The strength of determinacy between Σ^0_1 and Δ^0_2

Takako Nemoto (JAIST) joint work with Dr. Kentaro Sato, Univ. Bern

Highlights

► Complete description of the strengths of all the "reasonably defined" determinacy schemata below Δ₂⁰

Highlights

- ► Complete description of the strengths of all the "reasonably defined" determinacy schemata below Δ₂⁰
- Γ₀ is the "critical point"
 of a Phase Transition:

Highlightsconsistencylogical• Complete description of the strengths
of all the "reasonably defined"
determinacy schemata below Δ_2^0 -wise
collapseimplication• Γ_0 is the "critical point"
of a Phase Transition:strict
hierarchyf Γ_0

- The hierarchy $\langle (\Sigma_1^0)_{\omega^\beta} \operatorname{-Det}^* : \beta \geq \Gamma_0 \rangle$
 - strict in the sense of logical implication
 - but collapses consistency-wise.

- but collapses consistency-wise.
- The hierarchy of determinacy statements might be "better" than that of transfinite recursion (jump statements), as a measure:

 - $(\Sigma_1^0)_{\alpha}$ -Det^{*} is always below Δ_2^0 -Det^{*}, whereas $(\Sigma_1^0$ -CA₀)_{α} is sometimes beyond Σ_1^1 -CA₀ and more.

Let X be either \mathbb{N} or $\{0,1\}$. For a \mathcal{L}_2 -formula $\psi(f)$,

Let X be either $\mathbb N$ or $\{0,1\}$. For a $\mathcal L_2$ -formula $\psi(f)$,

▶ Players I and II alternately choose $x \in X$ to form $f \in X^{\mathbb{N}}$.

$$\begin{array}{cccc} I & f(0) & f(2) & f(4) & \cdots \\ II & f(1) & f(3) & f(5) & \cdots \end{array}$$

• I wins if $\psi(f)$. II wins if I doesn't win.

Let X be either $\mathbb N$ or $\{0,1\}$. For a $\mathcal L_2$ -formula $\psi(f)$,

- I wins if $\psi(f)$. II wins if I doesn't win.
- Strategies are partial functions $\sigma: X^{<\mathbb{N}} \to X$.

Let X be either $\mathbb N$ or $\{0,1\}$. For a $\mathcal L_2$ -formula $\psi(f)$,

- I wins if $\psi(f)$. II wins if I doesn't win.
- Strategies are partial functions $\sigma: X^{<\mathbb{N}} \to X$.
- ► If one of the players has a winning strategy in the above game, ψ(f) is *determinate*.

Let X be either $\mathbb N$ or $\{0,1\}$. For a $\mathcal L_2$ -formula $\psi(f)$,

- I wins if $\psi(f)$. II wins if I doesn't win.
- Strategies are partial functions $\sigma: X^{<\mathbb{N}} \to X$.
- ► If one of the players has a winning strategy in the above game, ψ(f) is *determinate*.
- Γ determinacy asserts that every $\psi(f) \in \Gamma$ is determinate.

Base theory RCA_0

An \mathcal{L}_2 -theory RCA₀ consists of:

Basic arithmetic

 $\begin{array}{lll} \mbox{Successor} & n+1 \neq 0, & n+1=m+1 \rightarrow n=m, \\ \mbox{Addition} & n+0=n, & n+(m+1)=(n+m)+1, \\ \mbox{Multiplication} & n \cdot 0=0, & n \cdot (m+1)=n \cdot m+n, \\ \mbox{Order} & \neg m < 0, & m < n+1 \leftrightarrow m \leq n, \end{array}$

Base theory RCA_0

An \mathcal{L}_2 -theory RCA $_0$ consists of:

Basic arithmetic

 $\begin{array}{lll} \mbox{Successor} & n+1 \neq 0, & n+1=m+1 \rightarrow n=m, \\ \mbox{Addition} & n+0=n, & n+(m+1)=(n+m)+1, \\ \mbox{Multiplication} & n\cdot 0=0, & n\cdot (m+1)=n\cdot m+n, \\ \mbox{Order} & \neg m<0, & m< n+1 \leftrightarrow m\leq n, \end{array}$

 $\begin{array}{l} \Delta_1^0 \text{ comprehension} \\ \exists X \forall n(\psi(n) \leftrightarrow n \in X) \text{, where } \psi(x) \in \Delta_1^0. \end{array}$

Base theory RCA₀

An \mathcal{L}_2 -theory RCA $_0$ consists of:

Basic arithmetic

 $\begin{array}{lll} \mbox{Successor} & n+1 \neq 0, & n+1=m+1 \rightarrow n=m, \\ \mbox{Addition} & n+0=n, & n+(m+1)=(n+m)+1, \\ \mbox{Multiplication} & n\cdot 0=0, & n\cdot (m+1)=n\cdot m+n, \\ \mbox{Order} & \neg m<0, & m< n+1 \leftrightarrow m\leq n, \end{array}$

 $\begin{aligned} \Delta_1^0 \text{ comprehension} \\ \exists X \forall n(\psi(n) \leftrightarrow n \in X) \text{, where } \psi(x) \in \Delta_1^0. \end{aligned}$

 Σ^0_1 induction

 $\psi(0) \wedge \forall n(\psi(n) \rightarrow \psi(n+1)) \rightarrow \forall n\psi(n), \text{ for } \psi \in \Sigma^0_1.$

Reverse mathematical results of determinacy

We had the following equivalences over RCA₀^{*} (except \dagger : + Σ_3^1 -Ind.):

	Systems	determinacy in $2^{\mathbb{N}}$ (-Det *)	determinacy in $\mathbb{N}^{\mathbb{N}}(-Det)$
strong	Π_3^1 -CA $_0$		
↑		Σ^0_3	Σ^0_3
	$[\Sigma_1^1]^{\mathrm{TR}}$ -ID $_0$	Δ^0_3	Δ^0_3
	$[\Sigma_1^1]^2$ -ID $_0$	$(\Sigma_2^0)_3$	$(\Sigma_2^0)_2$
	$\Pi^1_1\text{-}ID_0$	$(\Sigma_2^0)_2$	Σ_2^0
	Π^1_1 -TR $_0$	$Bisep(\Delta^0_2,\Sigma^0_2)$	Δ_2^0
	Π^1_1 -CA $_0$	$Bisep(\Sigma^0_1,\Sigma^0_2)$	$(\Sigma_1^0)_2$
	Π_1^0 -TR $_0$	Δ^0_2 , Σ^0_2	Δ^0_1 , Σ^0_1
	$(\Pi_1^0\text{-}CA_0)_{\omega^{lpha}}$		
	ACA_0^+	$(\Sigma_1^0)_\omega$	
	ACA'_0	$(\Sigma_1^0)_{<\omega}$	
\Downarrow	Π_1^0 -CA $_0$	$(\Sigma_1^0)_2$	(Stool Tanaka MadSalam
weak	WKL_0^*	Δ_1^0 , Σ_1^0	Welch and N)

5/21

Hausdorf's difference hierarchy of $(\Sigma_1^0)_{\alpha}$

In what follows, we fix a standard rec. notation system of ordinals with order \prec of enough length. α , β and γ vary over ordinals in it.

Hausdorf's difference hierarchy of $(\Sigma_1^0)_{\alpha}$

In what follows, we fix a standard rec. notation system of ordinals with order \prec of enough length. α , β and γ vary over ordinals in it.

- $(\Sigma_1^0)_2$ is the class of formulas of the form $\psi_1(f) \wedge \neg \psi_0(f)$, where $\psi_i \in \Sigma_1^0$.
- For any α , $(\Sigma_1^0)_{\alpha}$ is the class of all formulas of the form

 $\begin{array}{ll} \exists \,\, \mathsf{odd} \,\, \beta \prec \alpha(\psi(\beta,f) \wedge \neg(\exists \gamma \prec \beta)\psi(\gamma,f)), & (\text{for even } \alpha) \\ \exists \,\, \mathsf{even} \,\, \beta \prec \alpha(\psi(\beta,f) \wedge \neg(\exists \gamma \prec \beta)\psi(\gamma,f)), & (\text{for odd } \alpha) \end{array} \end{array}$

for some $\psi(\beta, f) \in \Sigma_1^0$.

Hausdorf's difference hierarchy of $(\Sigma_1^0)_{\alpha}$

In what follows, we fix a standard rec. notation system of ordinals with order \prec of enough length. α , β and γ vary over ordinals in it.

- $(\Sigma_1^0)_2$ is the class of formulas of the form $\psi_1(f) \wedge \neg \psi_0(f)$, where $\psi_i \in \Sigma_1^0$.
- For any α , $(\Sigma_1^0)_{\alpha}$ is the class of all formulas of the form

 $\begin{array}{ll} \exists \,\, \mathsf{odd} \,\, \beta \prec \alpha(\psi(\beta,f) \wedge \neg(\exists \gamma \prec \beta)\psi(\gamma,f)), & (\text{for even } \alpha) \\ \exists \,\, \mathsf{even} \,\, \beta \prec \alpha(\psi(\beta,f) \wedge \neg(\exists \gamma \prec \beta)\psi(\gamma,f)), & (\text{for odd } \alpha) \end{array} \end{array}$

for some $\psi(\beta, f) \in \Sigma_1^0$.

Theorem (Tanaka) In Π_1^0 -CA₀, $\Delta_2^0 = \bigcup_{w.o. X} (\Sigma_1^0)_X$

Wadge hierarchy

- ► Wadge classes are classes of subsets of X^N closed under continuous pre-images.
- ► All reasonable classes (Σ₁⁰, Δ₁⁰,...) of formulae ψ(f) must form Wadge classes because boolean operations and quantifiers are preserved under continuous pre-images.

 $\Sigma_2^0 \Delta_2^0$ $\Delta((\Sigma_1^0)_{\alpha+1}) = \mathsf{Bisep}(\Delta_1^0, (\Sigma_1^0)_{\alpha})$ $(\Sigma_1^0)_{\alpha}$ $\Delta((\Sigma_1^0)_{\alpha})$ $\begin{array}{c} (\Sigma_1^0)_2\\ \Delta((\Sigma_1^0)_2) = \operatorname{Bisep}(\Delta_1^0, \Sigma_1^0)\\ \Sigma_1^0\\ \Delta_1^0 \end{array}$

Wadge hierarchy up to Σ_2^0

Between Π_1^0 -CA₀ and Π_1^0 -TR₀

$$\begin{array}{l} \Gamma\text{-}\mathsf{TR}_0 \ \ \mathrm{WO}(Y) \to \exists X(X = H^Y_\theta) \ \text{for} \ \theta \in \Gamma, \ \text{where} \\ \forall x \forall y(\langle x, y \rangle \in H^Y_\theta \leftrightarrow \theta(x, \{\langle z, w \rangle \in H^Y_\theta : w \prec_Y y\})). \end{array} \\ \\ (\Gamma\text{-}\mathsf{CA}_0)_\alpha \ \ \exists X(X = H^\alpha_\theta) \ \text{for} \ \theta \in \Gamma. \end{array}$$

Theorem The following equivalences hold over RCA₀

$$\blacktriangleright \Pi_1^0 \text{-} \mathsf{CA}_0 \leftrightarrow (\Sigma_1^0)_2 \text{-} \mathsf{Det}^*.$$

$$\begin{array}{l} \blacktriangleright \quad (\Sigma_1^0\text{-}\mathsf{CA}_0)_{\omega^{\alpha}} \to (\Sigma_1^0)_{\omega^{\alpha}}\text{-}\mathsf{Det}^*, \\ (\Sigma_1^0)_{\omega^{\alpha}}\text{-}\mathsf{Det}^* + \mathrm{WO}(\omega^{\alpha}) \to (\Sigma_1^0\text{-}\mathsf{CA}_0)_{\omega^{\alpha}}. \end{array}$$

$$\blacktriangleright \ \Pi^0_1 - \mathsf{TR}_0 \leftrightarrow \bigcup_{X: \mathsf{w.o.}} (\Sigma^0_1)_X - \mathsf{Det}^* (= \Delta^0_2 - \mathsf{Det}^*) \leftrightarrow \Sigma^0_2 - \mathsf{Det}^*.$$

Between Π_1^0 -CA₀ and Π_1^0 -TR₀

$$\begin{array}{l} \Gamma\text{-}\mathsf{TR}_0 \ \ \mathrm{WO}(Y) \to \exists X(X = H^Y_\theta) \ \text{for} \ \theta \in \Gamma, \ \text{where} \\ \forall x \forall y(\langle x, y \rangle \in H^Y_\theta \leftrightarrow \theta(x, \{\langle z, w \rangle \in H^Y_\theta : w \prec_Y y\})). \end{array} \\ \\ (\Gamma\text{-}\mathsf{CA}_0)_\alpha \ \ \exists X(X = H^\alpha_\theta) \ \text{for} \ \theta \in \Gamma. \end{array}$$

Theorem The following equivalences hold over RCA₀

$$\blacktriangleright \Pi_1^0 \text{-} \mathsf{CA}_0 \leftrightarrow (\Sigma_1^0)_2 \text{-} \mathsf{Det}^*.$$

$$\begin{array}{l} \blacktriangleright \quad (\Sigma_1^0\text{-}\mathsf{CA}_0)_{\omega^\alpha} \to (\Sigma_1^0)_{\omega^\alpha}\text{-}\mathsf{Det}^*, \\ (\Sigma_1^0)_{\omega^\alpha}\text{-}\mathsf{Det}^* + \mathrm{WO}(\omega^\alpha) \to (\Sigma_1^0\text{-}\mathsf{CA}_0)_{\omega^\alpha}. \end{array}$$

$$\bullet \ \Pi_1^0 - \mathsf{TR}_0 \leftrightarrow \bigcup_{X: \mathsf{w.o.}} (\Sigma_1^0)_X - \mathsf{Det}^* (= \Delta_2^0 - \mathsf{Det}^*) \leftrightarrow \Sigma_2^0 - \mathsf{Det}^*.$$

Lemma (Flumini and Sato) $(\Pi_1^0-CA_0)_{\alpha} \vdash WO(\alpha)$

Between Π_1^0 -CA₀ and Π_1^0 -TR₀

$$\begin{array}{l} \Gamma\text{-}\mathsf{TR}_0 \ \ \mathrm{WO}(Y) \to \exists X(X = H^Y_\theta) \ \text{for} \ \theta \in \Gamma, \ \text{where} \\ \forall x \forall y(\langle x, y \rangle \in H^Y_\theta \leftrightarrow \theta(x, \{\langle z, w \rangle \in H^Y_\theta : w \prec_Y y\})). \end{array} \\ \\ (\Gamma\text{-}\mathsf{CA}_0)_\alpha \ \ \exists X(X = H^\alpha_\theta) \ \text{for} \ \theta \in \Gamma. \end{array}$$

Theorem The following equivalences hold over RCA₀

•
$$\Pi_1^0$$
-CA $_0 \leftrightarrow (\Sigma_1^0)_2$ -Det*

$$\begin{array}{l} \blacktriangleright \quad (\Sigma_1^0\text{-}\mathsf{CA}_0)_{\omega^\alpha} \to (\Sigma_1^0)_{\omega^\alpha}\text{-}\mathsf{Det}^*, \\ (\Sigma_1^0)_{\omega^\alpha}\text{-}\mathsf{Det}^* + \mathrm{WO}(\omega^\alpha) \to (\Sigma_1^0\text{-}\mathsf{CA}_0)_{\omega^\alpha}. \end{array}$$

$$\bullet \ \Pi_1^0 \text{-}\mathsf{TR}_0 \leftrightarrow \bigcup_{X: \mathsf{w.o.}} (\Sigma_1^0)_X \text{-}\mathsf{Det}^* (= \Delta_2^0 \text{-}\mathsf{Det}^*) \leftrightarrow \Sigma_2^0 \text{-}\mathsf{Det}^*.$$

Lemma (Flumini and Sato) $(\Pi_1^0-CA_0)_{\alpha} \vdash WO(\alpha)$

Question Does -Det^{*} implies $WO(\alpha)$

Proof theoretic ordinals

Proof theoretic ordinal |S| of system S

- $\triangleright |\mathsf{S}| = \sup\{\beta : \mathsf{S} \vdash WO(\beta)\}.$
- In many cases, WO(|S|) implies the consistency of S.

Proof theoretic ordinals

Proof theoretic ordinal |S| of system S

$$|\mathsf{S}| = \sup\{\beta : \mathsf{S} \vdash WO(\beta)\}.$$

• In many cases, WO(|S|) implies the consistency of S.

Famous proof theoretic ordinals

- ► (Gentzen) $|\Pi_1^0 \mathsf{CA}_0| = \varepsilon_0 = \sup\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \omega^{\omega^{\omega^{\omega}}}, ...\}$
- Veblen function φ
 - $\blacktriangleright \ \varphi 0 \alpha = \omega^{\alpha}$
 - ► $\varphi \alpha \beta$ = the β -th simultaneous fixed point of the functions $\varphi \gamma$ for all $\gamma < \alpha$.

(Friedman, MacAloon and Simpson) $|\Pi_1^0 - \mathsf{TR}_0| = |(\Pi_1^{0-} - \mathsf{CA}_0)_{<\Gamma_0}| = \Gamma_0$ =the least $\gamma > 0$ s.t. $\alpha, \beta < \gamma \rightarrow \varphi \alpha \beta < \gamma$ Proof theoretic strength and reverse mathematical strength

Proof theoretic strength

Let S and T be "usual" theories (all theories in this talk!).

▶
$$|S| < |T|$$
 iff $T \vdash Con(S)$.

- ► T \subseteq S, i.e., { ψ : T $\vdash \psi$ } \subseteq { ψ : S $\vdash \psi$ } doesn't imply |T| < |S|. (Example: RCA₀ \subseteq WKL₀ but |RCA₀| = |WKL₀|)
- ▶ In particular, $RCA_0 \vdash A \rightarrow B$ and $RCA_0 \not\vdash B \rightarrow A$ does not imply $|RCA_0 + B| < |RCA_0 + A|$.

```
Removing WO(\alpha)
```

Lemma

If $\alpha \prec |\Sigma_1^0 - CnTR_0|$, then $(\Sigma_1^0)_{1+\alpha} - Det^* \vdash WO(\alpha)$, where $\Sigma_1^0 - CnTR_0$ states $\forall \beta (WO(\beta) \rightarrow (\Sigma_1^0 - CA)_\beta)$.

```
Removing WO(\alpha)
```

Lemma

If $\alpha \prec |\Sigma_1^0 - \mathsf{CnTR}_0|$, then $(\Sigma_1^0)_{1+\alpha} - \mathsf{Det}^* \vdash WO(\alpha)$, where $\Sigma_1^0 - \mathsf{CnTR}_0$ states $\forall \beta (WO(\beta) \rightarrow (\Sigma_1^0 - \mathsf{CA})_\beta)$.

(Scketch of the proof)

 $\blacktriangleright \ (\Sigma_1^0)_{1+\alpha}\text{-}\mathsf{Det}^* \vdash \forall \beta \preceq \alpha(\mathrm{WO}(\beta) \to (\Sigma_1^0\text{-}\mathsf{CA}_0)_\beta)$

Lemma

If $\alpha \prec |\Sigma_1^0 - \mathsf{CnTR}_0|$, then $(\Sigma_1^0)_{1+\alpha} - \mathsf{Det}^* \vdash WO(\alpha)$, where $\Sigma_1^0 - \mathsf{CnTR}_0$ states $\forall \beta (WO(\beta) \rightarrow (\Sigma_1^0 - \mathsf{CA})_\beta)$.

(Scketch of the proof)

►
$$(\Sigma_1^0)_{1+\alpha}$$
-Det^{*} $\vdash \forall \beta \preceq \alpha(WO(\beta) \to (\Sigma_1^0$ -CA₀)_{\beta})

►
$$(\Sigma_1^0)_{1+\alpha}$$
-Det^{*} $\vdash \neg WO(\alpha) \rightarrow \Sigma_1^0$ -CnTR₀.

Lemma

If $\alpha \prec |\Sigma_1^0 - \mathsf{CnTR}_0|$, then $(\Sigma_1^0)_{1+\alpha} - \mathsf{Det}^* \vdash WO(\alpha)$, where $\Sigma_1^0 - \mathsf{CnTR}_0$ states $\forall \beta (WO(\beta) \rightarrow (\Sigma_1^0 - \mathsf{CA})_\beta)$.

(Scketch of the proof)

•
$$(\Sigma_1^0)_{1+\alpha}$$
-Det^{*} $\vdash \forall \beta \preceq \alpha(WO(\beta) \to (\Sigma_1^0 \text{-}\mathsf{CA}_0)_\beta)$

•
$$(\Sigma_1^0)_{1+\alpha}$$
-Det^{*} $\vdash \neg WO(\alpha) \rightarrow \Sigma_1^0$ -CnTR₀.

► Then
$$|(\Sigma_1^0)_{1+\alpha}$$
-Det^{*} $| \succeq \min\{\alpha + 1, |\Sigma_1^0$ -CnTR₀ $|\}$.

Lemma

If $\alpha \prec |\Sigma_1^0 - \mathsf{CnTR}_0|$, then $(\Sigma_1^0)_{1+\alpha} - \mathsf{Det}^* \vdash WO(\alpha)$, where $\Sigma_1^0 - \mathsf{CnTR}_0$ states $\forall \beta (WO(\beta) \rightarrow (\Sigma_1^0 - \mathsf{CA})_\beta)$.

(Scketch of the proof)

•
$$(\Sigma_1^0)_{1+\alpha}$$
-Det* $\vdash \forall \beta \preceq \alpha(WO(\beta) \to (\Sigma_1^0 \text{-}\mathsf{CA}_0)_\beta)$

•
$$(\Sigma_1^0)_{1+\alpha}$$
-Det* $\vdash \neg WO(\alpha) \rightarrow \Sigma_1^0$ -CnTR₀.

• Then $|(\Sigma_1^0)_{1+\alpha}$ -Det^{*} $| \succeq \min\{\alpha + 1, |\Sigma_1^0$ -CnTR₀ $|\}$.

For any $\beta \prec \min\{\alpha + 1, |\Sigma_1^0 - CnTR_0|\}, (\Sigma_1^0)_{1+\alpha} - Det^*$ proves:

• $WO(\alpha) \to WO(\beta)$,

•
$$\neg WO(\alpha) \rightarrow \Sigma_1^0 \text{-} CnTR_0 \rightarrow WO(\beta).$$

Lemma

If $\alpha \prec |\Sigma_1^0 - CnTR_0|$, then $(\Sigma_1^0)_{1+\alpha} - Det^* \vdash WO(\alpha)$, where $\Sigma_1^0 - CnTR_0$ states $\forall \beta (WO(\beta) \rightarrow (\Sigma_1^0 - CA)_\beta)$.

(Scketch of the proof)

•
$$(\Sigma_1^0)_{1+\alpha}$$
-Det* $\vdash \forall \beta \preceq \alpha(WO(\beta) \to (\Sigma_1^0 \text{-}\mathsf{CA}_0)_\beta)$

•
$$(\Sigma_1^0)_{1+\alpha}$$
-Det* $\vdash \neg WO(\alpha) \rightarrow \Sigma_1^0$ -CnTR₀.

► Then $|(\Sigma_1^0)_{1+\alpha}$ -Det^{*} $| \succeq \min\{\alpha + 1, |\Sigma_1^0$ -CnTR₀ $|\}.$

For any $\beta \prec \min\{\alpha + 1, |\Sigma_1^0 - CnTR_0|\}$, $(\Sigma_1^0)_{1+\alpha}$ -Det^{*} proves:

- $WO(\alpha) \to WO(\beta)$,
- $\blacktriangleright \neg WO(\alpha) \rightarrow \Sigma_1^0 \text{-CnTR}_0 \rightarrow WO(\beta).$

Theorem

Let
$$(\star)_{\alpha}$$
 be $(\Sigma_1^0)_{1+\alpha}$ -Det^{*} \rightarrow $(\Sigma_1^0$ -CA) _{α} .

- $\mathsf{RCA}_0 \vdash (\star)_\alpha \text{ if } \alpha \prec |\Sigma_1^{0-}-\mathsf{CnTR}_0|.$
- ► $\mathsf{RCA}_0 \not\models (\star)_\alpha \text{ if } |(\Sigma_1^0 \mathsf{CA}_0)_{<\alpha}| \succeq |\Sigma_1^0 \mathsf{TR}_0|,$ and $|\Sigma_1^0 - \mathsf{CnTR}_0| \preceq |(\Sigma_1^0)_{1+\alpha} - \mathsf{Det}^*| \preceq |\Sigma_1^0 - \mathsf{TR}_0|.$

Theorem

- 1. The following are equivalent
 - $\mathsf{RCA}_0 \not\vdash (\Sigma_1^0)_{\beta} \operatorname{-Det}^* \to (\Sigma_1^0)_{\alpha} \operatorname{-Det}^*$
 - ► $\mathsf{RCA}_0 + WO(\alpha) + (\Sigma_1^0)_{\alpha} \mathsf{Det}^* \vdash$

 $\mathsf{Con}(\mathsf{RCA}_0^*\!+\!\mathrm{WO}(\beta)\!+\!(\Sigma_1^0)_\beta\text{-}\mathsf{Det}^*)$

- $\mathsf{RCA}_0^* \not\vdash (\Pi_1^0 \mathsf{-} \mathsf{CA}_0)_\beta \to (\Pi_1^0 \mathsf{-} \mathsf{CA}_0)_\alpha$
- $(\Pi_1^0 \mathsf{CA}_0)_{\alpha} \vdash \mathsf{Con}((\Pi_1^0 \mathsf{CA}_0)_{beta})$

$$\blacktriangleright \ \beta \cdot \omega \leq \alpha.$$

Theorem

- 1. The following are equivalent
 - $\mathsf{RCA}_0 \not\vdash (\Sigma_1^0)_{\beta} \operatorname{-Det}^* \to (\Sigma_1^0)_{\alpha} \operatorname{-Det}^*$
 - $\mathsf{RCA}_0 + WO(\alpha) + (\Sigma_1^0)_{\alpha} \mathsf{Det}^* \vdash$

 $\mathsf{Con}(\mathsf{RCA}_0^*\!+\!\mathrm{WO}(\beta)\!+\!(\Sigma_1^0)_\beta\text{-}\mathsf{Det}^*)$

- $\models \mathsf{RCA}_0^* \not\vdash (\Pi_1^0 \mathsf{CA}_0)_\beta \rightarrow (\Pi_1^0 \mathsf{CA}_0)_\alpha$
- $(\Pi_1^0 \mathsf{CA}_0)_{\alpha} \vdash \mathsf{Con}((\Pi_1^0 \mathsf{CA}_0)_{beta})$

 $\blacktriangleright \ \beta \cdot \omega \le \alpha.$

2. In particular, $\alpha < \beta \cdot \omega$ and $\beta < \alpha \cdot \omega$, $\mathsf{RCA}_0 \vdash (\Sigma_1^0)_{\beta} \operatorname{-Det}^* \leftrightarrow (\Sigma_1^0)_{\alpha} \operatorname{-Det}^*$

Theorem

- 1. The following are equivalent
 - $\mathsf{RCA}_0 \not\vdash (\Sigma_1^0)_{\beta} \operatorname{-Det}^* \to (\Sigma_1^0)_{\alpha} \operatorname{-Det}^*$
 - $\mathsf{RCA}_0 + WO(\alpha) + (\Sigma_1^0)_{\alpha} \mathsf{Det}^* \vdash$

 $\mathsf{Con}(\mathsf{RCA}_0^*\!+\!\mathrm{WO}(\beta)\!+\!(\Sigma_1^0)_\beta\text{-}\mathsf{Det}^*)$

- $\models \mathsf{RCA}_0^* \not\vdash (\Pi_1^0 \mathsf{CA}_0)_\beta \rightarrow (\Pi_1^0 \mathsf{CA}_0)_\alpha$
- $(\Pi_1^0 \mathsf{CA}_0)_{\alpha} \vdash \mathsf{Con}((\Pi_1^0 \mathsf{CA}_0)_{beta})$

 $\blacktriangleright \ \beta \cdot \omega \le \alpha.$

- 2. In particular, $\alpha < \beta \cdot \omega$ and $\beta < \alpha \cdot \omega$, $\mathsf{RCA}_0 \vdash (\Sigma_1^0)_{\beta} \operatorname{-Det}^* \leftrightarrow (\Sigma_1^0)_{\alpha} \operatorname{-Det}^*$
- 3. $\mathsf{RCA}_0 \not\vdash (\Sigma_1^0)_{\alpha}\text{-}\mathsf{Det}^* \to \Delta_2^0\text{-}\mathsf{Det}^*$

Theorem

- 1. The following are equivalent
 - $\mathsf{RCA}_0 \not\vdash (\Sigma_1^0)_{\beta} \operatorname{-Det}^* \to (\Sigma_1^0)_{\alpha} \operatorname{-Det}^*$
 - $\mathsf{RCA}_0 + WO(\alpha) + (\Sigma_1^0)_{\alpha} \mathsf{Det}^* \vdash$

 $\mathsf{Con}(\mathsf{RCA}_0^*\!+\!\mathrm{WO}(\beta)\!+\!(\Sigma_1^0)_\beta\text{-}\mathsf{Det}^*)$

- $\models \mathsf{RCA}_0^* \not\vdash (\Pi_1^0 \mathsf{CA}_0)_\beta \rightarrow (\Pi_1^0 \mathsf{CA}_0)_\alpha$
- $(\Pi_1^0 \mathsf{CA}_0)_{\alpha} \vdash \mathsf{Con}((\Pi_1^0 \mathsf{CA}_0)_{beta})$
- $\blacktriangleright \ \beta \cdot \omega \le \alpha.$
- 2. In particular, $\alpha < \beta \cdot \omega$ and $\beta < \alpha \cdot \omega$, $\mathsf{RCA}_0 \vdash (\Sigma_1^0)_{\beta} \operatorname{-Det}^* \leftrightarrow (\Sigma_1^0)_{\alpha} \operatorname{-Det}^*$
- 3. $\mathsf{RCA}_0 \not\vdash (\Sigma^0_1)_{\alpha}\text{-}\mathsf{Det}^* \to \Delta^0_2\text{-}\mathsf{Det}^*$
- 4. Even if $\Gamma_0 \leq \beta$, $|\mathsf{RCA}_0 + (\Sigma_1^0)_\beta \operatorname{-Det}^*| = \Gamma_0$.

Theorem

- 1. The following are equivalent
 - $\mathsf{RCA}_0 \not\vdash (\Sigma_1^0)_{\beta} \operatorname{-Det}^* \to (\Sigma_1^0)_{\alpha} \operatorname{-Det}^*$
 - $\mathsf{RCA}_0 + WO(\alpha) + (\Sigma_1^0)_{\alpha} \mathsf{Det}^* \vdash$

 $\mathsf{Con}(\mathsf{RCA}_0^*\!+\!\mathrm{WO}(\beta)\!+\!(\Sigma_1^0)_\beta\text{-}\mathsf{Det}^*)$

- $\models \mathsf{RCA}_0^* \not\vdash (\Pi_1^0 \mathsf{CA}_0)_\beta \rightarrow (\Pi_1^0 \mathsf{CA}_0)_\alpha$
- $(\Pi_1^0 \mathsf{CA}_0)_{\alpha} \vdash \mathsf{Con}((\Pi_1^0 \mathsf{CA}_0)_{beta})$

 $\blacktriangleright \ \beta \cdot \omega \le \alpha.$

- 2. In particular, $\alpha < \beta \cdot \omega$ and $\beta < \alpha \cdot \omega$, $\mathsf{RCA}_0 \vdash (\Sigma_1^0)_{\beta} \operatorname{-Det}^* \leftrightarrow (\Sigma_1^0)_{\alpha} \operatorname{-Det}^*$
- 3. $\mathsf{RCA}_0 \not\vdash (\Sigma^0_1)_{\alpha}\text{-}\mathsf{Det}^* \to \Delta^0_2\text{-}\mathsf{Det}^*$
- 4. Even if $\Gamma_0 \leq \beta$, $|\mathsf{RCA}_0 + (\Sigma_1^0)_\beta \operatorname{-Det}^*| = \Gamma_0$.
- 5. If $\beta < \Gamma_0$, WO(β) in 1 can be omitted. If $\beta \ge \Gamma_0$, it can't.

Theorem

- 1. The following are equivalent
 - $\mathsf{RCA}_0 \not\vdash (\Sigma_1^0)_{\beta} \operatorname{-Det}^* \to (\Sigma_1^0)_{\alpha} \operatorname{-Det}^*$
 - $\mathsf{RCA}_0 + WO(\alpha) + (\Sigma_1^0)_{\alpha} \mathsf{Det}^* \vdash$

 $\mathsf{Con}(\mathsf{RCA}_0^*\!+\!\mathrm{WO}(\beta)\!+\!(\Sigma_1^0)_\beta\text{-}\mathsf{Det}^*)$

- $\mathsf{RCA}_{0}^{*} \not\vdash (\Pi_{1}^{0} \mathsf{CA}_{0})_{\beta} \rightarrow (\Pi_{1}^{0} \mathsf{CA}_{0})_{\alpha}$
- $(\Pi_1^0 \mathsf{CA}_0)_{\alpha} \vdash \mathsf{Con}((\Pi_1^0 \mathsf{CA}_0)_{beta})$ $\beta \cdot \omega < \alpha.$
- 2. In particular, $\alpha < \beta \cdot \omega$ and $\beta < \alpha \cdot \omega$, $\mathsf{RCA}_0 \vdash (\Sigma_1^0)_{\beta} \operatorname{-Det}^* \leftrightarrow (\Sigma_1^0)_{\alpha} \operatorname{-Det}^*$
- 3. $\mathsf{RCA}_0 \not\vdash (\Sigma^0_1)_{\alpha}\text{-}\mathsf{Det}^* \to \Delta^0_2\text{-}\mathsf{Det}^*$
- 4. Even if $\Gamma_0 \leq \beta$, $|\mathsf{RCA}_0 + (\Sigma_1^0)_\beta \operatorname{-Det}^*| = \Gamma_0$.

5. If $\beta < \Gamma_0$, WO(β) in 1 can be omitted. If $\beta \ge \Gamma_0$, it can't.

Thus, the hierarchy of $(\Sigma_1^0)_{\beta}$ -Det^{*} for $\beta \ge \Gamma_0$ collapses proof theoretically, but not reverse mathematically.

Highlights

► Complete description of the strengths of all the "reasonably defined" determinacy schemata below Δ₂⁰

Highlights

- ► Complete description of the strengths of all the "reasonably defined" determinacy schemata below Δ₂⁰
- Γ₀ is the "critical point"
 of a Phase Transition:

Highlightsconsistencylogical• Complete description of the strengths
of all the "reasonably defined"
determinacy schemata below Δ_2^0 -wise
collapseimplication• Γ_0 is the "critical point"
of a Phase Transition:strict
hierarchy Γ_0 strict
hierarchy

- The hierarchy $\langle (\Sigma_1^0)_{\omega^\beta} \operatorname{-Det}^* : \beta \ge \Gamma_0 \rangle$
 - strict in the sense of logical implication
 - but collapses consistency-wise.

- but collapses consistency-wise.
- The hierarchy of determinacy statements might be "better" than that of transfinite recursion (jump statements), as a measure:

 - $(\Sigma_1^0)_{\alpha}$ -Det^{*} is always below Δ_2^0 -Det^{*}, whereas $(\Sigma_1^0$ -CA₀)_{α} is sometimes beyond Σ_1^1 -CA₀ and more.

Reverse mathematical results of determinacy

We had the following equivalences over RCA₀^{*} (except \dagger : + Σ_3^1 -Ind.):

	Systems	determinacy in $2^{\mathbb{N}}$ (-Det *)	determinacy in $\mathbb{N}^{\mathbb{N}}(-Det)$	
strong	Π^1_3 -CA $_0$			
↑		Σ_3^0	Σ_3^0	
	$[\Sigma_1^1]^{\mathrm{TR}}$ -ID ₀	Δ_3^0	Δ_3^0	†
	$[\Sigma_1^1]^2$ -ID $_0$	$(\Sigma_2^0)_3$	$(\Sigma_2^0)_2$	
	Σ_1^1 -ID $_0$	$(\Sigma_2^0)_2$	Σ_2^0	
	Π^1_1 -TR $_0$	$Bisep(\Delta^0_2,\Sigma^0_2)$	Δ_2^0	
	Π^1_1 -CA $_0$	$Bisep(\Sigma^0_1,\Sigma^0_2)$	$(\Sigma_{1}^{0})_{2}$	
	Π_1^0 -TR $_0$	Δ^0_2 , Σ^0_2	Δ^0_1 , Σ^0_1	
	$(\Sigma_1^0 - CA_0)_{\omega^{\alpha}}$	$(\Pi^0_1)_{\omega^{lpha}}$		
	:			
	ACA_0^+	$(\Sigma_1^0)_\omega$		
	ACA'_0	$(\Sigma_1^0)_{<\omega}$		
\Downarrow	Π_1^0 -CA $_0$	$(\Pi_{1}^{0})_{2}$	(Stool Tonoka MadSalam	
weak	WKL_0^*	Δ^0_1 , Σ^0_1	Welch and N)	14 / 21

For parameter free version

Language \mathcal{L}_2' of Input/Output second order arithmetic

3 kinds of 2nd order variables:

Input: I_0 , I_1 ...; Output: O_0 , O_1 ,...; Normal: X_0 , X_1 ,...

• Usual langulage of 1st order arithmetic \mathcal{L}_1 and \in

Class Γ^- of formulas

For a class Γ of arithmetical formula in \mathcal{L}_2 ,

- All 2nd order free variables are input variables.
- $\psi(X_0, ..., X_{n-1}) \in \Gamma$

For parameter free version

Language \mathcal{L}_2' of Input/Output second order arithmetic

3 kinds of 2nd order variables:

Input: I_0 , I_1 ...; Output: O_0 , O_1 ,...; Normal: X_0 , X_1 ,...

• Usual langulage of 1st order arithmetic \mathcal{L}_1 and \in

Class Γ^- of formulas

For a class Γ of arithmetical formula in \mathcal{L}_2 ,

- All 2nd order *free* variables are input variables.
- $\psi(X_0, ..., X_{n-1}) \in \Gamma$

 Γ -CA in \mathcal{L}_2 and Γ^- -CA in \mathcal{L}_2'

$$\begin{array}{l} \Gamma\text{-}\mathsf{CA} \ \exists X(\psi(x,Y) \leftrightarrow x \in X) \ \text{for} \ \psi \in \Gamma \\ \Gamma^{-}\text{-}\mathsf{CA} \ \exists O_0(\psi(x,I_0) \leftrightarrow x \in O_0) \ \text{for} \ \psi \in \Gamma^{-} \end{array}$$

For parameter free version

Language \mathcal{L}_2' of Input/Output second order arithmetic

3 kinds of 2nd order variables:

Input: I_0 , I_1 ...; Output: O_0 , O_1 ,...; Normal: X_0 , X_1 ,...

• Usual langulage of 1st order arithmetic \mathcal{L}_1 and \in

Class Γ^- of formulas

For a class Γ of arithmetical formula in \mathcal{L}_2 ,

- > All 2nd order *free* variables are input variables.
- $\psi(X_0, ..., X_{n-1}) \in \Gamma$

 $(\Gamma\text{-CA})_{\alpha}$ in \mathcal{L}_2 and $((\Gamma)^-\text{-CA})_{\alpha}$ in \mathcal{L}_2'

$$\begin{split} (\Gamma\text{-CA})_{\alpha} \ \exists X_0(X_0 = H^{\alpha}_{\psi}) \text{, where } \psi \in \Gamma \\ (\Gamma^{-}\text{-CA})_{\alpha} \ \exists O_0(O_0 = Be\psi^{\alpha}) \text{, where } \psi \in \Gamma^{-} \end{split}$$

linput/Output Second Order Arithmetic Definition

• (RbD): $\forall I_0 \exists O_0 \exists X_0 (I_0 = O_0 = X_0) \land \forall O_1 \exists X_1 (O_1 = X_1)$

linput/Output Second Order Arithmetic Definition

- $\blacktriangleright (\mathsf{RbD}): \forall I_0 \exists O_0 \exists X_0 (I_0 = O_0 = X_0) \land \forall O_1 \exists X_1 (O_1 = X_1)$
- ► Positive Π_0^0 -CA is $\forall Y_0!, ... Y_{k-1} \forall \vec{x} \exists Y_k \forall z (z \in Y_k \leftrightarrow \varphi(z, \vec{x}, Y_0, ..., Y_{k-1}));$ where \vec{Y} is \vec{I} , \vec{O} or \vec{X} and where $\varphi(z, \vec{x}, Y_0, ..., Y_{k-1}) \in \Pi_0^0$ is positive in $Y_0, ..., Y_{k-1}$ and without other parameters.

- $\blacktriangleright (\mathsf{RbD}): \forall I_0 \exists O_0 \exists X_0 (I_0 = O_0 = X_0) \land \forall O_1 \exists X_1 (O_1 = X_1)$
- ▶ Positive Π_0^0 -CA is $\forall Y_0!, ... Y_{k-1} \forall \vec{x} \exists Y_k \forall z (z \in Y_k \leftrightarrow \varphi(z, \vec{x}, Y_0, ..., Y_{k-1}));$ where \vec{Y} is \vec{I} , \vec{O} or \vec{X} and where $\varphi(z, \vec{x}, Y_0, ..., Y_{k-1}) \in \Pi_0^0$ is positive in $Y_0, ..., Y_{k-1}$ and without other parameters.

► BPC₀ :=
$$I\Delta_0 + \forall x \exists y "y = \exp(x)" + (\mathsf{RbD}) + \mathsf{Positive} \Pi_0^0 - \mathsf{CA}$$

Definition

- $\blacktriangleright (\mathsf{RbD}): \forall I_0 \exists O_0 \exists X_0 (I_0 = O_0 = X_0) \land \forall O_1 \exists X_1 (O_1 = X_1)$
- ▶ Positive Π_0^0 -CA is $\forall Y_0!, ... Y_{k-1} \forall \vec{x} \exists Y_k \forall z (z \in Y_k \leftrightarrow \varphi(z, \vec{x}, Y_0, ..., Y_{k-1}));$ where \vec{Y} is \vec{I} , \vec{O} or \vec{X} and where $\varphi(z, \vec{x}, Y_0, ..., Y_{k-1}) \in \Pi_0^0$ is positive in $Y_0, ..., Y_{k-1}$ and without other parameters.
- ► $\mathsf{BPC}_0 := \mathsf{I}\Delta_0 + \forall x \exists y "y = \exp(x)" + (\mathsf{RbD}) + \mathsf{Positive} \Pi_0^0 \mathsf{CA}$

$$\blacktriangleright (\Pi_1^{0-}-\mathsf{CA}_0)_{\alpha} := \mathsf{BPC}_0 + (\Pi_1^{0-}-\mathsf{CA})_{\alpha}$$

Definition

- $\blacktriangleright (\mathsf{RbD}): \forall I_0 \exists O_0 \exists X_0 (I_0 = O_0 = X_0) \land \forall O_1 \exists X_1 (O_1 = X_1)$
- ▶ Positive Π_0^0 -CA is $\forall Y_0!, ... Y_{k-1} \forall \vec{x} \exists Y_k \forall z (z \in Y_k \leftrightarrow \varphi(z, \vec{x}, Y_0, ..., Y_{k-1}));$ where \vec{Y} is \vec{I} , \vec{O} or \vec{X} and where $\varphi(z, \vec{x}, Y_0, ..., Y_{k-1}) \in \Pi_0^0$ is positive in $Y_0, ..., Y_{k-1}$ and without other parameters.
- ► $\mathsf{BPC}_0 := \mathsf{I}\Delta_0 + \forall x \exists y "y = \exp(x)" + (\mathsf{RbD}) + \mathsf{Positive} \ \Pi_0^0 \mathsf{CA}$

$$\blacktriangleright (\Pi_1^{0-}-\mathsf{CA}_0)_{\alpha} := \mathsf{BPC}_0 + (\Pi_1^{0-}-\mathsf{CA})_{\alpha}$$

 (Π₁⁰⁻-CA₀)_α ⊗ WKL[−] := BPC₀+ ∃O₀∃O₁(O₀ = H_θ^α ∧ (O₀ is an infinite binary tree→ O₁ is an infinite path of O₁.))

Definition

- $\blacktriangleright (\mathsf{RbD}): \forall I_0 \exists O_0 \exists X_0 (I_0 = O_0 = X_0) \land \forall O_1 \exists X_1 (O_1 = X_1)$
- ▶ Positive Π_0^0 -CA is $\forall Y_0!, ... Y_{k-1} \forall \vec{x} \exists Y_k \forall z (z \in Y_k \leftrightarrow \varphi(z, \vec{x}, Y_0, ..., Y_{k-1}));$ where \vec{Y} is \vec{I} , \vec{O} or \vec{X} and where $\varphi(z, \vec{x}, Y_0, ..., Y_{k-1}) \in \Pi_0^0$ is positive in $Y_0, ..., Y_{k-1}$ and without other parameters.
- ► $\mathsf{BPC}_0 := \mathsf{I}\Delta_0 + \forall x \exists y "y = \exp(x)" + (\mathsf{RbD}) + \mathsf{Positive} \ \Pi_0^0 \mathsf{CA}$

$$\bullet \ (\Pi_1^{0-}-\mathsf{CA}_0)_{\alpha} := \mathsf{BPC}_0 + (\Pi_1^{0-}-\mathsf{CA})_{\alpha}$$

 (Π₁⁰⁻-CA₀)_α ⊗ WKL⁻ := BPC₀+ ∃O₀∃O₁(O₀ = H^α_θ ∧ (O₀ is an infinite binary tree→ O₁ is an infinite path of O₁.))

Proposition

Let $\psi_0(X, Y)$ and $\psi_1(X, Y)$ are essentially Σ_1 formulas in \mathcal{L}_2 without any 2nd order varables other than X and Y. If $(\Pi_1^{0-}-CA_0)_{\alpha} \vdash \forall I_0 \exists X_0 \psi_0(I_0, X_0)$ and $(\Pi_1^{0-}-CA_0)_{\beta} \vdash \forall I_1 \exists X_1 \psi_1(I_1, X_1),$ then $(\Pi_1^{0-}-CA_0)_{\alpha+\beta} \vdash \forall I_0 \exists X_0, X_1(\psi_0(I_0, X_0) \land \psi_1(X_0, X_1)).$

- ▶ \mathfrak{M}_0 : ω -Model of Π_1^{0-} -CA $_0$
 - Input part: all Π_0^0 sets
 - Output part: all Π_1^0 sets
 - Normal part: $\mathcal{P}(\mathbb{N})$

- \mathfrak{M}_0 : ω -Model of Π_1^{0-} -CA₀
 - Input part: all Π_0^0 sets
 - Output part: all Π_1^0 sets
 - Normal part: $\mathcal{P}(\mathbb{N})$
- \mathfrak{M}_1 : ω -model of $(\Pi_1^{0-}-\mathsf{CA}_0)_{\omega+1}$
 - Input part: all Π_0^0 sets
 - Output part: all $\Pi^0_{1+\omega}$ sets Normal part: $\mathcal{P}(\mathbb{N})$

- \mathfrak{M}_0 : ω -Model of Π_1^{0-} -CA $_0$
 - Input part: all Π_0^0 sets
 - ▶ Output part: all Π⁰₁ sets
 - Normal part: $\mathcal{P}(\mathbb{N})$
- \mathfrak{M}_1 : ω -model of $(\Pi_1^{0-}-\mathsf{CA}_0)_{\omega+1}$
 - Input part: all Π_0^0 sets
 - Output part: all $\Pi^0_{1+\omega}$ sets
 - Normal part: $\mathcal{P}(\mathbb{N})$
- \mathfrak{M}_2 : ω -model of $(\Pi_1^{0-}-\mathsf{CA}_0)_{\alpha+1}\otimes\mathsf{WKL}^-$
 - Input part: all Π_0^0 sets
 - Output part: all $Low(\Delta_{1+\alpha+1}^0)$ sets
 - Normal part: $\mathcal{P}(\mathbb{N})$

- \mathfrak{M}_0 : ω -Model of Π_1^{0-} -CA $_0$
 - Input part: all Π_0^0 sets
 - ▶ Output part: all Π⁰₁ sets
 - Normal part: $\mathcal{P}(\mathbb{N})$
- \mathfrak{M}_1 : ω -model of $(\Pi_1^{0-}-\mathsf{CA}_0)_{\omega+1}$
 - Input part: all Π_0^0 sets
 - Output part: all $\Pi^0_{1+\omega}$ sets
 - Normal part: $\mathcal{P}(\mathbb{N})$
- \mathfrak{M}_2 : ω -model of $(\Pi_1^{0-}-\mathsf{CA}_0)_{\alpha+1}\otimes\mathsf{WKL}^-$
 - Input part: all Π_0^0 sets
 - Output part: all $Low(\Delta_{1+\alpha+1}^0)$ sets
 - Normal part: $\mathcal{P}(\mathbb{N})$
- Arith: ω -model of Π_1^0 -CA₀ (with parameters!)
 - > 2nd order part: all arithmetical sets.

Determinacy in I/O SOA

Consider the statement $\Psi:$ "player I has a winning strategy in $\psi"$

- " $\exists I_0$: I's strategy $\forall I_1$: II's strategy $\psi(I_0 \otimes I_1)$ " means "there is a strategy for I in the input part which wins against all II's strategies in the input part."
- " $\exists O_0$: I's strategy $\forall X_0$: II's strategy $\psi(O_0 \otimes X_0)$ " means "there is a strategy for I in the output part which wins against all II's strategies in the normal part."

Determinacy in I/O SOA

Consider the statement $\Psi:$ "player I has a winning strategy in $\psi"$

- " $\exists I_0$: I's strategy $\forall I_1$: II's strategy $\psi(I_0 \otimes I_1)$ " means "there is a strategy for I in the input part which wins against all II's strategies in the input part."
- " $\exists O_0$: I's strategy $\forall X_0$: II's strategy $\psi(O_0 \otimes X_0)$ " means "there is a strategy for I in the output part which wins against all II's strategies in the normal part."

Recall ω -models of Π_1^0 -CA₀.

- "Arith ⊨ Ψ" means "there is an arithmetical strategy for I which wins only against II's arithmetical strategies," so we have no information about "real winning strategy".
- "P(N) ⊨ Ψ" tells the existence of the "real" winning strategies, but no information about their complexity.

Determinacy in I/O SOA

Consider the statement $\Psi:$ "player I has a winning strategy in $\psi"$

- " $\exists I_0$: I's strategy $\forall I_1$: II's strategy $\psi(I_0 \otimes I_1)$ " means "there is a strategy for I in the input part which wins against all II's strategies in the input part."
- " $\exists O_0$: I's strategy $\forall X_0$: II's strategy $\psi(O_0 \otimes X_0)$ " means "there is a strategy for I in the output part which wins against all II's strategies in the normal part."

" $\mathfrak{M}_2 \models \exists O_0 : \mathsf{I}$'s strategy $\forall X_0 : \mathsf{II}$'s strategy $\psi(O_0 \otimes X_0)$ " tells the existence and complexity of "real" winning strategies!

We formalize determinacy as follows:

 $\begin{array}{l} \blacktriangleright \ \psi(f) \text{ is determinate:} \\ (\exists O_0 : \mathsf{I's strategy} \ \forall X_0 : \mathsf{II's strategy} \ \psi(O_0 \otimes X_0)) \lor \\ (\exists O_1 : \mathsf{II's strategy} \ \forall X_1 : \mathsf{I's strategy} \ \psi(X_1 \otimes O_1)) \end{array}$

Input/Output SOA and Determinacy

I/OSOA	complexity	ordinal	-Det*	S(F)OA
:	:	÷	:	
$(\Pi_1^{0-}-CA_0)_{<\omega^2}$	$\Delta^0_{<\omega^2}$	$\varphi 20$	$(\Sigma_1^{0-})_{<\omega^2}$	ACA_0^+
	:	÷	:	
$(\Pi_1^{0-}-CA_0)_{\alpha+1}\otimesWKL^-$	$\operatorname{Low}(\Delta^0_{\alpha+1})$	$(\alpha+1)^{\bullet}$	$(\Sigma_1^{0-})_{\alpha+1}$	
$(\Pi_1^{0-}\operatorname{-CA}_0)_lpha\otimes (\Pi_1^{0-}\operatorname{-bCA})\otimes WKL^-$	$\operatorname{Low}(\Delta^0_{\alpha})$	(4 + 1)	$\Delta((\Sigma_1^{0-})_{\alpha})$	
$(\Pi_1^{0-}\text{-}CA_0)_lpha\otimesWKL^-$		α^{\bullet}	$(\Sigma_1^{0-})_{\alpha}$	
:	:	÷	:	
$(\Pi_1^{0-}-CA_0)_\omega\otimesWKL^-$	Low (Δ^0_{ω})	6	$(\Sigma_1^{0-})_\omega$	
$(\Pi_1^{0-}-CA_0)_{\prec\omega}$	Δ0	$^{c}\omega$	$(\Sigma_1^{0-})_{\prec\omega}$	ACA'_0
$(\Pi_1^{0-}-CA_0)_{<\omega}$	$\Delta_{<\omega}$	ε_0	$(\Sigma_1^{0-})_{<\omega}$	Π_1^0 -CA $_0$
:	:	:	÷	÷
$(\Pi_1^{0-}\text{-}CA_0)_{k+1}\otimesWKL^-$	Low(Δ_{k+2}^0)	$(\eta_{1}, \eta_{2}(0))$	$(\Sigma_1^{0-})_{k+1}$	$(B\Sigma_{L+n})$
$(\Pi_1^{0-} ext{-}CA_0)_k\otimes \ (\Pi_1^{0-} ext{-}bCA)\otimes WKL^-$	$\operatorname{Low}(\Delta^0_{k+1})$	$\omega_{k+3}(0)$	$\Delta((\Sigma_1^{0-})_{k+1})$	$(D \square_{k+2})$
$(\Pi_1^{0-}\text{-}CA_0)_k\otimesWKL^-$		$\omega_{k+2}(0)$	$(\Sigma_1^{0-})_{k+1}$	$(B\Sigma_{k+1})$
: :	:	:	:	:
$WKL^-\otimes(\Pi^{0-}_1-bCA)\otimesWKL^-$	$\mathbf{L}_{ovv}(\mathbf{A}^0)$	ω^{ω}	$\Delta((\Sigma_1^{0-})_2)$	WKL ₀
WKL [_]	$Low(\Delta_1^{\circ})$	ω^2	$\Pi_1^{\bar{0}-}$	WKL [*]

19/21

 $(\Pi_1^0\text{-}\mathsf{CA}_0)_\alpha + WO(\alpha) \to (\Sigma_1^0)_\alpha\text{-}\mathsf{Det}^*$

Idea for a proof

Iterating the following proof of Π_1^0 -CA $_0 \to (\Sigma_1^0)_2$ -Det^{*}:

- ▶ Write a $(\Sigma_1^0)_2$ game in a form of $\exists m \theta(f[m]) \land \psi(f)$, where $\theta \in \Pi_0^0$ and $\psi \in \Pi_1^0$.
- Π_1^0 -CA₀ provides the Π_1^0 set $W = \{s \in 2^{\mathbb{N}} : \text{player I has a w.s. in } \psi(f) \text{ at } s\}.$
- ► Then, player I wins $\exists m\theta(f[m]) \land \psi(f)$ at each $s \in W' = \{s \in \mathbb{N}^{\mathbb{N}} : s \in W \land \theta(s)\}.$
- ► So, the game $\exists m \theta(f[m]) \land \psi(f)$ can be reduced to a Σ_1^0 game $\exists m(f[m] \in W')$.

Idea for a proof

Modifying the following proof of $(\Sigma_1^0)_2$ -Det^{*} $\rightarrow \Pi_1^0$ -CA₀: \blacktriangleright Let $\forall m\theta(x,m)$ be a Π_1^0 formula.

Idea for a proof

Modifying the following proof of $(\Sigma_1^0)_2$ -Det^{*} $\rightarrow \Pi_1^0$ -CA₀:

- Let $\forall m\theta(x,m)$ be a Π_1^0 formula.
- Consider the following game.

Idea for a proof

Modifying the following proof of $(\Sigma_1^0)_2$ -Det* $\rightarrow \Pi_1^0$ -CA₀:

- Let $\forall m\theta(x,m)$ be a Π_1^0 formula.
- Consider the following game.
 player I asks if ∀mθ(n,m) or not.

 - player II answers yes or no.
 - ▶ If no, II wins by giving m s. t. $\neg \theta(n,m)$.
 - If yes, I wins by giving m s. t. $\neg \theta(n,m)$.

Idea for a proof

Modifying the following proof of $(\Sigma_1^0)_2$ -Det* $\rightarrow \Pi_1^0$ -CA₀:

- Let $\forall m\theta(x,m)$ be a Π_1^0 formula.
- Consider the following game.
 - player I asks if $\forall m\theta(n,m)$ or not.
 - player II answers yes or no.
 - If no, II wins by giving m s. t. $\neg \theta(n,m)$.
 - If yes, I wins by giving m s. t. $\neg \theta(n,m)$.
- In the above game, player I has no w.s..
- By determinacy, player II has a w.s..
- II's w.s. yields the set $\{n : \forall m\theta(n,m)\}$.

Idea for a proof

Modifying the following proof of $(\Sigma_1^0)_2$ -Det* $\rightarrow \Pi_1^0$ -CA₀:

- Let $\forall m\theta(x,m)$ be a Π_1^0 formula.
- Consider the following game.
 player I asks if ∀mθ(n,m) or not.

 - player II answers yes or no.
 - ▶ If no, II wins by giving m s. t. $\neg \theta(n,m)$.
 - If yes, I wins by giving m s. t. $\neg \theta(n,m)$.
- In the above game, player I has no w.s..
- By determinacy, player II has a w.s..
- ▶ II's w.s. yields the set $\{n : \forall m\theta(n,m)\}$.

> Iterate!