The strength of determinacy between ©{ and Af

Takako Nemoto (JAIST)

joint work with Dr. Kentaro Sato, Univ. Bern

/21



Highlights
» Complete description of the strengths

of all the “reasonably defined”
determinacy schemata below A

consistency

-wise

collapse

strict
hierarchy

logical
implication

strict
hierarchy

N

21



Highlights

» Complete description of the strengths
of all the “reasonably defined”
determinacy schemata below A

> [j is the “critical point”
of a Phase Transition:

consistency

-wise

collapse

strict
hierarchy

logical
implication

strict
hierarchy

N

21



nghhghts consistency logical

» Complete description of the strengths ~ -wise implication

of all the “reasonably defined”

. 0 collapse
determinacy schemata below Aj
strict
— ]—10 )

> [j is the “critical point” . hierarchy

of a Phase Transition: strict

hierarchy

» The hierarchy ((29),,5-Det* : 8 > Ip)
» strict in the sense of logical implication
» but collapses consistency-wise.

N

21



Highlights
» Complete description of the strengths

of all the “reasonably defined”
determinacy schemata below A

> [j is the “critical point”
of a Phase Transition:

» The hierarchy ((29),,5-Det* : 8 > Ip)

consistency

-wise

collapse

strict
hierarchy

» strict in the sense of logical implication

» but collapses consistency-wise.

logical
implication

strict
hierarchy

» The hierarchy of determinacy statements might be “better”
than that of transfinite recursion (jump statements),

as a measure:

> (29)q-Det* is always below A9-Det* , whereas
» (X9-CAp), is sometimes beyond ¥1-CAy and more.

N

21



Infinite games?

Let X be either N or {0,1}. For a Lo-formula ¥(f),
» Players | and Il alternately choose z € X to form f € XN

I f(0) f2) f(4)

3/21



Infinite games?

Let X be either N or {0,1}. For a Lo-formula ¥(f),
» Players | and Il alternately choose z € X to form f € XN

I f(0) f(2) fl4) -
I F(1) f(3) f(5)

» | wins if ¢(f). Il wins if | doesn't win.

3/21



Infinite games?

Let X be either N or {0,1}. For a Lo-formula ¥(f),
» Players | and Il alternately choose z € X to form f € XN

I f(0) f(2) fl4) -
I F(1) f(3) f(5)

» | wins if ¢(f). Il wins if | doesn't win.

» Strategies are partial functions o : X<N — X.

3/21



Infinite games?

Let X be either N or {0,1}. For a Lo-formula ¥(f),

» Players | and Il alternately choose z € X to form f € XN

I f(0) f(2) fl4) -
I F(1) f(3) f(5)

» | wins if ¢(f). Il wins if | doesn't win.
» Strategies are partial functions o : X<N — X.

> If one of the players has a winning strategy in the above
game, Y(f) is determinate.

3/21



Infinite games?

Let X be either N or {0,1}. For a Lo-formula ¥(f),
» Players | and Il alternately choose z € X to form f € XN
I £0) 72) Fay -
I f(1) f(3) f(5)

| wins if (f). Il wins if | doesn't win.

v

Strategies are partial functions o : X<N — X.

v

v

If one of the players has a winning strategy in the above
game, Y(f) is determinate.

v

I' determinacy asserts that every ¢(f) € I is determinate.

3/21



Base theory RCA,

An Lo-theory RCA( consists of:
Basic arithmetic

Successor n+1#0, n+l=m+1—n=m,

Addition n+0=n, n+(m+1)=(n+m)+1,

Multiplication n-0=0, n-(m+1)=n-m+mn,
Order - m <0, m<n+1+<m<n,
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Reverse mathematical results of determinacy
We had the following equivalences over RCA{j (except t: +E§—Ind.):

strong

T

weak

Systems determinacy in 2" (-Det”) | determinacy in NY(-Det)
13-CAg
%5 !
[21]""-1Do Aj Aj t
[Z1]%-1Do (29)s (£5)2
I13-1Dy (¥5): %5
I1-TRy Bisep(A3,29) A
-CAo Bisep(X0, ) =9)s
9-TRo AY, 39 AY, 39
(I19-CAp) o
ACAT =0
ACA6 (2(1))<w
19-CA, (29,
" (Steel, Tanaka, MedSalem,
WKL, A, 39 Welch and N) 5
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Hausdorf's difference hierarchy of (39),

In what follows, we fix a standard rec. notation system of ordinals

with order < of enough length. «, 8 and ~ vary over ordinals in it.
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for some (8, f) € X9.

) /

Theorem (Tanaka) In II9-CAq, A =, . x(Z9)x

\\\\\
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Wadge hierarchy

ri

_

» Wadge classes are classes of

subsets of X closed under
continuous pre-images.

All reasonable classes (29,
AY,...) of formulae ¥ (f)
must form Wadge classes
because boolean operations
and quantifiers are preserved
under continuous
pre-images.

A((S9)as1) = Bisep(AY, (£9)a)

(2-?)2
A((29)2) = Bisep(Af, £9)
ZO
1
Af
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Between I19-CA, and I1J-TR,

I-TRy WO(Y) — 3X (X = H)) for @ € T', where

Vavy((z,y) € HY < 0(z,{(z,w) € HY :w <y y})).

(P-CAg) 3X (X = HY) for § € T.

Theorem The following equivalences hold over RCA,
> H?—CAO — (Z?)Q—Det*.

> (29-CAg)we — (29),a-Det*,
(29)po-Det* + WO (w®) — (£9-CAg)we.

» II0-TRy ¢ Uyno (X)) x-Det*(= AJ-Det*) <+ £3-Det*.
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Proof theoretic ordinals

Proof theoretic ordinal |S| of system S

> |S| =sup{s:SEFWO(5)}.

» In many cases, WO(|S|) implies the consistency of S.
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Proof theoretic ordinals

Proof theoretic ordinal |S| of system S

> |S| =sup{s:SEFWO(5)}.

> In many cases, WO(|S|) implies the consistency of S.

Famous proof theoretic ordinals

w

» (Gentzen) |T19-CAq| = go = sup{w,w®,w*", w*" ..}
» Veblen function ¢
» p0a = w®
» af = the S-th simultaneous fixed point of the functions ¢y
for all v < a.
(Friedman, MacAloon and Simpson)
II-TRo| = [(I}"-CAo)<r, | = I
=the least v > 0 s.t. a, 8 < v — paf < vy
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Proof theoretic strength and reverse mathematical strength

Proof theoretic strength
Let S and T be “usual” theories (all theories in this talk!).
» |S| < |T| iff T+ Con(S).
> TCS, ie, {: TH®} S {1: Sk )} doesn’t imply
T|<S].
(Example: RCAg € WKLy but [RCAq| = [WKLo|)
> In particular, RCAg - A — B and RCA( I/ B — A does not
imply |[RCAg + B| < |RCAg + A|.
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Removing WO («)

Lemma
If @ < |29-CnTRy|, then (X9)114-Det* - WO(a),
where X{-CnTRy states V3(WO(B) — (X9-CA)p).
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> (9)11q-Det* - ~WO(a) — S9-CnTR,.
» Then [(29)144-Det*| = min{a + 1, |29-CnTRy|}.

For any 8 < min{a + 1,|X-CnTRo|}, (X9)144-Det* proves:

» WO(a) — WO(3),
> =WO(a) — X9-CnTRy — WO(B).

Theorem
Let (%)o be (39)14a-Det*—(X9-CA),.
» RCAg I (%), if @ < [B97-CnTR|.
> RCAQ  ()a I [(59-CAg)<al = [S3-TRy),
and [20-CnTRg| < [(29)144-Det*| < |S0-TRy|.
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Comparing strength

Theorem

1. The following are equivalent

RCAq I (39) 5-Det* — (%9),-Det*

RCA)+WO(a)+(X9)o-Det* -
Con(RCA;+WO(B)+(%Y) 5-Det™)

RCAG / (T19-CAg) g — (I19-CAg) o

(I19-CAp) o F Con((I19-CAg)beta)

6-w<a.

v

v

v

v

v

12 /21



Comparing strength

Theorem

1. The following are equivalent

RCAq I (39) 5-Det* — (%9),-Det*

RCA)+WO(a)+(X9)o-Det* -
Con(RCA;+WO(B)+(%Y) 5-Det™)

RCAG / (T19-CAg) g — (I19-CAg) o

(I19-CAp) o F Con((I19-CAg)beta)

» frw<a.

2. In particular, « < f-w and B < a - w,
RCAQ - (29)5-Det* «» (X9),-Det*

v

v

v

v

12 /21



Comparing strength

Theorem

1. The following are equivalent

RCAq I (39) 5-Det* — (%9),-Det*

RCA)+WO(a)+(X9)o-Det* -
Con(RCA;+WO(B)+(%Y) 5-Det™)

RCAG / (T19-CAg) g — (I19-CAg) o

(I19-CAp) o F Con((I19-CAg)beta)

» frw<a.

2. In particular, « < f-w and B < a - w,
RCAQ - (29)5-Det* «» (X9),-Det*
3. RCAg I/ (£9),-Det* — AY-Det*

v

v

v

v

12 /21



Comparing strength

Theorem

1. The following are equivalent

RCAq I (39) 5-Det* — (%9),-Det*

RCA)+WO(a)+(X9)o-Det* -
Con(RCA;+WO(B)+(%Y) 5-Det™)

RCAG / (T19-CAg) g — (I19-CAg) o

(I19-CAp) o F Con((I19-CAg)beta)

» frw<a.

2. In particular, « < f-w and B < a - w,
RCAQ - (29)5-Det* «» (X9),-Det*

3. RCAg I/ (29)4-Det* — AJ-Det*

4. Even if Iy < 3, ‘RCAO + (E?)g—Det*| =1TIy.

v

v

v

v

12 /21



Comparing strength

Theorem

1. The following are equivalent

> RCAq 7 (£9)5-Det” — (59),-Det*

» RCAG+WO(a)+(%9),-Det* -

Con(RCA;+WO(B)+(%Y) 5-Det™)
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Comparing strength

Theorem

1. The following are equivalent

3.
4.
5.

v

RCAo 1 (59)-Det” — (£9)4-Det*

RCAo+WO(a) + (£9)-Det* -
Con(RCA;+WO(B)+(%Y) 5-Det™)

RCA 7 (I19-CAg) s — (I19-CAg) o

(I19-CAg) o = Con((I19-CAp)peta)

» Brw<a.

v

v

v

. In particular, « < f-w and 8 < a - w,

RCAQ - (29)5-Det* «» (X9),-Det*

RCAg I/ (£9)4-Det* — AY-Det*

Even if Iy < 3, |[RCAy + (E?)g—Det*| =TIy.

If 5 < Iy, WO(B) in 1 can be omitted. If 3> I}, it can't.

Thus, the hierarchy of (£9)3-Det* for 3 > I} collapses proof
theoretically, but not reverse mathematically.
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Reverse mathematical results of determinacy
We had the following equivalences over RCA{j (except t: +E§—Ind.):

strong

T

weak

Systems determinacy in 2 (-Det”) | determinacy in NY(-Det)
13-CAg
23 =5
[Z1]""-1Dg Ag Ag t
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For parameter free version

Language £ of Input/Output second order arithmetic

» 3 kinds of 2nd order variables:

Input: Iy, I1...; Output: Og, O1q,...; Normal: Xy, Xq,...

» Usual langulage of 1st order arithmetic £1 and €

Class I'™ of formulas
For a class I' of arithmetical formula in Ls,

» All 2nd order free variables are input variables.
> ¢(X0, ...,Xn_l) el
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linput/Output Second Order Arithmetic
Definition

» (RbD): VIy303Xo(Iy = Oy = Xo) AVO13X1(01 = X1)
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linput/Output Second Order Arithmetic

Definition

>

>

v

v

(RbD): V1p30p3 X0 (Lo = Op = Xo) AVO13X:1(01 = X1)
Positive TIJ-CA is

\V/YO'a _)Yk_ly.f_?lYk V_»Z(ZE Yi < (p(zv fa Yo, - Yk—l));

where Y is I, O or X and where (2, %, Yy, ..., Yi_1) €119 is
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BPCp :=1A¢ + Vz3y“y = exp(z)" + (RbD)+Positive I13-CA
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v

v

Proposition

Let ¢0(X,Y) and ¢1(X,Y) are essentially 3; formulas in L
without any 2nd order varables other than X and Y.

If [19-CAg)a V103 X010(Io, Xo) and ((0-CAg) -V 3X 191 (11, X1),
then (H?_—CA())OH_,@’ F VfoaXo,Xl(wo(Ig,Xo) A wl(X()aXl))-
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Examples of Models of 1/0 SOA

> Myo: w-Model of TI)"-CAg

» Input part: all H8 sets
» Output part: all 1Y sets
» Normal part: P(N)
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Examples of Models of /O SOA

> Myo: w-Model of TI)"-CAg

» Input part: all H8 sets
» Output part: all 1Y sets
» Normal part: P(N)
> My w-model of (TIV"-CAg).11
» Input part: all H8 sets
» Output part: all H(l)—i—w sets
» Normal part: P(N)
> My w-model of (TTV"-CAg)ar1 @ WKL™
» Input part: all H8 sets

» Output part: all Low(AY, ) sets
» Normal part: P(N)

» Arith: w-model of T1{-CAy (with parameters!)
» 2nd order part: all arithmetical sets.
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Determinacy in 1/0 SOA

Consider the statement W: “player | has a winning strategy in "
» "3l : I's strategy VI : II's strategy ¢(lp ® I1)" means
“there is a strategy for | in the input part which wins against
all II's strategies in the input part.”

» “30y : I's strategy VX : II's strategy /(Op ® X()" means
“there is a strategy for | in the output part which wins against
all II's strategies in the normal part.”
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Determinacy in 1/0 SOA

Consider the statement W: “player | has a winning strategy in "
» "Iy : I's strategy VI : II's strategy ¢(lp ® I1)" means
“there is a strategy for | in the input part which wins against
all Il's strategies in the input part.”

» “30y : I's strategy VX : II's strategy /(Op ® X)" means
“there is a strategy for | in the output part which wins against
all II's strategies in the normal part.”

Recall w-models of I1-CA,.
» “Arith = ¥" means “there is an arithmetical strategy for |
which wins only against |l's arithmetical strategies,” so we
have no information about “real winning strategy" .

» “P(N) = U" tells the existence of the "real” winning
strategies, but no information about their complexity.
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Determinacy in 1/0 SOA

Consider the statement W: “player | has a winning strategy in "
» "3l : I's strategy V1; : II's strategy ¢(lp ® I1)" means
“there is a strategy for | in the input part which wins against
all II's strategies in the input part.”
» “30y : I's strategy VX : II's strategy /(Op ® X)" means
“there is a strategy for | in the output part which wins against
all Il's strategies in the normal part.”

“My = JOp : I's strategy VX : II's strategy (O ® X)" tells the
existence and complexity of “real” winning strategies!

We formalize determinacy as follows:
> 1(f) is determinate:
(30 : I's strategy VX : II's strategy 1(Op ® X))V
(301 : II's strategy VX : I's strategy ¢(X; ® O1))
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Input/Output SOA and Determinacy

[/OSOA complexity | ordinal -Det” S(F)OA
(IT]"-CAp) 2 AU, £20 ). || ACAS
- CAg)a1 ® WKL Low (A2, ) (@t 1) T ot
AT ik A )
HO’ bCA) @ WKL~ Low(A?) " a
(HU* CAO) ® WKL™ a® =)
(- CAO) ® WKL Low(A?) _ =)
(I -CAg) < A0 @ (27 ) <w ACA]
(H&Ji—CAo)QU <w £0 (2(1),)<w H?—CAO
7 -CAo)rsr ® WKL~ | Low(AY ' S0 '
( 0)k+1) OW( k+2) Wk+3(0) ( 103k+1 (sz+2)
HO’ éCA KL Low(A, ) A((Z] k1)
( —-CAo)i ® WKL™ wir2(0) | Y krr || (BEg41)
WKL ®(I10 -bCA) WKL~ T W AT ) [ WKL,
WKL Low(AY) = - WKL?
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(I19-CAp)o + WO(r) — (£9),-Det”

Idea for a proof

Iterating the following proof of I1{-CAy — (X9)o-Det*:

» Write a (XY)2 game in a form of 3mO(f[m]) A ¥(f), where
6 € 113 and ¢ € IIY.

» T19-CA provides the TIY set
W = {s € 2V : player | has a w.s. in 9(f) at s}.

» Then, player | wins 3ml(f[m]) A ¢(f) at each
seW' ={seNV:secWAH(s)}.

» So, the game ImO(f[m]) A ¥(f) can be reduced to a %9
game Im(f[m] € W').

)
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(39)4-Det” + WO(a) — (I19-CA),,

Idea for a proof

Modifying the following proof of (£9),-Det* — MJ-CAy:
» Let VmO(z,m) be a IIY formula.
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Idea for a proof
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» Let VmO(z,m) be a IIY formula.

» Consider the following game.
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(X9)4-Det* + WO(a) — (I19-CA),,

Idea for a proof

Modifying the following proof of (£9),-Det* — MJ-CAy:

» Let VmO(z,m) be a IIY formula.
» Consider the following game.
» player | asks if Ym6(n, m) or not.
player Il answers yes or no.
If no, Il wins by giving m s. t. =0(n,m).
If yes, | wins by giving m's. t. =0(n, m).

v vyy
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(X9)4-Det* + WO(a) — (I19-CA),,

Idea for a proof

Modifying the following proof of (£9),-Det* — MJ-CAy:

» Let VmO(z,m) be a IIY formula.

» Consider the following game.
» player | asks if Ym6(n, m) or not.

» player Il answers yes or no.
» If no, Il wins by giving m s. t. =6(n,m).
> If yes, | wins by giving m s. t. =0(n, m).

> In the above game, player | has no w.s..
» By determinacy, player Il has a w.s..

> II's w.s. yields the set {n : Vm#(n,m)}.
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(X))4-Det” + WO(a) — (T19-CA),,

Idea for a proof

Modifying the following proof of (£9),-Det* — MJ-CAy:
» Let VmO(z,m) be a IIY formula.
» Consider the following game.
» player | asks if Ym6(n, m) or not.
player Il answers yes or no. Iterate!
If no, Il wins by giving m s. t. =0(n,m).
If yes, | wins by giving m's. t. =0(n, m).

v vyy

> In the above game, player | has no w.s..
» By determinacy, player Il has a w.s..

> II's w.s. yields the set {n : Vm#(n,m)}.
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