Ramseyan factorization theorem in reverse mathematics

Shota Murakami (Joint work with Takeshi Yamazaki and Keita Yokoyama)

Tohoku University

Shota Murakami (Joint work with Takeshi Yamazaki and Keita Yokoyama)

Contents

1 Ramseyan factorization

- What is Ramseyan factorization theorem?
- Results about RF

2 Variants of Ramseyan factorization

- Weak Ramseyan factorization
- Ramseyan factorization for trees

3 Summary

Contents

1 Ramseyan factorization

- What is Ramseyan factorization theorem?
- Results about RF
- 2 Variants of Ramseyan factorization
 - Weak Ramseyan factorization
 - Ramseyan factorization for trees

3 Summary

What is Ramseyan factorization theorem?

- We can find it in some books/papers in Automata Theory.
- It is a Ramsey-type theorem about infinite sequences.

What is Ramseyan factorization theorem? (2)

Let A and B be sets. We call A the set of letters and B the set of colors. We also call sequences of elements from A words.

Then the **Ramseyan factorization theorem for** A **and** B is the following statement:

Definition (Ramseyan factorization theorem RF_B^A)

For every coloring of finite words $f : A^{<N} \to B$ and every infinite word $u \in A^{\mathbb{N}}$, we can cut u and divide it into infinitely many finite words $v_0, v_1, v_2, ..., i.e.$ $u = v_0^{\frown} v_1^{\frown} v_2^{\frown} \cdots$, and every segment of uof the form $v_i^{\frown} v_{i+1}^{\frown} \cdots \frown v_j$ $(i \leq j, i \geq 1)$ is colored the same by f.

Here, we call such $v = \langle v_i \mid i \in \mathbb{N} \rangle$ a Ramseyan factorization for f and u.

Shota Murakami (Joint work with Takeshi Yamazaki and Keita Yokoyama)

What is Ramseyan factorization theorem? (3)

Definition (Ramseyan factorization theorem RF_B^A)

For every coloring of finite words $f : A^{<N} \to B$ and every infinite word $u \in A^{\mathbb{N}}$, we can cut u and divide it into infinitely many finite words $v_0, v_1, v_2, ..., i.e.$ $u = v_0^{\frown} v_1^{\frown} v_2^{\frown} \cdots$, and every segment of u of the form $v_i^{\frown} v_{i+1}^{\frown} \cdots \frown v_j$ $(i \leq j, i \geq 1)$ is colored the same by f.

Note: $\operatorname{RT}_{k}^{n}$: *n* denotes which tuples we consider (i.e. *n*-tuples). $\operatorname{RF}_{k}^{s}$: *s* denotes the number of letters.

Example

Define $f : \{0,1\}^{<\mathbb{N}} \to \{0,1\}$ and $u \in \{0,1\}^{\mathbb{N}}$ as $f(\sigma) = (\text{the first number of } \sigma)$ and $u = 101001 \dots 10^{i} 10^{i+1} 1 \dots$ Then $v = \langle 0^{i}1 | i \in \mathbb{N} \rangle$ is a Ramseyan factorization for f and u.

Results about RF

We can prove the following:

Theorem (RCA_0)

$$\operatorname{RT}_2^2 \Leftrightarrow \operatorname{RF}_k^{\mathbb{N}} \Leftrightarrow \operatorname{RF}_k^2$$
 for all $k \in \omega, \ k \geq 2$.

In order to study the strength of RF_k^1 , we consider the following variant of Ramsey's theorem.

Definition (RT_k^f)

Let $f : [\mathbb{N}]^n \to \mathbb{N}$. Then RT_k^f is the following statement: $\forall P : \mathbb{N} \to k \exists H \subseteq_{inf} \mathbb{N} \forall u, v \in [H]^n \quad P(f(u)) = P(f(v)).$

Shota Murakami (Joint work with Takeshi Yamazaki and Keita Yokoyama)

Results about RF. (2)

Let Subt(a, b) = b - a. Then we can prove the following:

Proposition (RCA_0)

 $\operatorname{RT}_{k}^{\operatorname{Subt}} \Leftrightarrow \operatorname{RF}_{k}^{1}$ for all $k \in \mathbb{N}$.

Corollary (RCA_0)

$$\mathrm{RF}_k^1 \Rightarrow \mathrm{RT}_k^1$$
. Thus $\forall k \mathrm{RF}_k^1 \Rightarrow \mathrm{B}\Sigma_2^0$.

Shota Murakami (Joint work with Takeshi Yamazaki and Keita Yokoyama)

Contents

1 Ramseyan factorization

- What is Ramseyan factorization theorem?
- Results about RF

2 Variants of Ramseyan factorization

- Weak Ramseyan factorization
- Ramseyan factorization for trees

3 Summary

Weak Ramseyan factorization

Weak Ramseyan factorization theorem is the following:

Definition (Weak Ramseyan factorization theorem WRF_B^A)

For every coloring of finite words $f : A^{<N} \to B$ and every infinite word $u \in A^{\mathbb{N}}$, we can cut u and divide it into infinitely many finite words $v_0, v_1, v_2, ..., i.e.$ $u = v_0 v_1 v_2 \cdots$, and every segment of u of the form v_i $(i \ge 1)$ is colored the same by f.

Recall:

Definition (Ramseyan factorization theorem RF_B^A)

For every coloring of finite words $f : A^{<N} \to B$ and every infinite word $u \in A^{\mathbb{N}}$, we can cut u and divide it into infinitely many finite words $v_0, v_1, v_2, ..., i.e.$ $u = v_0^{\frown} v_1^{\frown} v_2^{\frown} \cdots$, and every segment of u of the form $v_i^{\frown} v_{i+1}^{\frown} \cdots \frown v_j$ $(i \leq j, i \geq 1)$ is colored the same by f.

To study the strength of WRF_k^s , we also consider a weaker Ramsey's theorem as follows:

Definition (Weak Ramsey's theorem WRT_k^n)

For every coloring $P : [\mathbb{N}]^n \to k$, there exists an infinite $H = \{a_0 < a_1 < \cdots\}$ such that every n-tuples of the form $\langle a_i, a_{i+1}, \dots, a_{i+n-1} \rangle$ $(i \in \mathbb{N})$ is colored the same by P.

Here, such H is called weak homogeneous for P.

Note: Subsets of weak homogeneous sets might not be weak homogeneous again.

Thus, the following question is not easy to solve:

Question

Does $\operatorname{WRT}_{k}^{n}$ imply $\operatorname{WRT}_{k+1}^{n}$ over RCA_{0} ?

Shota Murakami (Joint work with Takeshi Yamazaki and Keita Yokoyama)

Results about WRF and WRT

We can prove the following:

$Proposition (RCA_0)$

 $\operatorname{WRF}_{k}^{\mathbb{N}} \Leftrightarrow \operatorname{WRT}_{k}^{2}$ for all $k \in \mathbb{N}$. In particular, $\operatorname{WRF}_{2}^{\mathbb{N}}$ is equivalent to $\operatorname{WRT}_{2}^{2}$.

Recall:

Theorem (RCA_0)

 $\mathrm{RT}_2^2 \Leftrightarrow \mathrm{RF}_k^{\mathbb{N}} \Leftrightarrow \mathrm{RF}_k^2 \text{ for all } k \in \omega, \ k \geq 2.$

Question

Is WRF_k^2 equivalent to WRT_k^2 over RCA_0 for all $k \in \mathbb{N}$?

Shota Murakami (Joint work with Takeshi Yamazaki and Keita Yokoyama)

Summary 00

Results about WRF and WRT. (2)

To see the strength of $WRF_2^{\mathbb{N}}$, or equivalently WRT_2^2 , the notion of transitive/semi-transitive colorings is helpful.

Definition (Hirschfeldt/Shore (2007))

A coloring $P : [\mathbb{N}]^2 \to k$ is transitive iff $P(a, b) = P(b, c) = i \Rightarrow P(a, c) = i.$ A coloring $P : [\mathbb{N}]^2 \to k$ is semi-transitive iff $P(a, b) = P(b, c) = i > 0 \Rightarrow P(a, c) = i.$

Definition (Hirschfeldt/Shore (2007))

Transitive Ramsey's theorem (trRT_k²): Any transitive coloring $P : [\mathbb{N}]^2 \to k$ has an infinite homogeneous set. **Semi-transitive Ramsey's theorem** (strRT_k²): Any Semi-transitive coloring $P : [\mathbb{N}]^2 \to k$ has an infinite homogeneous set.

Results about WRF and WRT. (3)

Definition

Semi weak Ramsey's theorem (sWRT_k²): Any coloring $P : [\mathbb{N}]^2 \to k$ has an infinite homogeneous set H s.t. $P([H]^2) = \{0\}$ or a weak homogeneous set $H = \{a_0 < a_1 < \cdots\}$ s.t. $P(a_0, a_1) > 0$.

We can prove the following:

Theorem (RCA_0)

 $\operatorname{WRT}_k^2 \Rightarrow \operatorname{trRT}_k^2.$

Theorem (RCA_0)

 $\mathrm{sWRT}_2^2 \Leftrightarrow \mathrm{strRT}_2^2.$

Shota Murakami (Joint work with Takeshi Yamazaki and Keita Yokoyama)

Tohoku University

Summary 00

Results about WRF and WRT. (4)

Corollary (RCA_0)

$ADS \leq WRF_2^{\mathbb{N}} = WRT_2^2 \leq CAC.$

Proof. By Hirschfeldt/Shore(2007), $ADS \Leftrightarrow trRT_2^2$ and $CAC \Leftrightarrow strRT_2^2$ over RCA_0 .

Question

Is WRT_2^2 equivalent to ADS or CAC over RCA_0 ?

Shota Murakami (Joint work with Takeshi Yamazaki and Keita Yokoyama)

Tohoku University

Ramseyan factorization for trees

Definition

For given tress $T, S \subseteq 2^{<\mathbb{N}}$, a tree embedding is an injective $\pi : S \to T$ such that for any $\sigma, \tau \in S$, $\pi(\sigma) \cap \pi(\tau) = \pi(\sigma \cap \tau)$. For given a tree embedding $\pi : S \to T$, and for any $\sigma, \tau \in S$ such that $\sigma \subsetneq \tau$, the edge between $\pi(\sigma)$ and $\pi(\tau)$, denoted by $E_{\pi}(\sigma, \tau)$, is the sequence $\rho \in 2^{<\mathbb{N}}$ such that $\pi(\sigma) \cap \rho = \pi(\tau)$.

Definition (TRF_k^2)

Ramseyan factorization theorem for trees (TRF_k^2) :

For any infinite tree $T \subseteq 2^{<\mathbb{N}}$ and a coloring $f : 2^{<\mathbb{N}} \to k$, there exists an infinite tree $S \subseteq 2^{<\mathbb{N}}$ and a tree embedding $\pi : S \to T$ such that for any $\sigma \subsetneq \tau \in S$ and $\sigma' \subsetneq \tau' \in S$, $f(E_{\pi}(\sigma, \tau)) = f(E_{\pi}(\sigma', \tau')).$

Ramseyan factorization for trees (2)

We can prove the following:

Proposition (RCA_0)

 $\operatorname{TRF}_{k}^{2}$ implies $\operatorname{RF}_{k}^{2}$ for all $k \in \mathbb{N}$. In particular, $\operatorname{TRF}_{2}^{2}$ implies $\operatorname{RF}_{2}^{2}$ (and, equivalently, $\operatorname{RT}_{2}^{2}$).

Theorem (RCA₀)

$$\mathrm{WKL}_0 + \mathrm{RT}_2^2 \Rightarrow \mathrm{TRF}_2^2 \Rightarrow \mathrm{RT}_2^2.$$

Question

Does TRF_2^2 imply WKL_0 over RCA_0 ?

Shota Murakami (Joint work with Takeshi Yamazaki and Keita Yokoyama)

Contents

1 Ramseyan factorization

- What is Ramseyan factorization theorem?
- Results about RF

2 Variants of Ramseyan factorization

- Weak Ramseyan factorization
- Ramseyan factorization for trees

3 Summary

Shota Murakami (Joint work with Takeshi Yamazaki and Keita Yokoyama)

Summary

Over RCA_0 , The strength of RF_k^s is as follows:

$$\begin{aligned} \mathrm{RT}_2^2 &= \mathrm{RF}_2^{\mathbb{N}} = \mathrm{RF}_2^2.\\ \forall k \mathrm{RF}_k^1 &= \forall k \mathrm{RT}_k^{\mathrm{Subt}} \geq \mathrm{B}\Sigma_2^0. \end{aligned}$$

The strength of WRF_k^s is as follows:

$$\begin{split} \cdots \geq \mathrm{WRT}_3^2 &= \mathrm{WRF}_3^{\mathbb{N}} \geq \mathrm{WRT}_2^2 = \mathrm{WRF}_2^{\mathbb{N}} \geq \mathrm{WRF}_2^2, \\ \mathrm{CAC} \geq \mathrm{WRT}_2^2 &= \mathrm{WRF}_2^{\mathbb{N}} \geq \mathrm{ADS}. \end{split}$$

The strength of TRF_k^2 is as follows:

$$\mathrm{WKL}_0 + \mathrm{RT}_2^2 \geq \mathrm{TRF}_2^2 \geq \mathrm{RT}_2^2.$$

Shota Murakami (Joint work with Takeshi Yamazaki and Keita Yokoyama)

References I

- Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength of Ramsey's theorem for pairs. *Journal of Symbolic Logic*, 66(1):1–55, 2001.
- [2] Denis R. Hirschfeldt.
 - Slicing the truth: On the computability theoretic and reverse mathematical analysis of combinatorial principles. to appear.
- [3] Denis R. Hirschfeldt and Richard A. Shore. Combinatorial principles weaker than Ramsey's theorem for pairs.

Journal of Symbolic Logic, 72(1):171–206, 2007.

References II

- [4] Dominique Perrin and Jean-Éric Pin.
 Infinite Words: Automata, Semigroups, Logic and Games, volume 141.
 Academic Press, 2004.
- [5] Stephen G. Simpson.

Subsystems of Second Order Arithmetic.

Perspectives in Mathematical Logic. Springer-Verlag, 1999. XIV + 445 pages; Second Edition, Perspectives in Logic, Association for Symbolic Logic, Cambridge University Press, 2009, XVI+ 444 pages.