→ 同 → → 目 → → 目 →

æ

Blackwell Games with a Constraint Function

Weiguang Peng

Mathematical Institute, Tohoku University Joint work with Takeshi Yamazaki

February 19, 2014

回 と く ヨ と く ヨ と

æ

Blackwell Games with a Constraint Function

An Example

Let's consider the "Rock-Paper-Scissor" game.

A play of this game can be depicted as follows:

Player I :	Rock	Paper	Rock	
Player II :	Rock	Paper	Rock	

In this game, if one of them wins, the play stops and

- the pay-off of player I is 1 if player I wins,
- the pay-off of player I is 0 if player II wins,
- the pay-off of player I is $\frac{1}{2}$ if they draw.

The contents of interest

Lower value and upper value:

- Lower value: The smallest upper bound on the payoff that player I can guarantee.
- Upper value: The largest lower bound on the restrictions player II can put on player I's payoff.

```
The lower value of "Rock-Paper-Scissor": \frac{1}{3},
The upper value of "Rock-Paper-Scissor": \frac{1}{3}.
```

Determinacy:

• The lower value equals the upper value.

・日・ ・ヨ・ ・ヨ・

Blackwell Games

Here, we introduce Blackwell games in a slight extended form.

Definition

A **Blackwell game** is a tuple $B = ((X_i)_{i \in \mathbb{N}}, (Y_i)_{i \in \mathbb{N}}, f)$, where

- X_i's and Y_i's are finite nonempty sets,
- $f: W \to [0, 1]$ is a function called payoff function, where $W = \prod_{i=0}^{\infty} (X_i \times Y_i).$

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

3

A play $w = \langle (x_0, y_0), (x_1, y_1), \dots \rangle$ of *B* can be depicted as follows:

 Player I:
 x_0 x_1 x_2 ...
 x_i ...

 Player II:
 y_0 y_1 y_2 ...
 y_i ...

In this game, for each round $i \in \mathbb{N}$, player I selects $x_i \in X_i$ and player II selects $y_i \in Y_i$ simultaneously. We call f(w) the **pay-off** of player I for a play w.

If $X_i = X$ and $Y_i = Y$ for each *i*, we denote $B = ((X_i)_{i \in \mathbb{N}}, (Y_i)_{i \in \mathbb{N}}, f)$ by (X, Y, f).

Notations

- p is a finite prefix of a play, called a position.
- P denotes the set of all positions.
- [p] denotes the set $\{w \mid p \prec w\}$ of all plays hitting p.
- $p|_i$ denotes the prefix of p of length i.
- $\mathcal{D}(X)$ is the set of all probability distributions on X.

Strategy and Probability measure

Definition (Mixed strategy)

A strategy for player I is a function σ assigning to each position $p \in \bigcup_{n=0}^{\infty} \prod_{i < n} (X_i \times Y_i)$ a probability distribution on $X_{lh(p)}$.

Similarly, we can define the mixed strategy au for player II.

Definition (Probability measure)

For a strategy profile (σ, τ) of B, $\mu_{\sigma,\tau}$ denotes the *probability* measure on W determined by

$$\mu_{\sigma,\tau}([p]) = \prod_{i < n} \left(\sigma(p|_i)(x_i) \cdot \tau(p|_i)(y_i) \right),$$

for any position $p = <(x_0, y_0), \dots, (x_{n-1}, y_{n-1}) > \in P$.

Lower value and upper value

If player I plays according to σ and player II plays according to τ , we can define the **lower expected pay-off** of player I at σ , τ :

$$E^-_{\sigma, au}(f) = \sup_{g \leq f, \hspace{0.1cm} g: ext{measurable}} \int g(w) d\mu_{\sigma, au}(w),$$

and **upper expected pay-off** at σ, τ :

$$E^+_{\sigma, au}(f) = \inf_{g \geq f, \, g: ext{measurable}} \int g(w) d\mu_{\sigma, au}(w).$$

Lower value and upper value are defined as follows:

$$\operatorname{val}^{\downarrow}(B) = \sup_{\sigma} \inf_{\tau} E^{-}_{\sigma,\tau}(f);$$

$$\operatorname{val}^{\uparrow}(B) = \inf_{\tau} \sup_{\sigma} E_{\sigma,\tau}^{+}(f).$$

Determinacy results

A Blackwell game B is **determined** if $\operatorname{val}^{\downarrow}(B) = \operatorname{val}^{\uparrow}(B)$.

Theorem (AD \Rightarrow AD-BL, Martin 98)

Assuming the Axiom of Determinacy, every Blackwell game is determined.

Corollary (ZFC)

Every Borel Blackwell game is determined.

< 同 > < 三 > < 三 >

Blackwell games with constraints

Let B = (X, Y, f) be a Blackwell game.

- S_I denotes the set of strategies for player I,
- and S_{II} denotes the set of strategies for player II.

Definition

If $C_I \subseteq S_I$ and $C_{II} \subseteq S_{II}$ are nonempty, we call B = (X, Y, f) with C_I and C_{II} the Blackwell game with constraints, say $B(f; C_I, C_{II})$.

With respect to ordinary Blackwell games, we can also define the *lower and upper* values of Blackwell games with constraints as follows:

$$\operatorname{val}^{\downarrow}(B(f; C_I, C_{II})) = \sup_{\sigma \in C_I} \inf_{\tau \in C_{II}} E_{\sigma, \tau}(f)$$

$$\operatorname{val}^{\uparrow}(B(f; C_{I}, C_{II})) = \inf_{\tau \in C_{II}} \sup_{\sigma \in C_{I}} E_{\sigma, \tau}(f)$$

A Blackwell game with constraints $B(f; C_I, C_{II})$ is **determined** if $\operatorname{val}^{\downarrow}(B(f; C_I, C_{II})) = \operatorname{val}^{\uparrow}(B(f; C_I, C_{II}))$.

Fact

Even for finite sets C_I and C_{II} , there exists a case $\operatorname{val}^{\uparrow}(B(f; C_I, C_{II})) \neq \operatorname{val}^{\downarrow}(B(f; C_I, C_{II})).$

We would like to know when the Blackwell game with constraints is determined.

Blackwell games with a Constraint Function

Definition

A Blackwell game with a constraint function is a quintuple B = (X, Y, f, g, m), where

- (X, Y, f) is Blackwell game,
- $g:\mathbb{N}
 ightarrow (X\cup Y
 ightarrow [0,\infty)$ is called a constraint function,
- *m* > 0.

 $B = (X, Y, f, g, m) \text{ is the same as } B(f; C_I^{g,m}, C_{II}^{g,m}) \text{ where}$ $\bullet C_I^{g,m} = \{ \sigma \in S_I : \forall p, \sum_{x \in X} g(lh(p))(x)\sigma(p)(x) \leq m \},$ $\bullet C_{II}^{g,m} = \{ \tau \in S_{II} : \forall p, \sum_{y \in Y} g(lh(p))(y)\tau(p)(y) \leq m \}.$

Determinacy result

Definition

A Blackwell game with a constraint function is determined if

$$(C_{I}^{g,m} \neq \phi \text{ and } C_{II}^{g,m} \neq \phi) \Rightarrow$$

$$\sup_{\sigma\in \mathcal{C}_{l}^{g,m}\tau\in \mathcal{C}_{ll}^{g,m}}\inf_{\tau\in \mathcal{C}_{ll}^{g,m}} \mathcal{E}_{\sigma,\tau}^{-}(f) = \inf_{\tau\in \mathcal{C}_{ll}^{g,m}} \sup_{\sigma\in \mathcal{C}_{l}^{g,m}} \mathcal{E}_{\sigma,\tau}^{+}(f).$$

イロト イヨト イヨト イヨト

æ

向下 イヨト イヨト

Theorem (Main Theorem)

Assuming AD, every Blackwell game with a constraint function is determined.

Theorem (ZFC)

Every Borel Blackwell game with a constraint function is determined.

Idea of Proof. We will only show the case of one-round games. Let $B = (\{a_1, \dots, a_k\}, \{b_1, \dots, b_l\}, f, g, m)$ be a one-round Blackwell game with a constraint function. In this case, each strategy for player I and II can be regarded as an element of $[0, 1]^k$ and $[0, 1]^l$, resp.

We can construct a one-round Blackwell game B' = (X', Y', F) as follows: Take X' and Y' as

- $\{\sum_{a \in X'} r_a a \in [0, 1]^k : 0 \le r_a \text{ and } \sum_{a \in X'} r_a = 1\} = C_I^{g, m}.$
- $\{\sum_{b \in Y'} r_b b \in [0,1]' : 0 \le r_b \text{ and } \sum_{b \in Y'} r_b = 1\} = C_{II}^{g,m}.$
- X' and Y' consists of affinely independent elements, that is, the above representations of strategies are unique.

Define a function $F: X' \times Y' \rightarrow [0,1]$ by $F(a,b) = \int f d\mu_{a,b}$.

ヨット イヨット イヨッ

Then, we get a bijective transformation from strategies σ, τ of B to strategies σ' and τ' of B' such that

 $E_{\sigma',\tau'}(F) = E_{\sigma,\tau}(f).$

So, $\sup_{\sigma \in C_{I}^{g,m}} \inf_{\tau \in C_{II}^{g,m}} E_{\sigma,\tau}(f) = \sup_{\sigma'} \inf_{\tau'} E_{\sigma',\tau'}(F)$ etc. By the determinacy of Borel Blackwell games, *B* is also determined.

Example

Let B = (X, Y, f, g, m) be a Blackwell game with a constraint function, where $X = \{x_0, x_1\}$, $Y = \{y_0, y_1\}$ and m = 2. If we assign the constraint function as $g(x_0) = g(y_0) = g(y_1) = 1$ and $g(x_1) = 3$.

How to construct B':

For the given two player's strategies σ and $\tau,$ by the assignment of constraint function, then

$$(p,q)\in C^{g,2}_I \Longleftrightarrow (p,q)\in S_I$$
 and $p+3q\leq 2$

and also

$$(p',q')\in C^{g,2}_{II} \Longleftrightarrow (p',q')\in S_2$$
 and $p'+q'=1.$

Thus, $C_I^{g,2}$ and $C_{II}^{g,2}$ are shown by the red segments in the following figures.

• 3 >

• 3 >

э

$$F(w) = \begin{cases} f(x_0, y_0) & \text{if } w = ((1, 0), (1, 0)), \\ f(x_0, y_1) & \text{if } w = ((1, 0), (0, 1)), \\ \frac{1}{2}f(x_0, y_0) + \frac{1}{2}f(x_1, y_0) & \text{if } w = (\frac{1}{2}, \frac{1}{2}), (1, 0)), \\ \frac{1}{2}f(x_0, y_1) + \frac{1}{2}f(x_1, y_1) & \text{if } w = (\frac{1}{2}, \frac{1}{2}), (0, 1)). \end{cases}$$
(1)

白 ト く ヨ ト く ヨ ト

æ

Thank you very much!

(4回) (4回) (4回)

æ

1 Martin, D. A.: The determinacy of Blackwell games Logic. Vol. 63, No. 4, pp. 1565-1581, 1998.