
k : s denotes the number of letters.

Example

Define f : {0, 1}<N → {0, 1} and u ∈ {0, 1}N as
f (σ) = (the first number of σ) and u = 101001 . . . 10i10i+11 . . ..
Then v = ⟨0i1 | i ∈ N⟩ is a Ramseyan factorization for f and u.
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Results about RF

We can prove the following:

Theorem (RCA0)

RT2
2 ⇔ RFN

k ⇔ RF2
k for all k ∈ ω, k ≥ 2.

In order to study the strength of RF1
k , we consider the following

variant of Ramsey’s theorem.

Definition (RTf
k)

Let f : [N]n → N. Then RT f
k is the following statement:

∀P : N → k∃H ⊆inf N∀u, v ∈ [H]n P(f (u)) = P(f (v)).
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Results about RF. (2)

Let Subt(a, b) = b − a. Then we can prove the following:

Proposition (RCA0)

RTSubt
k ⇔ RF1

k for all k ∈ N.

Corollary (RCA0)

RF1
k ⇒ RT1

k . Thus ∀kRF1
k ⇒ BΣ0

2.
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Weak Ramseyan factorization

Weak Ramseyan factorization theorem is the following:

Definition (Weak Ramseyan factorization theorem WRFA
B)

For every coloring of finite words f : A<N → B and every infinite
word u ∈ AN, we can cut u and divide it into infinitely many finite
words v0, v1, v2, ..., i.e. u = v⌢0 v⌢1 v⌢2 · · · , and every segment of u
of the form vi (i ≥ 1) is colored the same by f .

Recall:

Definition (Ramseyan factorization theorem RFA
B)

For every coloring of finite words f : A<N → B and every infinite
word u ∈ AN, we can cut u and divide it into infinitely many finite
words v0, v1, v2, ..., i.e. u = v⌢0 v⌢1 v⌢2 · · · , and every segment of u
of the form v⌢i v⌢i+1 · · ·⌢ vj (i ≤ j , i ≥ 1) is colored the same by f .
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To study the strength of WRFs
k , we also consider a weaker

Ramsey’s theorem as follows:

Definition (Weak Ramsey’s theorem WRTn
k)

For every coloring P : [N]n → k, there exists an infinite
H = {a0 < a1 < · · · } such that every n-tuples of the form
⟨ai , ai+1, . . . , ai+n−1⟩ (i ∈ N) is colored the same by P.

Here, such H is called weak homogeneous for P .

Note: Subsets of weak homogeneous sets might not be weak
homogeneous again.

Thus, the following question is not easy to solve:

Question

Does WRTn
k imply WRTn

k+1 over RCA0?
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Results about WRF and WRT

We can prove the following:

Proposition (RCA0)

WRFN
k ⇔ WRT2

k for all k ∈ N.
In particular, WRFN

2 is equivalent to WRT2
2.

Recall:

Theorem (RCA0)

RT2
2 ⇔ RFN

k ⇔ RF2
k for all k ∈ ω, k ≥ 2.

Question

Is WRF2
k equivalent to WRT2

k over RCA0 for all k ∈ N?
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Results about WRF and WRT. (2)

To see the strength of WRFN
2 , or equivalently WRT2

2, the notion
of transitive/semi-transitive colorings is helpful.

Definition (Hirschfeldt/Shore (2007))

A coloring P : [N]2 → k is transitive iff
P(a, b) = P(b, c) = i ⇒ P(a, c) = i .
A coloring P : [N]2 → k is semi-transitive iff
P(a, b) = P(b, c) = i > 0 ⇒ P(a, c) = i .

Definition (Hirschfeldt/Shore (2007))

Transitive Ramsey’s theorem (trRT2
k): Any transitive coloring

P : [N]2 → k has an infinite homogeneous set.
Semi-transitive Ramsey’s theorem (strRT2

k): Any
Semi-transitive coloring P : [N]2 → k has an infinite homogeneous
set.
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Results about WRF and WRT. (3)

Definition

Semi weak Ramsey’s theorem (sWRT2
k): Any coloring

P : [N]2 → k has an infinite homogeneous set H s.t.
P([H]2) = {0} or a weak homogeneous set H = {a0 < a1 < · · · }
s.t. P(a0, a1) > 0.

We can prove the following:

Theorem (RCA0)

WRT2
k ⇒ trRT2

k .

Theorem (RCA0)

sWRT2
2 ⇔ strRT2

2.
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Results about WRF and WRT. (4)

Corollary (RCA0)

ADS ≤ WRFN
2 = WRT2

2 ≤ CAC.

Proof. By Hirschfeldt/Shore(2007), ADS ⇔ trRT2
2 and

CAC ⇔ strRT2
2 over RCA0. 2

Question

Is WRT2
2 equivalent to ADS or CAC over RCA0?
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Ramseyan factorization for trees

Definition

For given tress T , S ⊆ 2<N, a tree embedding is an injective
π : S → T such that for any σ, τ ∈ S, π(σ) ∩ π(τ) = π(σ ∩ τ).
For given a tree embedding π : S → T, and for any σ, τ ∈ S such
that σ ⊊ τ , the edge between π(σ) and π(τ), denoted by Eπ(σ, τ),
is the sequence ρ ∈ 2<N such that π(σ)⌢ρ = π(τ).

Definition (TRF2
k)

Ramseyan factorization theorem for trees (TRF2
k):

For any infinite tree T ⊆ 2<N and a coloring f : 2<N → k,
there exists an infinite tree S ⊆ 2<N and a tree embedding
π : S → T such that for any σ ⊊ τ ∈ S and σ′ ⊊ τ ′ ∈ S,
f (Eπ(σ, τ)) = f (Eπ(σ

′, τ ′)).
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Ramseyan factorization for trees (2)

We can prove the following:

Proposition (RCA0)

TRF2
k implies RF2

k for all k ∈ N. In particular, TRF2
2 implies RF2

2

(and, equivalently, RT2
2).

Theorem (RCA0)

WKL0 + RT2
2 ⇒ TRF2

2 ⇒ RT2
2.

Question

Does TRF2
2 imply WKL0 over RCA0?
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Summary

Over RCA0,
The strength of RFs

k is as follows:

RT2
2 = RFN

2 = RF2
2.

∀kRF1
k = ∀kRTSubt

k ≥ BΣ0
2.

The strength of WRFs
k is as follows:

· · · ≥ WRT2
3 = WRFN

3 ≥ WRT2
2 = WRFN

2 ≥ WRF2
2.

CAC ≥ WRT2
2 = WRFN

2 ≥ ADS.

The strength of TRF2
k is as follows:

WKL0 + RT2
2 ≥ TRF2

2 ≥ RT2
2.
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