OREVKOV'S SPEED UP RESULT IN STRANGE SURROUNDINGS

Norbert Preining

Japan Advanced Institute of Science and Technology

CTFM 14 Tokyo, Japan

17 February 2014

BACKGROUND AND INTRODUCTION

- projective geometry
- sequent calculus for projective geometry, cut-elimination
- sketches and equivalence to formal proofs, based on Herbrand disjunctions
- length estimations for proofs with sketches and proofs in full Gentzen-style calculus

- Projective geometry axioms, examples, Desargues' theorem, algebraization
- Number theory, Algebra Robinson's result on definability of the natural numbers, Lagrange
- Herbrand disjunctions minimization of terms, length estimations
- Orevkov's sequence of formulas coding in a theory

- Projective geometry axioms, examples, Desargues' theorem, algebraization
- Number theory, Algebra Robinson's result on definability of the natural numbers, Lagrange
- Herbrand disjunctions minimization of terms, length estimations
- Orevkov's sequence of formulas coding in a theory

- Projective geometry axioms, examples, Desargues' theorem, algebraization
- Number theory, Algebra Robinson's result on definability of the natural numbers, Lagrange
- Herbrand disjunctions minimization of terms, length estimations
- Orevkov's sequence of formulas coding in a theory

- Projective geometry axioms, examples, Desargues' theorem, algebraization
- Number theory, Algebra Robinson's result on definability of the natural numbers, Lagrange
- Herbrand disjunctions minimization of terms, length estimations
- Orevkov's sequence of formulas coding in a theory

RECAPPING OREVKOV'S RESULT

Orevkov (1979) gave the following sequence of formulas C_k

$$\forall b_0((\forall w_0 \exists v_0 P(w_0, b_0, v_0) \land \land \forall uvw(\exists y(P(y, b_0, u) \land \exists z(P(v, y, z) \land P(z, y, w))) \supset P(v, u, w))) \supset \exists v_k(P(b_0, b_0, v_k) \land \land \exists v_{k+1}(P(b_0, v_k, v_{k-1}) \land \ldots \land \exists v_0 P(b_0, v_1, v_0))))$$

Here P(a, b, c) has the intended interpretation $a + 2^b = c$ and is used to code the non-elementary function $2_i = 2^{(2_{i-1})}$.

Theorem Orevkov, 1979

There is a derivation of C_k with cuts where the number of sequents depends linearly on k, while for any cut-free derivation it depends non-elementary on k.

RECAPPING OREVKOV'S RESULT

Orevkov (1979) gave the following sequence of formulas C_k

$$\forall b_0((\forall w_0 \exists v_0 P(w_0, b_0, v_0) \land \land \forall uvw(\exists y(P(y, b_0, u) \land \exists z(P(v, y, z) \land P(z, y, w))) \supset P(v, u, w))) \supset \exists v_k(P(b_0, b_0, v_k) \land \land \exists v_{k+1}(P(b_0, v_k, v_{k-1}) \land \ldots \land \exists v_0 P(b_0, v_1, v_0))))$$

Here P(a, b, c) has the intended interpretation $a + 2^b = c$ and is used to code the non-elementary function $2_i = 2^{(2_{i-1})}$.

Theorem Orevkov, 1979

There is a derivation of C_k with cuts where the number of sequents depends linearly on k, while for any cut-free derivation it depends non-elementary on k.

DEFINITION OF PROJECTIVE GEOMETRY

Syntax

2-sorted languages, sorts π and γ , variables of those types: *P*, *Q*, ... for π , *g*, *h*, ... for γ , constants of type π : *A*₀, ..., *D*₀

function symbols: [..] : $\pi \times \pi \rightarrow \gamma$, (..) : $\gamma \times \gamma \rightarrow \pi$

predicates: = for both types, $\mathcal{I}: \pi \times \gamma$

quantifiers for both types

Axioms of projective geometry

 $\forall P \forall Q (P \neq Q \supset \exists! g (P \ 1 \ g \land Q \ 1 \ g))$ $\forall g \forall h (g \neq h \supset \exists P (P \ 1 \ g \land P \ 1 \ h))$ $A_0 \ \mathcal{I} [B_0 C_0] \land \dots$

DEFINITION OF PROJECTIVE GEOMETRY

Syntax

2-sorted languages, sorts π and γ , variables of those types: *P*, *Q*, ... for π , *g*, *h*, ... for γ , constants of type π : *A*₀, ..., *D*₀

function symbols: [..] : $\pi \times \pi \rightarrow \gamma$, (..) : $\gamma \times \gamma \rightarrow \pi$

```
predicates: = for both types, \mathcal{I}: \pi \times \gamma
```

quantifiers for both types

Axioms of projective geometry

$$\forall P \forall Q (P \neq Q \supset \exists ! g (P \ 1 \ g \land Q \ 1 \ g))$$

$$\forall g \forall h (g \neq h \supset \exists P (P \ 1 \ g \land P \ 1 \ h))$$

$$A_0 \ \mathcal{I} [B_0 C_0] \land \dots$$

A GENTZEN-STYLE CALCULUS FOR PG

Gentzen LK with two types, plus:

Structural rules, logical rules, cut rule, equality rules

$$\blacktriangleright \rightarrow P \mathcal{I} [PQ] \text{ and } \rightarrow Q \mathcal{I} [PQ].$$

$$\blacktriangleright \rightarrow (gh) \ \mathcal{I} \ g \text{ and } \rightarrow (gh) \ \mathcal{I} \ h.$$

► $X = Y \rightarrow$ where $X, Y \in \{A_0, B_0, C_0, D_0\}$ and $X \neq Y$.

•
$$\rightarrow x = x$$
 where *x* is a free variable.

$$\frac{\Gamma \to \Delta, P \mathcal{I} g \quad \Gamma \to \Delta, Q \mathcal{I} g \quad P = Q, \Gamma \to \Delta}{\Gamma \to \Delta, [PQ] = g}$$
$$\frac{\Gamma \to \Delta, X \mathcal{I} [YZ]}{\Gamma \to \Delta}$$

where \neq (*X*, *Y*, *Z*) and *X*, *Y*, *Z* \in {*A*₀, *B*₀, *C*₀, *D*₀}

EXAMPLES FOR PROJECTIVE PLANES

Minimal (or Fano) projective plane

PROJECTIVE PLANE OVER \mathbb{Q}^3

DESARGUES' THEOREM

A triangle is perspective wrt to a point if it is perspective wrt to a line.

DESARGUES' AXIOM

The previous "theorem" is only valid in some projective planes, it can be added as an axiom with the following consequences:

- ► any Desargues projective plane is algebraizable, i.e., can be represented as the lines and planes of a vector space K³ for some field K.
- ► addition and multiplication can be defined as follows: g ≠ h; 0, 1 I h; 0, 1 I g; R I g; R I h; l ≠ g, h; (gh) I l and defined addition and multiplication as

X + Y := (h[([(0R]l)X]g)([RY]l)]) $X \cdot Y := (h[([([1R]l)X]g)([RY]l)])$

DESARGUES' AXIOM

The previous "theorem" is only valid in some projective planes, it can be added as an axiom with the following consequences:

- ► any Desargues projective plane is algebraizable, i.e., can be represented as the lines and planes of a vector space K³ for some field K.
- addition and multiplication can be defined as follows: g ≠ h; 0, 1 I h; 0, 1 I g; R I g; R I h; l ≠ g, h; (gh) I l and defined addition and multiplication as

X + Y := (h[([(0R]l)X]g)([RY]l)]) $X \cdot Y := (h[([(1R]l)X]g)([RY]l)])$

ALGEBRAIZING PROJECTIVE GEOMETRY

From \mathbb{Q} to \mathbb{N}

- Current status: One model where 'being a rational' R(x) can be defined $(P \ \mathcal{I} \ g \land P \neq (gh))$
- ▶ Basic operations can be defined: +, ·, -, /
- Notion of integer can be defined (Robinson, 1949) by

 $I(z) \leftrightarrow R(z) \land \forall x \forall y \{R(x) \land R(y) \land \Phi(x, y, 0) \land \forall u[R(u) \land \Phi(x, y, u) \supset \Phi(x, y, u+1)] \supset \Phi(x, y, z)\}$

where $\Phi(x, y, z)$ is

 $\forall r, s, t[R(r) \land R(s) \land R(t) \supset 2 + xyz^2 + yr^3 \neq s^2 + xt^2]$

From \mathbb{Q} to \mathbb{N}

- Current status: One model where 'being a rational' R(x) can be defined ($P \ \mathcal{I} \ g \land P \neq (gh)$)
- ▶ Basic operations can be defined: +, ·, -, /
- Notion of integer can be defined (Robinson, 1949) by

 $I(z) \leftrightarrow R(z) \land \forall x \forall y \{ R(x) \land R(y) \land \Phi(x, y, 0) \land \forall u [R(u) \land \Phi(x, y, u) \supset \Phi(x, y, u+1)] \supset \Phi(x, y, z) \}$

where $\Phi(x, y, z)$ is

 $\forall r, s, t[R(r) \land R(s) \land R(t) \supset 2 + xyz^2 + yr^3 \neq s^2 + xt^2]$

From \mathbb{Q} to \mathbb{N}

- Current status: One model where 'being a rational' R(x) can be defined ($P \ \mathcal{I} \ g \land P \neq (gh)$)
- ▶ Basic operations can be defined: +, ·, -, /
- Notion of integer can be defined (Robinson, 1949) by

 $I(z) \leftrightarrow R(z) \land \forall x \forall y \{R(x) \land R(y) \land \Phi(x, y, 0) \land \forall u[R(u) \land \Phi(x, y, u) \supset \Phi(x, y, u+1)] \supset \Phi(x, y, z)\}$

where $\Phi(x, y, z)$ is

 $\forall r, s, t[R(r) \land R(s) \land R(t) \supset 2 + xyz^2 + yr^3 \neq s^2 + xt^2]$

From \mathbb{Q} to \mathbb{N} , cont.

- define < via identity of Lagrange: every positive number is the sum of four squares:
 n = a² + b² + c² + d²
- define all recursive functions (e.g., Shoenfield, 1967) using Gödel's β-function

From \mathbb{Q} to \mathbb{N} , cont.

- define < via identity of Lagrange: every positive number is the sum of four squares:
 n = a² + b² + c² + d²
- define all recursive functions (e.g., Shoenfield, 1967) using Gödel's β-function

Sketches are basically Herbrand disjunctions

- Estimating the length of proofs by sketches depends on the term depth as constructing the terms is the longest procedure
- we have to guarantee that the terms are not ridiculously long
- how to bound the length of terms to the Herbrand disjunction?

- Sketches are basically Herbrand disjunctions
- Estimating the length of proofs by sketches depends on the term depth as constructing the terms is the longest procedure
- we have to guarantee that the terms are not ridiculously long
- how to bound the length of terms to the Herbrand disjunction?

- Sketches are basically Herbrand disjunctions
- Estimating the length of proofs by sketches depends on the term depth as constructing the terms is the longest procedure
- we have to guarantee that the terms are not ridiculously long
- how to bound the length of terms to the Herbrand disjunction?

- Sketches are basically Herbrand disjunctions
- Estimating the length of proofs by sketches depends on the term depth as constructing the terms is the longest procedure
- we have to guarantee that the terms are not ridiculously long
- how to bound the length of terms to the Herbrand disjunction?

MINIMIZING TERMS IN HDS

Assume a Herbrand disjunction

$$H = A(\vec{t}_1, \vec{T}_1) \vee \ldots \vee A(\vec{t}_n, \vec{T}_n)$$

is given where the T_i are Skolem terms, and the t_i are regular terms.

Substitute new variables for the regular terms we obtain the *Herbrand skeleton*

$$H^{\#} = A(\vec{x}_1, \vec{S}_1) \vee \ldots \vee A(\vec{x}_n, \vec{S}_n)$$

MINIMIZING TERMS IN HDS

Assume a Herbrand disjunction

$$H = A(\vec{t}_1, \vec{T}_1) \vee \ldots \vee A(\vec{t}_n, \vec{T}_n)$$

is given where the T_i are Skolem terms, and the t_i are regular terms.

Substitute new variables for the regular terms we obtain the *Herbrand skeleton*

$$H^{\#} = A(\vec{x}_1, \vec{S}_1) \vee \ldots \vee A(\vec{x}_n, \vec{S}_n)$$

Collect the positions (path in the tree of the construction of the formula) where atomic formulas at that position in the original formula are equal

 $M = \{(p_i, p_j) \mid \operatorname{Atom}(H, p_i) = \operatorname{Atom}(H, p_j)\}$

Create the 'equality system' where corresponding atoms in the new formula are equated:

 $G = \{ \operatorname{Atom}(H^{\#}, p_i) = \operatorname{Atom}(H^{\#}, p_j) \mid (p_i, p_j) \in M \}$

This equality system has of course a solution, the original substitution from the Herbrand skeleton $H^{\#}$ to H.

Collect the positions (path in the tree of the construction of the formula) where atomic formulas at that position in the original formula are equal

$$M = \{(p_i, p_j) \mid \operatorname{Atom}(H, p_i) = \operatorname{Atom}(H, p_j)\}$$

Create the 'equality system' where corresponding atoms in the new formula are equated:

$$G = \{ \operatorname{Atom}(H^{\#}, p_i) = \operatorname{Atom}(H^{\#}, p_j) \mid (p_i, p_j) \in M \}$$

This equality system has of course a solution, the original substitution from the Herbrand skeleton $H^{\#}$ to H.

The subsets of *G* form a po-set (even a lattice), and all of them, too, have solutions (the projection of the original substitution).

If such a subset has a solution that transforms the Herbrand skeleton into a tautology (i.e., into a valid Herbrand disjunction), we call it *alternative equality system*.

Again, the alternative equality systems form a po-set (but normally not a lattice). We call an element g of it *minimal* (not unique!) if all proper subsets of g are not alternative equality systems.

The subsets of *G* form a po-set (even a lattice), and all of them, too, have solutions (the projection of the original substitution).

If such a subset has a solution that transforms the Herbrand skeleton into a tautology (i.e., into a valid Herbrand disjunction), we call it *alternative equality system*.

Again, the alternative equality systems form a po-set (but normally not a lattice). We call an element g of it *minimal* (not unique!) if all proper subsets of g are not alternative equality systems.

The subsets of *G* form a po-set (even a lattice), and all of them, too, have solutions (the projection of the original substitution).

If such a subset has a solution that transforms the Herbrand skeleton into a tautology (i.e., into a valid Herbrand disjunction), we call it *alternative equality system*.

Again, the alternative equality systems form a po-set (but normally not a lattice). We call an element g of it *minimal* (not unique!) if all proper subsets of g are not alternative equality systems.

CONSEQUENCES OF THE MINIMIZATION

Theorem

The length of a given term in any minimal Herbrand disjunction is bound by the following $|t| \le d2^{kl}$. *d* is the maximal depth of the Herbrand skeleton, *k* the length of the HD, *l* the number of variable places in an instance

Theorem

For any formula A and any integer k it is possible to check whether there is an Herbrand disjunction for A with length smaller than k.

CONSEQUENCES OF THE MINIMIZATION

Theorem

The length of a given term in any minimal Herbrand disjunction is bound by the following $|t| \le d2^{kl}$. d is the maximal depth of the Herbrand skeleton, k the length of the HD, l the number of variable places in an instance

Theorem

For any formula A and any integer k it is possible to check whether there is an Herbrand disjunction for A with length smaller than k.

ESTIMATING HDS

Some notations

- ► |*H*| : length of an HD is the number of disjunction terms
- HD(A) : an HD which is minimal wrt length
- ► HD_M(A) : a minimal HD which is equivalent to A in the model M (that can be a much shorter HD)
- ► x <_f y : x < f(y) for an at most exponential function f</p>

ESTIMATING |H|

The following equivalences can be shown

- $|\mathsf{HD}_{\mathcal{M}}(A)| \le |\mathsf{HD}(A)|$
- $|\mathsf{HD}_{(\mathcal{M})}(A)| \le |\mathsf{HD}_{(\mathcal{M})}(A \land B)|$
- ► $|\mathsf{HD}_{\mathcal{M}}(A)| \le f(|\mathsf{HD}_{\mathcal{M}}(A \lor B)|)$ if *B* is not valid in \mathcal{M} and is of bounded complexity

- \blacktriangleright working in the specific model of $PG_{\mathbb{Q}}$ allows us to define rationals
- the equalities of Robinson allow us to define integers from it
- the Lagrange identity allows us to define positive
- Gödel's β-function and encoding allows us to encode exponentials
- use this to replace Orevkov's P(x, y, z) encoding
 x = y + 2^z in his sequence of formulas
- estimate the length of the Herbrand disjunction of the resulting (monster) formula

- \blacktriangleright working in the specific model of $PG_{\mathbb{Q}}$ allows us to define rationals
- the equalities of Robinson allow us to define integers from it
- the Lagrange identity allows us to define positive
- Gödel's β-function and encoding allows us to encode exponentials
- use this to replace Orevkov's P(x, y, z) encoding
 x = y + 2^z in his sequence of formulas
- estimate the length of the Herbrand disjunction of the resulting (monster) formula

- \blacktriangleright working in the specific model of $PG_{\mathbb{Q}}$ allows us to define rationals
- the equalities of Robinson allow us to define integers from it
- the Lagrange identity allows us to define positive
- Gödel's β-function and encoding allows us to encode exponentials
- use this to replace Orevkov's P(x, y, z) encoding
 x = y + 2^z in his sequence of formulas
- estimate the length of the Herbrand disjunction of the resulting (monster) formula

- \blacktriangleright working in the specific model of $PG_{\mathbb{Q}}$ allows us to define rationals
- the equalities of Robinson allow us to define integers from it
- the Lagrange identity allows us to define positive
- Gödel's β-function and encoding allows us to encode exponentials
- use this to replace Orevkov's P(x, y, z) encoding
 x = y + 2^z in his sequence of formulas
- estimate the length of the Herbrand disjunction of the resulting (monster) formula

- \blacktriangleright working in the specific model of $PG_{\mathbb{Q}}$ allows us to define rationals
- the equalities of Robinson allow us to define integers from it
- the Lagrange identity allows us to define positive
- Gödel's β-function and encoding allows us to encode exponentials
- use this to replace Orevkov's P(x, y, z) encoding
 x = y + 2^z in his sequence of formulas
- estimate the length of the Herbrand disjunction of the resulting (monster) formula

- \blacktriangleright working in the specific model of $PG_{\mathbb{Q}}$ allows us to define rationals
- the equalities of Robinson allow us to define integers from it
- the Lagrange identity allows us to define positive
- Gödel's β-function and encoding allows us to encode exponentials
- use this to replace Orevkov's P(x, y, z) encoding
 x = y + 2^z in his sequence of formulas
- estimate the length of the Herbrand disjunction of the resulting (monster) formula

ESTIMATING THE LENGTH OF OREVKOV'S FORMULAS

Orevkov's formula F_k :

$$\mathcal{A}\mathcal{X} \supset (A_0 \land C \supset B_k(0))$$

where

$$B_k(0) \equiv (\exists v_k) \dots (\exists v_0) (\operatorname{Nat}(v_k, \dots, v_0) \land \land P(0, 0, v_k) \land P(0, v_k, v_{k-1}) \land \dots \land P(0, v_1, v_0))$$

Each P(a, b, c) describing $a + 2^b = c$ again looks like $\exists z(a + z = c \land G(b, z))$ with G(x, y) describing $y = 2^x$.

With the abbreviations

$$G_0 \equiv v_k = 1 \qquad \qquad G_i \equiv G(v_i, v_{i-1}) \quad i > 0$$

we can estimate the HD by

$$|\mathsf{HD}_{\mathbf{PG}_{\mathbb{Q}}}(B_{k}(0))| \geq_{f} |\mathsf{HD}_{\mathbf{PG}_{\mathbb{Q}}}(G_{1})|$$

where $v_0 = 2_k$ and $v_1 = 2_{k-1}$ and so on. This is obvious from the fact that the v_i are the computed values of 2_l , i.e. $v_i = 2_{k-i}$.

Using Gödels representations we end up with

$$G(x,z) \equiv 2\beta((\mu k)Q(x,k), x-1) = z$$

where

$$Q(x,k) \equiv \operatorname{Nat}(k) \wedge \operatorname{Seq}(k) \wedge \operatorname{lh}(k) = x \wedge (k)_0 = 1 \wedge \\ \wedge (\forall i_{i < x}) (i \neq 0 \supset (k)_i = 2(k)_{i-1}).$$

For $G_1 = G(v_1, v_0)$ we obtain

$$(\exists w_1)(\operatorname{Nat}(w_1) \land 2\beta(w_1, v_1 - 1) = v_0 \land$$
$$w_1 = (\mu s)(\operatorname{Seq}(s) \land \operatorname{lh}(s) = v_1 \land (s)_0 = 1 \land$$
$$(\forall i_{i < v_1})(i \neq 0 \supset (s)_i = 2(s)_{i-1})))$$

This means that $w_1 = \lceil (2^0, 2^1, ..., v_k) \rceil$ the Gödel number of the respective sequence.

So we can estimate the length of the Herbrand-disjunction again

$$|\mathsf{HD}_{\mathbf{PG}_{\mathbb{Q}}}(G_1)| \ge |\mathsf{HD}_{\mathbf{PG}_{\mathbb{Q}}}(w_1 = (\mu s)Q(v_1, s))|$$

Continuing in this matter we arrive at

$$|\mathsf{HD}(\mathcal{AX} \supset (A_0 \land C \supset B_k(0)))| \ge_f v_1$$

where $v_1 = 2_{k-1}$ and f is an at most exponential function.

The 'fast' proof can be used more or less 1-1 from Orevkov's paper.

Theorem

In projective geometry, proving with sketches is in some cases non-elementary slower than using the sequent system with cuts.

Continuing in this matter we arrive at

$$|\mathsf{HD}(\mathcal{AX} \supset (A_0 \land C \supset B_k(0)))| \ge_f v_1$$

where $v_1 = 2_{k-1}$ and f is an at most exponential function.

The 'fast' proof can be used more or less 1-1 from Orevkov's paper.

Theorem

In projective geometry, proving with sketches is in some cases non-elementary slower than using the sequent system with cuts.

CONCLUSIONS

- yet another example that proof theory and properties of Herbrand disjunctions can be used outside the purely proof theoretic realm
- combining Stateman/Orevkov's result with other 'tricks' allows transferring it to theories (as long as the models of the theory are sufficiently expressive)
- although Herbrand disjunctions are not so on vogue (proof theory and automatic reasoning being an exception), many properties are still there to uncover