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Motivation

One way to classify P(N) is to define a reducibility and a degree
structure.

In fact, many structures studied in recursion theory such as
structures, equivalence relations, mass problems, real life
problems (complexity theory), etc is commonly compared this way.

A reducibility is usually a pre-ordering used to compare the
“strength" of two reals.

When one problem is harder to solve than another (mass problems,
complexity theory)
When information given about one real naturally produces
information about the other (≤T , ≤e)
When one real contains more “information" than another (≤LR , ≤K ,
etc)
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Motivation

This preordering partitions the continuum into equivalence
classes, which can then be ordered accordingly.

One can look at classical versus weak reducibilities (particularly
arising in study of algorithmic randomness)

Reducibilities are used to define when a real is weak in
information content (which we denote generically as “low"), and its
dual “highness".
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Classical Reducibilities

Most classical reducibilities are defined in terms of an underlying
(usually continuous) map that induces the reduction, e.g.

A ≤T B iff there is a computable continuous functional

Φ : P(N) 7→ P(N) such that Φ(A) = B.

Such a map Φ is usually effective in some way and the classical
reducibilities are usually Σ0

3.
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Reducibilities using Randomness

The study of relative randomness lead to new reducibilities being
looked at. (e.g. Downey-Hirschfeldt-Laforte, Nies).

In fact, Nies has explicitly listed some conditions which a
preordering ≤W should have to be considered a weak reducibility:

It should be weaker than Turing reducibility (used as the benchmark
in recursion theory), i.e. for all sets A,B,

A ≤T B =⇒ A ≤W B

The reducibility should be easily definable, i.e. ≤W should be Σ0
n as

a relation on sets.
X ′ 6≤W X for any X .
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Reducibilities using Randomness

So a weak reducibility should not be too different from the Turing
reducibility.

E.g.
A ≤ar B ⇔ A ≤T B(n) for some n

should not be considered a weak reducibility.

If A ≤W B then B can only understand a small part or aspect of A.
Compare to A ≤T B where B knows everything of A.

Weak reducibilities usually do not have an underlying map which
induces the reduction.

Σ0
3 so each reduction still has an index.

However each reduction might reduce many (even uncountably
many) reals B to a single one A, i.e. B ≤W A.
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Weak Reducibilities

Some considerations. Given a real,

How random is it compared to another?
How much information is contained in its initial segments?
How much power does it have to compress finite binary strings?
How much power does it have to derandomnize other reals?
How much power does it have to approximate or guess information
about another real?
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Reducibilities using Randomness

A list of the more common weak reducibilities:
A ≤T B the benchmark
A ≤LK B K B(σ) ≤+ K A(σ)

A ≤LR B every B random is A-random
A ≤JT B Every partial A-recursive function can be

traced by a B-r.e. trace

Miller shows that ≤LK = ≤LR.

In this talk we will focus on the last two reducibilities.
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Other weak reducibilities

There are many other weak reducibilities studied (See Nies’s
book).

A ≤ B ⇐⇒ A′ ≤T B′

A ≤CT B ⇐⇒ A is computably traceable relative B

A ≤cdom B ⇐⇒ each A-recursive function is

dominated by a B-recursive function.

A ≤SJT B ⇐⇒ A is strongly jump traceable by B

(a partial relativization).

Some other ones, which are not weak reducibilities:

A ≤rK B ⇐⇒ ∃c∀n ( K (A � n | K (B � n) ≤ c )

A ≤K B ⇐⇒ K (A � n) ≤+ K (B � n)

A ≤C B ⇐⇒ C(A � n) ≤+ C(B � n)
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Work on weak reducibilities

There is a large literature on work regarding these weak
reducibilities. Some questions which have been considered
include:

For which sets A is the lower cone {B : B ≤W A} countable?
Is every set A bounded (in the sense of ≤W ) by a 1-random?
Are the 1-randoms closed upwards under ≤W ?
Which sets are W -complete (or W -hard)? That is, for which sets A
is A ≥W ∅′?
Since ≡W is weaker than ≡T , the structure of Turing degrees within
a single W -degree.
What can be said about the degree structure of ≡W ?

One approach not well-studied in the literature is the concept of a
W -base for randomness. This will be our concern in this talk for
W = LR, JT .
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LR and JT -reducibilities

We focus on these two reducibilities.

Definition (JT -reducibility, due to Simpson)

A B-trace with bound h is a uniformly B-c.e. sequence V B
n such that for

every n, #V B
n ≤ h(n).

We say that a B-trace V B
n traces a partial function ψ if for every n,

ψ(n) ↓⇒ ψ(n) ∈ V B
n .

A ≤JT B iff every partial A-recursive function ψA is traced by some
B-trace with a computable bound h.

In particular A ≤JT ∅ means that A is jump traceable.

∅′ ≤JT A means that A is JT -hard.
(Simpson) If A is ∆0

2 this is equivalent to A being superhigh.
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LR and JT -reducibilities

Definition (LR-reducibility)
We say that A ≤LR B iff every B-random set is A-random.

In particular A ≤LR ∅ means that A is K -trivial.

(Kjos-Hanssen, Miller, Solomon) ∅′ ≤LR A means that A is
uniformly almost everywhere dominating.

Lemma
A ≤LR B ⇒ A ≤JT B

This is done by observing that the proof of “low for random implies
jump traceable" relativizes correctly (using a characterization of
Kjos-Hanssen, Miller, Solomon).
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Using weak reducibilities to define lowness

A “lowness property" is a property asserting that a given set A
resembles ∅ in some way.

Many of the weak reducibilities are the result of relativizing a
certain lowness property arising in randomness. E.g.

≤LK , ≤LR, ≤JT , ≤SJT , ≤CT , ≤cdom .

So A ≤W ∅ means that A is low in the sense of W .
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Computed by many sets

Another interpretation of “A is low" is that A is easy to compute.

Theorem (Sacks)
A is non-recursive iff {Z : Z ≥T A} is null.

So nullness is too coarse. What if we change null to effectively null
in A?

Definition (Kučera)
A is a (Turing) base for randomness if A ≤T Z for some A-random Z .

So being not a base for randomness means that {Z : Z ≥T A} can
be described by an A-effectively null set (in the sense of ML-tests).
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Computed by many sets

Definition (Kučera)
A is a (Turing) base for randomness if A ≤T Z for some A-random Z .

If A is non-recursive then {Z : Z ≥T A} a null Π0
2(A)-class. So

changing “A-random" to “weakly 2-random relative A" yields only
recursive sets A.

Theorem (Hirschfeldt-Nies-Stephan)
If A a base for randomness then A is low for K .

Consequently it shows that base for randomness coincides with
an important class: the K -trivials.
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Computed by many sets

The weak reducibilities play a role here. It has not been explored
fully.

Definition
For a weak reducibility ≤W , we say that A is a W -base for randomness
if A ≤W Z for some A-random set Z .

These properties mean that A is easy to compute in the sense of
≤W . Trivially,

Each K -trivial set is low for random and hence an LR-base for
randomness.
Each jump traceable set is a JT -base for randomness.

But are these two notions trivial? Do you get more?
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JT -base is trivial

Theorem (Franklin-N-Solomon)
Each JT -base for randomness is jump traceable.
(Hence this notion is trivial).

Proof.
Similar to the “Hungry Sets Theorem” of Hirschfeldt-Nies-Stephan.

Suppose ψA is traced by T B for some A-random set B. We wish to
build an unrelativized c.e. trace V for ψA.

If we see ψσ(x) ↓ we want to obtain assurance that σ is a possible
initial segment of A.

To do this we issue descriptions of all reals Z such that T Z
x

contains the value ψσ(x).
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JT -base is trivial

Proof continued.
We keep “eating” these strings Z until we have described 2−x

much reals Z .

Only after we have eaten 2−x much reals Z do we finally believe
that σ ⊂ A could be correct, and enumerate ψσ(x) into the
unrelativized trace Vx .

Note that if σ ⊂ A was really the case, then we must be able to eat
up at least 2−x much Z and so ψA(x) will be traced in Vx .
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JT -base is trivial

Proof continued.
Now what is the size of Vx?

For each value ψσ(x) that we believe and enumerate in Vx , there
is a corresponding 2−x much measure of oracles Z such that
T Z

x 3 ψσ(x).

How many different values ψσ(x) can we do this?

At most 2x · t(x), where t(x) is the computable bound for #T B
x .

So #Vx ≤ 2x · t(x).
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LR-bases

For LR-bases the situation is a lot more interesting. We know that
LR-bases are strictly larger than the class of K -trivial reals.

Proposition
There exists an LR-base A which is low for Ω but not K -trivial.

Proof.
Barmpalias, Lewis and Stephan constructed a Π0

1-class P where every
path is LR-reducible to Ω and not K -trivial. Apply the low-for-Ω basis
theorem to P.

Since this example gives a LR-base A which is not ∆0
2, it is natural

to ask if

amongst ∆0
2 sets, does LR-base⇐⇒ K -trivial?
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LR-bases

The answer is also no, provided by indirect means. We will come
back to this.

First, observe that LR-bases are closed downwards under ≤LR:
If A ≤LR B ≤LR Z for some B-random Z , then surely Z is also
A-random.

(C. Porter) If A ≤LR X ,Y where X and Y are relatively random,
then A is an LR-base.

Since X is Y -random and A ≤LR Y , so X is also A-random.

Question
If A is an LR-base, must there be a pair of relatively random reals
X ,Y ≥LR A?
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LR-bases

(Barmpalias) Every LR-base A is generalized low (i.e.
A′ ≤T A⊕ ∅′).

Every LR-base is a JT -base. Hence every LR-base is in fact jump
traceable.

If we restrict our study further to the LR-bases which are r.e., we
get interestingly

K -trivial ( LR-base ( superlow.

No other randomness class is known to lie strictly in between.
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K -trivial ( LR-base ( superlow.

By examining the previous proof, each LR-base is jump traceable
with bound h(n) = 2n. So not every superlow c.e. set is an
LR-base.

Proposition (C. Porter)
There exists an r.e. set A which is an LR-base and not K -trivial.

Proof.
Barmpalias showed that if X and Y are ∆0

2 sets such that X ,Y >LR ∅,
then there is a c.e. set A such that

∅ <LR A ≤LR X ,Y .

Take X ,Y to be ∆0
2 relatively random sets. Then A is an LR-base.
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LR-bases

Downey and Greenberg showed that each
√

log n-jump traceable
c.e. set is K -trivial. So we get for c.e. sets,√

log n-jump traceable ( LR-base ⊆ 2n-jump traceable.

Question
For which computable functions h are h-jump traceable sets an
LR-base?

This question follows similar attempts at characterizing K -triviality
in terms of traceability.
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LR-bases

Theorem (Franklin-N-Solomon)
There is a c.e. set A which is an LR-base such that A is not jump
traceable with the identity bound.

Proof.
We present a direct construction of a c.e. set A such that A is an
LR-base but is not K -trivial.

To make A an LR-base, we build a c.e. operator V and a set B
such that UA ⊆ V B where UA is the universal A-c.e. set of strings
of measure < 1 and µ(V B) < 1.
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LR-bases

Continued.
To make B random relative to A, we ensure that B 6∈

[
T A] where T

is some component of the universal ML-test relative A with small
measure.

To make A K -trivial, we try and make UA 6⊆ E where E is a c.e.
set of strings with µ(E) < 1. Let’s look at one such positive
requirement.

This positive requirement acts by enumerating a string σ into Uα

and V β (where α, β are current approximations to A and B). We
must do this because we need to ensure UA ⊆ V B.
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LR-bases

Continued.
One of three things can happen:

(I) [β] ⊆ Tα. Then this β cannot be used anymore as B must be made
A-random. We move to another β′ and enumerate σ in Vβ′

, until
µ(Tα) > 2−t (for some threshold t).

(II) σ enters E
(III) Nothing ever happens.

If nothing ever happens, then we would have met the positive requirement
(as σ ∈ UA − E).
If (I) happens first then we abandon this cycle by restraining A and
forbidding all the 2−t much strings β ∈ Tα from being used as B again.
Note that we abandon this cycle in (I) only at most 2t times, as each time
we restrain A increasing the measure of T A by 2−t .
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LR-bases

Continued.
Finally if (II) happens first then we change α to a new one (which
allows us to clear σ from UA while σ is permanently stuck in E).

We would however also have lost some measure in V because we
have enumerated σ into V β for at most 2−t much β which is now
wasted. However the average measure lost in V is less than
2−t · 2−|σ| while the opponent has lost 2−|σ| in E (a lot more than
us).

At the end, since µ(E) < 1, this single requirement will produce
wastage in V of at most 2−t (which can be made arbitrarily small).
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More questions

Question
Is there a ∆0

2 LR-base which is not superlow? Such an LR-base
must be low.

What is the quantity of LR-bases? Is there a perfect Π0
1 class

containing only LR-bases?

Is there a non-recursive hyperimmune-free LR-base? What about
computably traceable?

Thank you.
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