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Highlights
▶ Complete description of the strengths

of all the “reasonably defined”
determinacy schemata below ∆0

2

▶ Γ0 is the “critical point”
of a Phase Transition:

▶ The hierarchy ⟨(Σ0
1)ωβ -Det∗ : β ≥ Γ0⟩

▶ strict in the sense of logical implication
▶ but collapses consistency-wise.

▶ The hierarchy of determinacy statements might be“better”
than that of transfinite recursion (jump statements),
as a measure:

▶ (Σ0
1)α-Det

∗ is always below ∆0
2-Det

∗ , whereas
▶ (Σ0

1-CA0)α is sometimes beyond Σ1
1-CA0 and more.
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Infinite games?

Let X be either N or {0, 1}. For a L2-formula ψ(f),

▶ Players I and II alternately choose x ∈ X to form f ∈ XN.

I f(0) f(2) f(4) · · ·
II f(1) f(3) f(5) · · ·

▶ I wins if ψ(f). II wins if I doesn’t win.

▶ Strategies are partial functions σ : X<N → X.

▶ If one of the players has a winning strategy in the above
game, ψ(f) is determinate.

▶ Γ determinacy asserts that every ψ(f) ∈ Γ is determinate.
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Base theory RCA0

An L2-theory RCA0 consists of:

Basic arithmetic

Successor n+ 1 ̸= 0, n+ 1 = m+ 1 → n = m,
Addition n+0 = n, n+(m+1) = (n+m)+1,

Multiplication n · 0 = 0, n · (m+ 1) = n ·m+ n,
Order ¬m < 0, m < n+ 1 ↔ m ≤ n,

∆0
1 comprehension

∃X∀n(ψ(n) ↔ n ∈ X), where ψ(x) ∈ ∆0
1.

Σ0
1 induction

ψ(0)∧∀n(ψ(n)→ψ(n+ 1))→∀nψ(n), for ψ∈Σ0
1.
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Reverse mathematical results of determinacy
We had the following equivalences over RCA∗

0 (except †: +Σ1
3-Ind.):

Systems determinacy in 2N (-Det∗) determinacy in NN(-Det)

strong Π1
3-CA0

⇑ Σ0
3 Σ0

3

[Σ1
1]

TR-ID0 ∆0
3 ∆0

3 †
[Σ1

1]
2-ID0 (Σ0

2)3 (Σ0
2)2

Π1
1-ID0 (Σ0

2)2 Σ0
2

Π1
1-TR0 Bisep(∆0

2,Σ
0
2) ∆0

2

Π1
1-CA0 Bisep(Σ0

1,Σ
0
2) (Σ0

1)2

Π0
1-TR0 ∆0

2, Σ
0
2 ∆0

1, Σ
0
1

...
(Π0

1-CA0)ωα

...
ACA+

0 (Σ0
1)ω

ACA′
0 (Σ0

1)<ω

⇓ Π0
1-CA0 (Σ0

1)2

weak WKL∗0 ∆0
1, Σ

0
1

(Steel, Tanaka, MedSalem,
Welch and N) 5 / 21



Hausdorf’s difference hierarchy of (Σ0
1)α

In what follows, we fix a standard rec. notation system of ordinals
with order ≺ of enough length. α, β and γ vary over ordinals in it.

▶ (Σ0
1)2 is the class of formulas of the form ψ1(f) ∧ ¬ψ0(f),

where ψi ∈ Σ0
1.

▶ For any α, (Σ0
1)α is the class of all formulas of the form

∃ odd β ≺ α(ψ(β, f) ∧ ¬(∃γ ≺ β)ψ(γ, f)), (for even α)

∃ even β ≺ α(ψ(β, f) ∧ ¬(∃γ ≺ β)ψ(γ, f)), (for odd α)

for some ψ(β, f) ∈ Σ0
1.

· · · · · · · · ·0 1 γ + 1γ γ + 2 γ + 3

Theorem (Tanaka) In Π0
1-CA0, ∆

0
2 =

∪
w.o. X(Σ

0
1)X
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Wadge hierarchy

B

A

f
XN XN▲

▶ Wadge classes are classes of
subsets of XN closed under
continuous pre-images.

▶ All reasonable classes (Σ0
1,

∆0
1,...) of formulae ψ(f)

must form Wadge classes
because boolean operations
and quantifiers are preserved
under continuous
pre-images.

Wadge hierarchy up to Σ0
2

Σ0
2

∆0
2

...
∆((Σ0

1)α+1) = Bisep(∆0
1, (Σ

0
1)α)

(Σ0
1)α

∆((Σ0
1)α)
...

(Σ0
1)2

∆((Σ0
1)2) = Bisep(∆0

1,Σ
0
1)

Σ0
1

∆0
1
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Between Π0
1-CA0 and Π0

1-TR0

Γ-TR0 WO(Y ) → ∃X(X = HY
θ ) for θ ∈ Γ, where

∀x∀y(⟨x, y⟩ ∈ HY
θ ↔ θ(x, {⟨z, w⟩ ∈ HY

θ : w ≺Y y})).
(Γ-CA0)α ∃X(X = Hα

θ ) for θ ∈ Γ.

Theorem The following equivalences hold over RCA0

▶ Π0
1-CA0 ↔ (Σ0

1)2-Det
∗.

▶ (Σ0
1-CA0)ωα → (Σ0

1)ωα-Det∗,
(Σ0

1)ωα-Det∗ +WO(ωα) → (Σ0
1-CA0)ωα .

▶ Π0
1-TR0 ↔

∪
X:w.o.(Σ

0
1)X -Det

∗(= ∆0
2-Det

∗) ↔ Σ0
2-Det

∗.

Lemma (Flumini and Sato) (Π0
1-CA0)α ⊢ WO(α)

Question Does -Det∗ implies WO(α)
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Proof theoretic ordinals

Proof theoretic ordinal |S| of system S

▶ |S| = sup{β : S ⊢ WO(β)}.
▶ In many cases, WO(|S|) implies the consistency of S.

Famous proof theoretic ordinals

▶ (Gentzen) |Π0
1-CA0| = ε0 = sup{ω, ωω, ωωω

, ωω
ωω

, ...}
▶ Veblen function φ

▶ φ0α = ωα

▶ φαβ = the β-th simultaneous fixed point of the functions φγ
for all γ < α.

(Friedman, MacAloon and Simpson)
|Π0

1-TR0| = |(Π0−
1 -CA0)<Γ0 | = Γ0

=the least γ > 0 s.t. α, β < γ → φαβ < γ
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Proof theoretic strength and reverse mathematical strength

Proof theoretic strength

Let S and T be “usual” theories (all theories in this talk!).

▶ |S| < |T| iff T ⊢ Con(S).

▶ T ⊊ S, i.e., {ψ : T ⊢ ψ} ⊊ {ψ : S ⊢ ψ} doesn’t imply
|T| < |S|.
(Example: RCA0 ⊊ WKL0 but |RCA0| = |WKL0|)

▶ In particular, RCA0 ⊢ A → B and RCA0 ̸⊢ B → A does not
imply |RCA0 + B| < |RCA0 + A|.

10 / 21



Removing WO(α)

Lemma
If α ≺ |Σ0

1-CnTR0|, then (Σ0
1)1+α-Det

∗ ⊢ WO(α),
where Σ0

1-CnTR0 states ∀β(WO(β) → (Σ0
1-CA)β).

(Scketch of the proof)

▶ (Σ0
1)1+α-Det

∗ ⊢ ∀β ⪯ α(WO(β) → (Σ0
1-CA0)β)

▶ (Σ0
1)1+α-Det

∗ ⊢ ¬WO(α) → Σ0
1-CnTR0.

▶ Then |(Σ0
1)1+α-Det

∗| ⪰ min{α+ 1, |Σ0
1-CnTR0|}.

For any β ≺ min{α+ 1, |Σ0
1-CnTR0|}, (Σ0

1)1+α-Det
∗ proves:

▶ WO(α) → WO(β),
▶ ¬WO(α) → Σ0

1-CnTR0 → WO(β).

Theorem
Let (⋆)α be (Σ0

1)1+α-Det
∗→(Σ0

1-CA)α.

▶ RCA0 ⊢ (⋆)α if α ≺ |Σ0−
1 -CnTR0|.

▶ RCA0 ̸⊢ (⋆)α if |(Σ0
1-CA0)<α| ⪰ |Σ0

1-TR0|,
and |Σ0

1-CnTR0| ⪯ |(Σ0
1)1+α-Det

∗| ⪯ |Σ0
1-TR0|.
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Removing WO(α)

Lemma
If α ≺ |Σ0

1-CnTR0|, then (Σ0
1)1+α-Det

∗ ⊢ WO(α),
where Σ0

1-CnTR0 states ∀β(WO(β) → (Σ0
1-CA)β).

(Scketch of the proof)

▶ (Σ0
1)1+α-Det

∗ ⊢ ∀β ⪯ α(WO(β) → (Σ0
1-CA0)β)

▶ (Σ0
1)1+α-Det

∗ ⊢ ¬WO(α) → Σ0
1-CnTR0.

▶ Then |(Σ0
1)1+α-Det

∗| ⪰ min{α+ 1, |Σ0
1-CnTR0|}.

For any β ≺ min{α+ 1, |Σ0
1-CnTR0|}, (Σ0

1)1+α-Det
∗ proves:

▶ WO(α) → WO(β),
▶ ¬WO(α) → Σ0

1-CnTR0 → WO(β).

Theorem
Let (⋆)α be (Σ0

1)1+α-Det
∗→(Σ0

1-CA)α.

▶ RCA0 ⊢ (⋆)α if α ≺ |Σ0−
1 -CnTR0|.

▶ RCA0 ̸⊢ (⋆)α if |(Σ0
1-CA0)<α| ⪰ |Σ0

1-TR0|,
and |Σ0

1-CnTR0| ⪯ |(Σ0
1)1+α-Det

∗| ⪯ |Σ0
1-TR0|. 11 / 21



Comparing strength

Theorem

1. The following are equivalent
▶ RCA0 ̸⊢ (Σ0

1)β-Det
∗ → (Σ0

1)α-Det
∗

▶ RCA0+WO(α)+(Σ0
1)α-Det

∗⊢
Con(RCA∗

0+WO(β)+(Σ0
1)β-Det

∗)
▶ RCA∗

0 ̸⊢ (Π0
1-CA0)β→(Π0

1-CA0)α
▶ (Π0

1-CA0)α ⊢ Con((Π0
1-CA0)beta)

▶ β · ω ≤ α.

2. In particular, α < β · ω and β < α · ω,
RCA0 ⊢ (Σ0

1)β-Det
∗ ↔ (Σ0

1)α-Det
∗

3. RCA0 ̸⊢ (Σ0
1)α-Det

∗ → ∆0
2-Det

∗

4. Even if Γ0 ≤ β, |RCA0 + (Σ0
1)β-Det

∗| = Γ0.

5. If β < Γ0, WO(β) in 1 can be omitted. If β ≥ Γ0, it can’t.

Thus, the hierarchy of (Σ0
1)β-Det

∗ for β ≥ Γ0 collapses proof
theoretically, but not reverse mathematically.
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Highlights
▶ Complete description of the strengths

of all the “reasonably defined”
determinacy schemata below ∆0

2

▶ Γ0 is the “critical point”
of a Phase Transition:

▶ The hierarchy ⟨(Σ0
1)ωβ -Det∗ : β ≥ Γ0⟩

▶ strict in the sense of logical implication
▶ but collapses consistency-wise.

▶ The hierarchy of determinacy statements might be“better”
than that of transfinite recursion (jump statements),
as a measure:

▶ (Σ0
1)α-Det

∗ is always below ∆0
2-Det

∗ , whereas
▶ (Σ0

1-CA0)α is sometimes beyond Σ1
1-CA0 and more.

consistency
-wise

logical
implication

Γ0

collapse


strict
hierarchy


strict
hierarchy
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Reverse mathematical results of determinacy
We had the following equivalences over RCA∗

0 (except †: +Σ1
3-Ind.):

Systems determinacy in 2N (-Det∗) determinacy in NN(-Det)

strong Π1
3-CA0

⇑ Σ0
3 Σ0

3

[Σ1
1]

TR-ID0 ∆0
3 ∆0

3 †
[Σ1

1]
2-ID0 (Σ0

2)3 (Σ0
2)2

Σ1
1-ID0 (Σ0

2)2 Σ0
2

Π1
1-TR0 Bisep(∆0

2,Σ
0
2) ∆0

2

Π1
1-CA0 Bisep(Σ0

1,Σ
0
2) (Σ0

1)2

Π0
1-TR0 ∆0

2, Σ
0
2 ∆0

1, Σ
0
1

...
(Σ0

1-CA0)ωα (Π0
1)ωα

...
ACA+

0 (Σ0
1)ω

ACA′
0 (Σ0

1)<ω

⇓ Π0
1-CA0 (Π0

1)2

weak WKL∗0 ∆0
1, Σ

0
1

(Steel, Tanaka, MedSalem,
Welch and N) 14 / 21



For parameter free version

Language L′
2 of Input/Output second order arithmetic

▶ 3 kinds of 2nd order variables:

Input: I0, I1...; Output: O0, O1,...; Normal: X0, X1,...

▶ Usual langulage of 1st order arithmetic L1 and ∈

Class Γ− of formulas
For a class Γ of arithmetical formula in L2,

▶ All 2nd order free variables are input variables.

▶ ψ(X0, ..., Xn−1) ∈ Γ
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For a class Γ of arithmetical formula in L2,

▶ All 2nd order free variables are input variables.

▶ ψ(X0, ..., Xn−1) ∈ Γ

Γ-CA in L2 and Γ−-CA in L′
2

Γ-CA ∃X(ψ(x, Y ) ↔ x ∈ X) for ψ ∈ Γ

Γ−-CA ∃O0(ψ(x, I0) ↔ x ∈ O0) for ψ ∈ Γ−
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Language L′
2 of Input/Output second order arithmetic

▶ 3 kinds of 2nd order variables:

Input: I0, I1...; Output: O0, O1,...; Normal: X0, X1,...

▶ Usual langulage of 1st order arithmetic L1 and ∈

Class Γ− of formulas
For a class Γ of arithmetical formula in L2,

▶ All 2nd order free variables are input variables.

▶ ψ(X0, ..., Xn−1) ∈ Γ

(Γ-CA)α in L2 and ((Γ)−-CA)α in L′
2

(Γ-CA)α ∃X0(X0 = Hα
ψ ), where ψ ∈ Γ

(Γ−-CA)α ∃O0(O0 = Beψα), where ψ ∈ Γ−
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Iinput/Output Second Order Arithmetic

Definition

▶ (RbD): ∀I0∃O0∃X0(I0 = O0 = X0) ∧ ∀O1∃X1(O1 = X1)

▶ Positive Π0
0-CA is

∀Y0!, ...Yk−1∀x⃗ ∃Yk ∀z(z∈Yk ↔ φ(z, x⃗, Y0, ..., Yk−1));
where Y⃗ is I⃗, O⃗ or X⃗ and where φ(z, x⃗, Y0, ..., Yk−1)∈Π0

0 is
positive in Y0, ..., Yk−1 and without other parameters.

▶ BPC0 := I∆0 + ∀x∃y“y = exp(x)”+ (RbD)+Positive Π0
0-CA

▶ (Π0−
1 -CA0)α := BPC0 + (Π0−

1 -CA)α
▶ (Π0−

1 -CA0)α ⊗WKL− := BPC0+ ∃O0∃O1(O0 = Hα
θ ∧

(O0 is an infinite binary tree→ O1 is an infinite path of O1.))

Proposition

Let ψ0(X,Y ) and ψ1(X,Y ) are essentially Σ1 formulas in L2

without any 2nd order varables other than X and Y .
If (Π0−

1 -CA0)α⊢∀I0∃X0ψ0(I0, X0) and (Π0−
1 -CA0)β ⊢∀I1∃X1ψ1(I1, X1),

then (Π0−
1 -CA0)α+β ⊢ ∀I0∃X0, X1(ψ0(I0, X0) ∧ ψ1(X0, X1)).
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Examples of Models of I/O SOA

▶ M0: ω-Model of Π0−
1 -CA0

▶ Input part: all Π0
0 sets

▶ Output part: all Π0
1 sets

▶ Normal part: P(N)

▶ M1: ω-model of (Π0−
1 -CA0)ω+1

▶ Input part: all Π0
0 sets

▶ Output part: all Π0
1+ω sets

▶ Normal part: P(N)
▶ M2: ω-model of (Π0−

1 -CA0)α+1 ⊗WKL−

▶ Input part: all Π0
0 sets

▶ Output part: all Low(∆0
1+α+1) sets

▶ Normal part: P(N)
▶ Arith: ω-model of Π0

1-CA0 (with parameters!)
▶ 2nd order part: all arithmetical sets.
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Determinacy in I/O SOA

Consider the statement Ψ: “player I has a winning strategy in ψ”

▶ “∃I0 : I’s strategy ∀I1 : II’s strategy ψ(I0 ⊗ I1)” means
“there is a strategy for I in the input part which wins against
all II’s strategies in the input part.”

▶ “∃O0 : I’s strategy ∀X0 : II’s strategy ψ(O0 ⊗X0)” means
“there is a strategy for I in the output part which wins against
all II’s strategies in the normal part.”

We formalize determinacy as follows:

▶ ψ(f) is determinate:
(∃O0 : I’s strategy ∀X0 : II’s strategy ψ(O0 ⊗X0))∨

(∃O1 : II’s strategy ∀X1 : I’s strategy ψ(X1 ⊗O1))
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Input/Output SOA and Determinacy
I/OSOA complexity ordinal -Det∗ S(F)OA
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...
...

(Π0−
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(Π0
1-CA0)α +WO(α) → (Σ0

1)α-Det
∗

Idea for a proof

Iterating the following proof of Π0
1-CA0 → (Σ0

1)2-Det
∗:

▶ Write a (Σ0
1)2 game in a form of ∃mθ(f [m]) ∧ ψ(f), where

θ ∈ Π0
0 and ψ ∈ Π0

1.

▶ Π0
1-CA0 provides the Π0

1 set
W = {s ∈ 2N : player I has a w.s. in ψ(f) at s}.

▶ Then, player I wins ∃mθ(f [m]) ∧ ψ(f) at each
s ∈W ′ = {s ∈ NN : s ∈W ∧ θ(s)}.

▶ So, the game ∃mθ(f [m]) ∧ ψ(f) can be reduced to a Σ0
1

game ∃m(f [m] ∈W ′).

· · · · · · · · ·0 1 γ + 1γ γ + 2 γ + 3
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(Σ0
1)α-Det

∗ +WO(α) → (Π0
1-CA)α

Idea for a proof

Modifying the following proof of (Σ0
1)2-Det

∗ → Π0
1-CA0:

▶ Let ∀mθ(x,m) be a Π0
1 formula.

▶ Consider the following game.
▶ player I asks if ∀mθ(n,m) or not.
▶ player II answers yes or no.
▶ If no, II wins by giving m s. t. ¬θ(n,m).
▶ If yes, I wins by giving m s. t. ¬θ(n,m).

▶ In the above game, player I has no w.s..

▶ By determinacy, player II has a w.s..

▶ II’s w.s. yields the set {n : ∀mθ(n,m)}.

Iterate!
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