
Orevkov’s speed up result in strange
surroundings

Norbert Preining

Japan Advanced Institute of Science and Technology

ctfm 14

Tokyo, Japan

17 February 2014



Background and introduction

ñ projective geometry

ñ sequent calculus for projective geometry,
cut-elimination

ñ sketches and equivalence to formal proofs, based on
Herbrand disjunctions

ñ length estimations for proofs with sketches and proofs
in full Gentzen-style calculus



Ingredients for the following talk

ñ Projective geometry
axioms, examples, Desargues’ theorem, algebraization

ñ Number theory, Algebra
Robinson’s result on definability of the natural
numbers, Lagrange

ñ Herbrand disjunctions
minimization of terms, length estimations

ñ Orevkov’s sequence of formulas
coding in a theory
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Recapping Orevkov’s result

Orevkov (1979) gave the following sequence of formulas Ck

∀b0((∀w0∃v0P(w0, b0, v0)∧
∧∀uvw(∃y(P(y,b0, u)∧ ∃z(P(v,y, z)∧ P(z,y,w))) ⊃

P(v,u,w))) ⊃ ∃vk(P(b0, b0, vk)∧
∧ ∃vk+1(P(b0, vk, vk−1)∧ . . .∧ ∃v0P(b0, v1, v0))))

Here P(a, b, c) has the intended interpretation a+ 2b = c
and is used to code the non-elementary function
2i = 2(2i−1).

Theorem Orevkov, 1979

There is a derivation of Ck with cuts where the number of
sequents depends linearly on k, while for any cut-free
derivation it depends non-elementary on k.
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Definition of projective geometry

Syntax

2-sorted languages, sorts π and γ, variables of those types:
P , Q, . . . for π , g, h, . . . for γ, constants of type π : A0, . . . ,
D0

function symbols: [..] : π ×π → γ, (..) : γ × γ → π
predicates: = for both types, I : π × γ
quantifiers for both types

Axioms of projective geometry

∀P∀Q(P 6= Q ⊃ ∃!g(P I g ∧Q I g))
∀g∀h(g 6= h ⊃ ∃P(P I g ∧ P I h))
A0 6I [B0C0]∧ . . .
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A Gentzen-style calculus for PG

Gentzen LK with two types, plus:

ñ Structural rules, logical rules, cut rule, equality rules

ñ → P I [PQ] and → Q I [PQ].
ñ → (gh) I g and → (gh) I h.

ñ X = Y → where X,Y ∈ {A0, B0, C0,D0} and X 6= Y .

ñ → x = x where x is a free variable.

ñ
Γ → ∆, P I g Γ → ∆,Q I g P = Q, Γ → ∆

Γ → ∆, [PQ] = g
Γ → ∆, X I [YZ]

Γ → ∆

where 6=(X, Y ,Z) and X,Y ,Z ∈ {A0, B0, C0,D0}



Examples for projective planes

Minimal (or Fano) projective plane

A0 D1 B0

C0

D2 D3

D0



Projective plane over Q3

0

π lines through 0

γ planes through 0

I is subset

[PQ] is hull taking

(gh) is intersection



Desargues’ theorem

A triangle is perspective wrt to a point if it is perspective
wrt to a line.



Desargues’ axiom

The previous “theorem” is only valid in some projective
planes, it can be added as an axiom with the following
consequences:

ñ any Desargues projective plane is algebraizable, i.e.,
can be represented as the lines and planes of a vector
space K3 for some field K.

ñ addition and multiplication can be defined as follows:
g 6= h; 0,1 I h; 0,1 6I g; R I g; R 6I h; l 6= g,h; (gh) I l
and defined addition and multiplication as

X + Y := (h[([([0R]l)X]g)([RY]l)])
X · Y := (h[([([1R]l)X]g)([RY]l)])
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Algebraizing projective geometry

g

h

l

0

R

XY X + Y



From Q to N

ñ Current status: One model where ‘being a rational’
R(x) can be defined (P I g ∧ P 6= (gh))

ñ Basic operations can be defined: +, ·, −, /

ñ Notion of integer can be defined (Robinson, 1949) by

I(z)↔ R(z)∧∀x∀y{R(x)∧ R(y)∧ Φ(x,y,0)∧
∀u[R(u)∧Φ(x,y,u) ⊃ Φ(x,y,u+ 1)] ⊃ Φ(x,y, z)}

where Φ(x,y, z) is

∀r , s, t[R(r)∧R(s)∧R(t) ⊃ 2+xyz2+yr3 6= s2+xt2]
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From Q to N, cont.

ñ define < via identity of Lagrange: every positive
number is the sum of four squares:
n = a2 + b2 + c2 + d2

ñ define all recursive functions (e.g., Shoenfield, 1967)
using Gödel’s β-function
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Some missing pieces

ñ Sketches are basically Herbrand disjunctions

ñ Estimating the length of proofs by sketches depends
on the term depth as constructing the terms is the
longest procedure

ñ we have to guarantee that the terms are not
ridiculously long

ñ how to bound the length of terms to the Herbrand
disjunction?
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Minimizing terms in HDs

Assume a Herbrand disjunction

H = A(~t1, ~T1)∨ . . .∨A(~tn, ~Tn)

is given where the Ti are Skolem terms, and the ti are
regular terms.

Substitute new variables for the regular terms we obtain
the Herbrand skeleton

H# = A(~x1, ~S1)∨ . . .∨A(~xn, ~Sn)
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Minimization, cont.

Collect the positions (path in the tree of the construction of
the formula) where atomic formulas at that position in the
original formula are equal

M = {(pi, pj) | Atom(H,pi) = Atom(H,pj)}

Create the ‘equality system’ where corresponding atoms in
the new formula are equated:

G = {Atom(H#, pi) = Atom(H#, pj) | (pi, pj) ∈ M}

This equality system has of course a solution, the original
substitution from the Herbrand skeleton H# to H.
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Minimization, cont.

The subsets of G form a po-set (even a lattice), and all of
them, too, have solutions (the projection of the original
substitution).

If such a subset has a solution that transforms the
Herbrand skeleton into a tautology (i.e., into a valid
Herbrand disjunction), we call it alternative equality system.

Again, the alternative equality systems form a po-set (but
normally not a lattice). We call an element g of it minimal
(not unique!) if all proper subsets of g are not alternative
equality systems.
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Consequences of the minimization

Theorem

The length of a given term in any minimal Herbrand
disjunction is bound by the following |t| ≤ d2kl.
d is the maximal depth of the Herbrand skeleton, k the
length of the HD, l the number of variable places in an
instance

Theorem

For any formula A and any integer k it is possible to check
whether there is an Herbrand disjunction for A with length
smaller than k.
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Estimating HDs

Some notations

ñ |H| : length of an HD is the number of disjunction
terms

ñ HD(A) : an HD which is minimal wrt length

ñ HDM(A) : a minimal HD which is equivalent to A in the
modelM (that can be a much shorter HD)

ñ x <f y : x < f(y) for an at most exponential
function f



Estimating |H|

The following equivalences can be shown

ñ |HDM(A)| ≤ |HD(A)|
ñ |HD(M)(A)| ≤ |HD(M)(A∧ B)|
ñ |HDM(A)| ≤ f(|HDM(A∨ B)|)

if B is not valid inM and is of bounded complexity



Glueing it all together

ñ working in the specific model of PGQ allows us to
define rationals

ñ the equalities of Robinson allow us to define integers
from it

ñ the Lagrange identity allows us to define positive

ñ Gödel’s β-function and encoding allows us to encode
exponentials

ñ use this to replace Orevkov’s P(x,y, z) encoding
x = y + 2z in his sequence of formulas

ñ estimate the length of the Herbrand disjunction of the
resulting (monster) formula
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Estimating the length of Orevkov’s
formulas

Orevkov’s formula Fk:

AX ⊃ (A0 ∧ C ⊃ Bk(0))

where

Bk(0) ≡ (∃vk) . . . (∃v0)(Nat(vk, . . . , v0)∧
∧ P(0,0, vk)∧ P(0, vk, vk−1)∧ . . .∧ P(0, v1, v0))

Each P(a, b, c) describing a+ 2b = c again looks like
∃z(a+ z = c ∧G(b, z)) with G(x,y) describing y = 2x .



Estimations, cont.

With the abbreviations

G0 ≡ vk = 1 Gi ≡ G(vi, vi−1) i > 0

we can estimate the HD by

|HDPGQ(Bk(0))| ≥f |HDPGQ(G1)|
where v0 = 2k and v1 = 2k−1 and so on. This is obvious
from the fact that the vi are the computed values of 2l, i.e.
vi = 2k−i.

Using Gödels representations we end up with

G(x, z) ≡ 2β((µk)Q(x, k),x − 1) = z
where

Q(x,k) ≡ Nat(k)∧ Seq(k)∧ lh(k) = x ∧ (k)0 = 1∧
∧ (∀ii<x)(i 6= 0 ⊃ (k)i = 2(k)i−1).



Estimations, cont.

For G1 = G(v1, v0) we obtain

(∃w1)(Nat(w1)∧ 2β(w1, v1 − 1) = v0∧
w1 = (µs)(Seq(s)∧ lh(s) = v1 ∧ (s)0 = 1∧

(∀ii<v1)(i 6= 0 ⊃ (s)i = 2(s)i−1)))

This means that w1 = d(20,21, . . . , vk)e the Gödel number
of the respective sequence.

So we can estimate the length of the Herbrand-disjunction
again

|HDPGQ(G1)| ≥ |HDPGQ(w1 = (µs)Q(v1, s))|



Estimations, cont.

Continuing in this matter we arrive at

|HD(AX ⊃ (A0 ∧ C ⊃ Bk(0)))| ≥f v1

where v1 = 2k−1 and f is an at most exponential function.

The ‘fast’ proof can be used more or less 1-1 from
Orevkov’s paper.

Theorem

In projective geometry, proving with sketches is in some
cases non-elementary slower than using the sequent
system with cuts.
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Conclusions

ñ yet another example that proof theory and properties
of Herbrand disjunctions can be used outside the
purely proof theoretic realm

ñ combining Stateman/Orevkov’s result with other
‘tricks’ allows transferring it to theories (as long as the
models of the theory are sufficiently expressive)

ñ although Herbrand disjunctions are not so on vogue
(proof theory and automatic reasoning being an
exception), many properties are still there to uncover


