
Universal properties in higher-order Reverse
Mathematics

Sam Sanders1

CTFM, Tokyo Institute of Technology

1This research is generously supported by the John Templeton Foundation.

Introduction: a BIG question

What is the right language for formalizing Mathematics?

Simpson and Friedman: SOA suffices for ordinary math.

Two sorts: natural numbers and sets thereof (type 0 and 1).

Higher-type objects (like continuous functions) can be coded.

Feferman and Kohlenbach: All finite types.

The set of finite types T: 0 ∈ T and if σ, ρ ∈ T then σ → ρ ∈ T.

No coding is required, but . . .

This talk: An intermediate POV via NSA

For many thms T of ordinary math:

UT st (= ‘uniform’ version of T with standard higher-type objects)

↔ T ∗ (=version of T with only nonstandard lower-type objects)

Introduction: a BIG question

What is the right language for formalizing Mathematics?

Simpson and Friedman: SOA suffices for ordinary math.

Two sorts: natural numbers and sets thereof (type 0 and 1).

Higher-type objects (like continuous functions) can be coded.

Feferman and Kohlenbach: All finite types.

The set of finite types T: 0 ∈ T and if σ, ρ ∈ T then σ → ρ ∈ T.

No coding is required, but . . .

This talk: An intermediate POV via NSA

For many thms T of ordinary math:

UT st (= ‘uniform’ version of T with standard higher-type objects)

↔ T ∗ (=version of T with only nonstandard lower-type objects)

Introduction: a BIG question

What is the right language for formalizing Mathematics?

Simpson and Friedman: SOA suffices for ordinary math.

Two sorts: natural numbers and sets thereof (type 0 and 1).

Higher-type objects (like continuous functions) can be coded.

Feferman and Kohlenbach: All finite types.

The set of finite types T: 0 ∈ T and if σ, ρ ∈ T then σ → ρ ∈ T.

No coding is required, but . . .

This talk: An intermediate POV via NSA

For many thms T of ordinary math:

UT st (= ‘uniform’ version of T with standard higher-type objects)

↔ T ∗ (=version of T with only nonstandard lower-type objects)

Introduction: a BIG question

What is the right language for formalizing Mathematics?

Simpson and Friedman: SOA suffices for ordinary math.

Two sorts: natural numbers and sets thereof (type 0 and 1).

Higher-type objects (like continuous functions) can be coded.

Feferman and Kohlenbach: All finite types.

The set of finite types T: 0 ∈ T and if σ, ρ ∈ T then σ → ρ ∈ T.

No coding is required, but . . .

This talk: An intermediate POV via NSA

For many thms T of ordinary math:

UT st (= ‘uniform’ version of T with standard higher-type objects)

↔ T ∗ (=version of T with only nonstandard lower-type objects)

Introduction: a BIG question

What is the right language for formalizing Mathematics?

Simpson and Friedman: SOA suffices for ordinary math.

Two sorts: natural numbers and sets thereof (type 0 and 1).

Higher-type objects (like continuous functions) can be coded.

Feferman and Kohlenbach: All finite types.

The set of finite types T: 0 ∈ T and if σ, ρ ∈ T then σ → ρ ∈ T.

No coding is required, but . . .

This talk: An intermediate POV via NSA

For many thms T of ordinary math:

UT st (= ‘uniform’ version of T with standard higher-type objects)

↔ T ∗ (=version of T with only nonstandard lower-type objects)

Introduction: a BIG question

What is the right language for formalizing Mathematics?

Simpson and Friedman: SOA suffices for ordinary math.

Two sorts: natural numbers and sets thereof (type 0 and 1).

Higher-type objects (like continuous functions) can be coded.

Feferman and Kohlenbach: All finite types.

The set of finite types T: 0 ∈ T and if σ, ρ ∈ T then σ → ρ ∈ T.

No coding is required, but . . .

This talk: An intermediate POV via NSA

For many thms T of ordinary math:

UT st (= ‘uniform’ version of T with standard higher-type objects)

↔ T ∗ (=version of T with only nonstandard lower-type objects)

Introduction: a BIG question

What is the right language for formalizing Mathematics?

Simpson and Friedman: SOA suffices for ordinary math.

Two sorts: natural numbers and sets thereof (type 0 and 1).

Higher-type objects (like continuous functions) can be coded.

Feferman and Kohlenbach: All finite types.

The set of finite types T:

0 ∈ T and if σ, ρ ∈ T then σ → ρ ∈ T.

No coding is required, but . . .

This talk: An intermediate POV via NSA

For many thms T of ordinary math:

UT st (= ‘uniform’ version of T with standard higher-type objects)

↔ T ∗ (=version of T with only nonstandard lower-type objects)

Introduction: a BIG question

What is the right language for formalizing Mathematics?

Simpson and Friedman: SOA suffices for ordinary math.

Two sorts: natural numbers and sets thereof (type 0 and 1).

Higher-type objects (like continuous functions) can be coded.

Feferman and Kohlenbach: All finite types.

The set of finite types T: 0 ∈ T

and if σ, ρ ∈ T then σ → ρ ∈ T.

No coding is required, but . . .

This talk: An intermediate POV via NSA

For many thms T of ordinary math:

UT st (= ‘uniform’ version of T with standard higher-type objects)

↔ T ∗ (=version of T with only nonstandard lower-type objects)

Introduction: a BIG question

What is the right language for formalizing Mathematics?

Simpson and Friedman: SOA suffices for ordinary math.

Two sorts: natural numbers and sets thereof (type 0 and 1).

Higher-type objects (like continuous functions) can be coded.

Feferman and Kohlenbach: All finite types.

The set of finite types T: 0 ∈ T and if σ, ρ ∈ T then σ → ρ ∈ T.

No coding is required, but . . .

This talk: An intermediate POV via NSA

For many thms T of ordinary math:

UT st (= ‘uniform’ version of T with standard higher-type objects)

↔ T ∗ (=version of T with only nonstandard lower-type objects)

Introduction: a BIG question

What is the right language for formalizing Mathematics?

Simpson and Friedman: SOA suffices for ordinary math.

Two sorts: natural numbers and sets thereof (type 0 and 1).

Higher-type objects (like continuous functions) can be coded.

Feferman and Kohlenbach: All finite types.

The set of finite types T: 0 ∈ T and if σ, ρ ∈ T then σ → ρ ∈ T.

No coding is required, but . . .

This talk: An intermediate POV via NSA

For many thms T of ordinary math:

UT st (= ‘uniform’ version of T with standard higher-type objects)

↔ T ∗ (=version of T with only nonstandard lower-type objects)

Introduction: a BIG question

What is the right language for formalizing Mathematics?

Simpson and Friedman: SOA suffices for ordinary math.

Two sorts: natural numbers and sets thereof (type 0 and 1).

Higher-type objects (like continuous functions) can be coded.

Feferman and Kohlenbach: All finite types.

The set of finite types T: 0 ∈ T and if σ, ρ ∈ T then σ → ρ ∈ T.

No coding is required, but . . .

This talk: An intermediate POV via NSA

For many thms T of ordinary math:

UT st (= ‘uniform’ version of T with standard higher-type objects)

↔ T ∗ (=version of T with only nonstandard lower-type objects)

Introduction: a BIG question

What is the right language for formalizing Mathematics?

Simpson and Friedman: SOA suffices for ordinary math.

Two sorts: natural numbers and sets thereof (type 0 and 1).

Higher-type objects (like continuous functions) can be coded.

Feferman and Kohlenbach: All finite types.

The set of finite types T: 0 ∈ T and if σ, ρ ∈ T then σ → ρ ∈ T.

No coding is required, but . . .

This talk: An intermediate POV via NSA

For many thms T of ordinary math:

UT st (= ‘uniform’ version of T with standard higher-type objects)

↔ T ∗ (=version of T with only nonstandard lower-type objects)

Introduction: a BIG question

What is the right language for formalizing Mathematics?

Simpson and Friedman: SOA suffices for ordinary math.

Two sorts: natural numbers and sets thereof (type 0 and 1).

Higher-type objects (like continuous functions) can be coded.

Feferman and Kohlenbach: All finite types.

The set of finite types T: 0 ∈ T and if σ, ρ ∈ T then σ → ρ ∈ T.

No coding is required, but . . .

This talk: An intermediate POV via NSA

For many thms T of ordinary math:

UT st (= ‘uniform’ version of T with standard higher-type objects)

↔ T ∗ (=version of T with only nonstandard lower-type objects)

Introduction: a BIG question

What is the right language for formalizing Mathematics?

Simpson and Friedman: SOA suffices for ordinary math.

Two sorts: natural numbers and sets thereof (type 0 and 1).

Higher-type objects (like continuous functions) can be coded.

Feferman and Kohlenbach: All finite types.

The set of finite types T: 0 ∈ T and if σ, ρ ∈ T then σ → ρ ∈ T.

No coding is required, but . . .

This talk: An intermediate POV via NSA

For many thms T of ordinary math:

UT st (= ‘uniform’ version of T with standard higher-type objects)

↔ T ∗ (=version of T with only nonstandard lower-type objects)

Introduction: a BIG question

What is the right language for formalizing Mathematics?

Simpson and Friedman: SOA suffices for ordinary math.

Two sorts: natural numbers and sets thereof (type 0 and 1).

Higher-type objects (like continuous functions) can be coded.

Feferman and Kohlenbach: All finite types.

The set of finite types T: 0 ∈ T and if σ, ρ ∈ T then σ → ρ ∈ T.

No coding is required, but . . .

This talk: An intermediate POV via NSA

For many thms T of ordinary math:

UT st (= ‘uniform’ version of T with standard higher-type objects)

↔ T ∗ (=version of T with only nonstandard lower-type objects)

A base theory from internal NSA

RCA0 = IΣ1 + ∆0
1-CA. The latter states ‘all computable sets exist’.

RCAω0 = IΣ1+ ‘All computable finite-type functionals exist’.

RCAω0 is conservative over RCA0 in the L2-language.

Consider a new unary predicate st(x) defined on all finite types and let

BASIC define its basic properties like st(x) ∧ st(f)→ st(f (x)).

RCAΩ
0 = RCAω

0 + BASIC plus ‘∆0
1-Transfer’ and ‘∆0

1-Standard Part’.

TRANSFER: A↔ Ast for all formulas A without ‘st(x)’

Ast is obtained from A by replacing ∃x/∀y by ∃stx/∀sty

STANDARD PART: (∀X)(∃stY)(∀stn)(n ∈ X ↔ n ∈ Y).

Later: What is ∆0
1-Standard Part?

NO stars: ∗f vs f

A base theory from internal NSA

RCA0 = IΣ1 + ∆0
1-CA.

The latter states ‘all computable sets exist’.

RCAω0 = IΣ1+ ‘All computable finite-type functionals exist’.

RCAω0 is conservative over RCA0 in the L2-language.

Consider a new unary predicate st(x) defined on all finite types and let

BASIC define its basic properties like st(x) ∧ st(f)→ st(f (x)).

RCAΩ
0 = RCAω

0 + BASIC plus ‘∆0
1-Transfer’ and ‘∆0

1-Standard Part’.

TRANSFER: A↔ Ast for all formulas A without ‘st(x)’

Ast is obtained from A by replacing ∃x/∀y by ∃stx/∀sty

STANDARD PART: (∀X)(∃stY)(∀stn)(n ∈ X ↔ n ∈ Y).

Later: What is ∆0
1-Standard Part?

NO stars: ∗f vs f

A base theory from internal NSA

RCA0 = IΣ1 + ∆0
1-CA. The latter states ‘all computable sets exist’.

RCAω0 = IΣ1+ ‘All computable finite-type functionals exist’.

RCAω0 is conservative over RCA0 in the L2-language.

Consider a new unary predicate st(x) defined on all finite types and let

BASIC define its basic properties like st(x) ∧ st(f)→ st(f (x)).

RCAΩ
0 = RCAω

0 + BASIC plus ‘∆0
1-Transfer’ and ‘∆0

1-Standard Part’.

TRANSFER: A↔ Ast for all formulas A without ‘st(x)’

Ast is obtained from A by replacing ∃x/∀y by ∃stx/∀sty

STANDARD PART: (∀X)(∃stY)(∀stn)(n ∈ X ↔ n ∈ Y).

Later: What is ∆0
1-Standard Part?

NO stars: ∗f vs f

A base theory from internal NSA

RCA0 = IΣ1 + ∆0
1-CA. The latter states ‘all computable sets exist’.

RCAω0 = IΣ1+ ‘All computable finite-type functionals exist’.

RCAω0 is conservative over RCA0 in the L2-language.

Consider a new unary predicate st(x) defined on all finite types and let

BASIC define its basic properties like st(x) ∧ st(f)→ st(f (x)).

RCAΩ
0 = RCAω

0 + BASIC plus ‘∆0
1-Transfer’ and ‘∆0

1-Standard Part’.

TRANSFER: A↔ Ast for all formulas A without ‘st(x)’

Ast is obtained from A by replacing ∃x/∀y by ∃stx/∀sty

STANDARD PART: (∀X)(∃stY)(∀stn)(n ∈ X ↔ n ∈ Y).

Later: What is ∆0
1-Standard Part?

NO stars: ∗f vs f

A base theory from internal NSA

RCA0 = IΣ1 + ∆0
1-CA. The latter states ‘all computable sets exist’.

RCAω0 = IΣ1+ ‘All computable finite-type functionals exist’.

RCAω0 is conservative over RCA0 in the L2-language.

Consider a new unary predicate st(x) defined on all finite types and let

BASIC define its basic properties like st(x) ∧ st(f)→ st(f (x)).

RCAΩ
0 = RCAω

0 + BASIC plus ‘∆0
1-Transfer’ and ‘∆0

1-Standard Part’.

TRANSFER: A↔ Ast for all formulas A without ‘st(x)’

Ast is obtained from A by replacing ∃x/∀y by ∃stx/∀sty

STANDARD PART: (∀X)(∃stY)(∀stn)(n ∈ X ↔ n ∈ Y).

Later: What is ∆0
1-Standard Part?

NO stars: ∗f vs f

A base theory from internal NSA

RCA0 = IΣ1 + ∆0
1-CA. The latter states ‘all computable sets exist’.

RCAω0 = IΣ1+ ‘All computable finite-type functionals exist’.

RCAω0 is conservative over RCA0 in the L2-language.

Consider a new unary predicate st(x) defined on all finite types

and let

BASIC define its basic properties like st(x) ∧ st(f)→ st(f (x)).

RCAΩ
0 = RCAω

0 + BASIC plus ‘∆0
1-Transfer’ and ‘∆0

1-Standard Part’.

TRANSFER: A↔ Ast for all formulas A without ‘st(x)’

Ast is obtained from A by replacing ∃x/∀y by ∃stx/∀sty

STANDARD PART: (∀X)(∃stY)(∀stn)(n ∈ X ↔ n ∈ Y).

Later: What is ∆0
1-Standard Part?

NO stars: ∗f vs f

A base theory from internal NSA

RCA0 = IΣ1 + ∆0
1-CA. The latter states ‘all computable sets exist’.

RCAω0 = IΣ1+ ‘All computable finite-type functionals exist’.

RCAω0 is conservative over RCA0 in the L2-language.

Consider a new unary predicate st(x) defined on all finite types and let

BASIC define its basic properties like st(x) ∧ st(f)→ st(f (x)).

RCAΩ
0 = RCAω

0 + BASIC plus ‘∆0
1-Transfer’ and ‘∆0

1-Standard Part’.

TRANSFER: A↔ Ast for all formulas A without ‘st(x)’

Ast is obtained from A by replacing ∃x/∀y by ∃stx/∀sty

STANDARD PART: (∀X)(∃stY)(∀stn)(n ∈ X ↔ n ∈ Y).

Later: What is ∆0
1-Standard Part?

NO stars: ∗f vs f

A base theory from internal NSA

RCA0 = IΣ1 + ∆0
1-CA. The latter states ‘all computable sets exist’.

RCAω0 = IΣ1+ ‘All computable finite-type functionals exist’.

RCAω0 is conservative over RCA0 in the L2-language.

Consider a new unary predicate st(x) defined on all finite types and let

BASIC define its basic properties like st(x) ∧ st(f)→ st(f (x)).

RCAΩ
0 = RCAω

0 + BASIC plus ‘∆0
1-Transfer’ and ‘∆0

1-Standard Part’.

TRANSFER: A↔ Ast for all formulas A without ‘st(x)’

Ast is obtained from A by replacing ∃x/∀y by ∃stx/∀sty

STANDARD PART: (∀X)(∃stY)(∀stn)(n ∈ X ↔ n ∈ Y).

Later: What is ∆0
1-Standard Part?

NO stars: ∗f vs f

A base theory from internal NSA

RCA0 = IΣ1 + ∆0
1-CA. The latter states ‘all computable sets exist’.

RCAω0 = IΣ1+ ‘All computable finite-type functionals exist’.

RCAω0 is conservative over RCA0 in the L2-language.

Consider a new unary predicate st(x) defined on all finite types and let

BASIC define its basic properties like st(x) ∧ st(f)→ st(f (x)).

RCAΩ
0 = RCAω

0 + BASIC plus ‘∆0
1-Transfer’ and ‘∆0

1-Standard Part’.

TRANSFER: A↔ Ast for all formulas A without ‘st(x)’

Ast is obtained from A by replacing ∃x/∀y by ∃stx/∀sty

STANDARD PART: (∀X)(∃stY)(∀stn)(n ∈ X ↔ n ∈ Y).

Later: What is ∆0
1-Standard Part?

NO stars: ∗f vs f

A base theory from internal NSA

RCA0 = IΣ1 + ∆0
1-CA. The latter states ‘all computable sets exist’.

RCAω0 = IΣ1+ ‘All computable finite-type functionals exist’.

RCAω0 is conservative over RCA0 in the L2-language.

Consider a new unary predicate st(x) defined on all finite types and let

BASIC define its basic properties like st(x) ∧ st(f)→ st(f (x)).

RCAΩ
0 = RCAω

0 + BASIC plus ‘∆0
1-Transfer’ and ‘∆0

1-Standard Part’.

TRANSFER: A↔ Ast for all formulas A without ‘st(x)’

Ast is obtained from A by replacing ∃x/∀y by ∃stx/∀sty

STANDARD PART: (∀X)(∃stY)(∀stn)(n ∈ X ↔ n ∈ Y).

Later: What is ∆0
1-Standard Part?

NO stars: ∗f vs f

A base theory from internal NSA

RCA0 = IΣ1 + ∆0
1-CA. The latter states ‘all computable sets exist’.

RCAω0 = IΣ1+ ‘All computable finite-type functionals exist’.

RCAω0 is conservative over RCA0 in the L2-language.

Consider a new unary predicate st(x) defined on all finite types and let

BASIC define its basic properties like st(x) ∧ st(f)→ st(f (x)).

RCAΩ
0 = RCAω

0 + BASIC plus ‘∆0
1-Transfer’ and ‘∆0

1-Standard Part’.

TRANSFER: A↔ Ast for all formulas A without ‘st(x)’

Ast is obtained from A by replacing ∃x/∀y by ∃stx/∀sty

STANDARD PART: (∀X)(∃stY)(∀stn)(n ∈ X ↔ n ∈ Y).

Later: What is ∆0
1-Standard Part?

NO stars: ∗f vs f

A base theory from internal NSA

RCA0 = IΣ1 + ∆0
1-CA. The latter states ‘all computable sets exist’.

RCAω0 = IΣ1+ ‘All computable finite-type functionals exist’.

RCAω0 is conservative over RCA0 in the L2-language.

Consider a new unary predicate st(x) defined on all finite types and let

BASIC define its basic properties like st(x) ∧ st(f)→ st(f (x)).

RCAΩ
0 = RCAω

0 + BASIC plus ‘∆0
1-Transfer’ and ‘∆0

1-Standard Part’.

TRANSFER: A↔ Ast for all formulas A without ‘st(x)’

Ast is obtained from A by replacing ∃x/∀y by ∃stx/∀sty

STANDARD PART: (∀X)(∃stY)(∀stn)(n ∈ X ↔ n ∈ Y).

Later: What is ∆0
1-Standard Part?

NO stars: ∗f vs f

A base theory from internal NSA

RCA0 = IΣ1 + ∆0
1-CA. The latter states ‘all computable sets exist’.

RCAω0 = IΣ1+ ‘All computable finite-type functionals exist’.

RCAω0 is conservative over RCA0 in the L2-language.

Consider a new unary predicate st(x) defined on all finite types and let

BASIC define its basic properties like st(x) ∧ st(f)→ st(f (x)).

RCAΩ
0 = RCAω

0 + BASIC plus ‘∆0
1-Transfer’ and ‘∆0

1-Standard Part’.

TRANSFER: A↔ Ast for all formulas A without ‘st(x)’

Ast is obtained from A by replacing ∃x/∀y by ∃stx/∀sty

STANDARD PART: (∀X)(∃stY)(∀stn)(n ∈ X ↔ n ∈ Y).

Later: What is ∆0
1-Standard Part?

NO stars: ∗f vs f

An example of UT st ↔ T ∗

Define F ∈ C as F ∈ C ∧ F (1) >R 0 ∧ F (0) <R 0.

IVTst ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =R 0)

Over RCAΩ
0 , we have

UIVTst ≡ (∃stΦ(1→1)→1)(∀stF ∈ C)(F (Φ(F)) =R 0)

l

IVT∗ ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =∗R 0)

For z = (wn), define symbolically z =∗R 0 as (∀n)(|wn| ≤ 1
2n)

and z =R 0 as (∀stn)(|wn| ≤ 1
2n).

An example of UT st ↔ T ∗

Define F ∈ C as F ∈ C ∧ F (1) >R 0 ∧ F (0) <R 0.

IVTst ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =R 0)

Over RCAΩ
0 , we have

UIVTst ≡ (∃stΦ(1→1)→1)(∀stF ∈ C)(F (Φ(F)) =R 0)

l

IVT∗ ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =∗R 0)

For z = (wn), define symbolically z =∗R 0 as (∀n)(|wn| ≤ 1
2n)

and z =R 0 as (∀stn)(|wn| ≤ 1
2n).

An example of UT st ↔ T ∗

Define F ∈ C as F ∈ C ∧ F (1) >R 0 ∧ F (0) <R 0.

IVTst ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =R 0)

Over RCAΩ
0 , we have

UIVTst ≡ (∃stΦ(1→1)→1)(∀stF ∈ C)(F (Φ(F)) =R 0)

l

IVT∗ ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =∗R 0)

For z = (wn), define symbolically z =∗R 0 as (∀n)(|wn| ≤ 1
2n)

and z =R 0 as (∀stn)(|wn| ≤ 1
2n).

An example of UT st ↔ T ∗

Define F ∈ C as F ∈ C ∧ F (1) >R 0 ∧ F (0) <R 0.

IVTst ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =R 0)

Over RCAΩ
0 , we have

UIVTst ≡ (∃stΦ(1→1)→1)(∀stF ∈ C)(F (Φ(F)) =R 0)

l

IVT∗ ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =∗R 0)

For z = (wn), define symbolically z =∗R 0 as (∀n)(|wn| ≤ 1
2n)

and z =R 0 as (∀stn)(|wn| ≤ 1
2n).

An example of UT st ↔ T ∗

Define F ∈ C as F ∈ C ∧ F (1) >R 0 ∧ F (0) <R 0.

IVTst ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =R 0)

Over RCAΩ
0 , we have

UIVTst ≡ (∃stΦ(1→1)→1)(∀stF ∈ C)(F (Φ(F)) =R 0)

l

IVT∗ ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =∗R 0)

For z = (wn), define symbolically z =∗R 0 as (∀n)(|wn| ≤ 1
2n)

and z =R 0 as (∀stn)(|wn| ≤ 1
2n).

An example of UT st ↔ T ∗

Define F ∈ C as F ∈ C ∧ F (1) >R 0 ∧ F (0) <R 0.

IVTst ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =R 0)

Over RCAΩ
0 , we have

UIVTst ≡ (∃stΦ(1→1)→1)(∀stF ∈ C)(F (Φ(F)) =R 0)

l

IVT∗ ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =∗R 0)

For z = (wn), define symbolically z =∗R 0 as (∀n)(|wn| ≤ 1
2n)

and z =R 0 as (∀stn)(|wn| ≤ 1
2n).

General theme: UT st ↔ T ∗

Let T st be of the following form:

(∀stxτ)[Ast(x)→ (∃styρ)Bst(x , y)) (T st)

In many cases, TFAE over RCAΩ
0

(∃stΦτ→ρ)(∀stxτ)[Ast(x)→ Bst(x ,Φ(x)). (UT st)

and
(∀stxτ)[Ast(x)→ (∃styρ)B(x , y)) (T ∗)

General theme: UT st ↔ T ∗

Let T st be of the following form:

(∀stxτ)[Ast(x)→ (∃styρ)Bst(x , y)) (T st)

In many cases, TFAE over RCAΩ
0

(∃stΦτ→ρ)(∀stxτ)[Ast(x)→ Bst(x ,Φ(x)). (UT st)

and
(∀stxτ)[Ast(x)→ (∃styρ)B(x , y)) (T ∗)

General theme: UT st ↔ T ∗

Let T st be of the following form:

(∀stxτ)[Ast(x)→ (∃styρ)Bst(x , y)) (T st)

In many cases, TFAE over RCAΩ
0

(∃stΦτ→ρ)(∀stxτ)[Ast(x)→ Bst(x ,Φ(x)). (UT st)

and

(∀stxτ)[Ast(x)→ (∃styρ)B(x , y)) (T ∗)

General theme: UT st ↔ T ∗

Let T st be of the following form:

(∀stxτ)[Ast(x)→ (∃styρ)Bst(x , y)) (T st)

In many cases, TFAE over RCAΩ
0

(∃stΦτ→ρ)(∀stxτ)[Ast(x)→ Bst(x ,Φ(x)). (UT st)

and
(∀stxτ)[Ast(x)→ (∃styρ)B(x , y)) (T ∗)

Functional ACA0

In RCAΩ
0 , the following are equivalent.

1 (∃2)st ≡ (∃stϕ2)(∀st f 1)(ϕf =0 0↔ (∃stx0)f (x0) = 0).

2 Π0
1-TRANS ≡ (∀stF 1)[(∀stx0)F (x) = 0→ (∀x0)F (x) = 0]

3 UWKLst ≡ (∃stΦ1→1)(∀stT 1 ≤ 1)
(
Tst
∞(T)→ (∀stn)(Φ(T)n ∈ T)

)
4 WKL∗ ≡ (∀stT 1 ≤1 1)(Tst

∞(T)→ (∃stα1)(∀x0)(αx ∈ T).

5 UIVTst ≡ (∃stΦ(1→1)→1)(∀stF ∈ C)(F (Φ(F)) =R 0).

6 IVT∗ ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =∗R 0).

7 UWEIst ≡ (∃stΦ)(∀stF ∈ C)(∀sty ∈ [0, 1])(F (y) ≤R F (Φ(F))).

8 WEI∗ ≡ (∀stF ∈ C)(∃stx1 ∈ [0, 1])(∀y1 ∈ [0, 1])(F (y) ≤∗R F (x)).

Structure: (∃2)st ↔ UT st ↔ T ∗ ↔ Π0
1-TRANS

Also for: RT(1), IPP, 1-RAN, WWKL, Peano’s theorem for
y ′ = f (x , y), Gödel’s compactness theorem, Σ0

1-separation,
contraposition of Heine-Borel,(and if T →WKL in BISH)

Functional ACA0

In RCAΩ
0 , the following are equivalent.

1 (∃2)st ≡ (∃stϕ2)(∀st f 1)(ϕf =0 0↔ (∃stx0)f (x0) = 0).

2 Π0
1-TRANS ≡ (∀stF 1)[(∀stx0)F (x) = 0→ (∀x0)F (x) = 0]

3 UWKLst ≡ (∃stΦ1→1)(∀stT 1 ≤ 1)
(
Tst
∞(T)→ (∀stn)(Φ(T)n ∈ T)

)
4 WKL∗ ≡ (∀stT 1 ≤1 1)(Tst

∞(T)→ (∃stα1)(∀x0)(αx ∈ T).

5 UIVTst ≡ (∃stΦ(1→1)→1)(∀stF ∈ C)(F (Φ(F)) =R 0).

6 IVT∗ ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =∗R 0).

7 UWEIst ≡ (∃stΦ)(∀stF ∈ C)(∀sty ∈ [0, 1])(F (y) ≤R F (Φ(F))).

8 WEI∗ ≡ (∀stF ∈ C)(∃stx1 ∈ [0, 1])(∀y1 ∈ [0, 1])(F (y) ≤∗R F (x)).

Structure: (∃2)st ↔ UT st ↔ T ∗ ↔ Π0
1-TRANS

Also for: RT(1), IPP, 1-RAN, WWKL, Peano’s theorem for
y ′ = f (x , y), Gödel’s compactness theorem, Σ0

1-separation,
contraposition of Heine-Borel,(and if T →WKL in BISH)

Functional ACA0

In RCAΩ
0 , the following are equivalent.

1 (∃2)st ≡ (∃stϕ2)(∀st f 1)(ϕf =0 0↔ (∃stx0)f (x0) = 0).

2 Π0
1-TRANS ≡ (∀stF 1)[(∀stx0)F (x) = 0→ (∀x0)F (x) = 0]

3 UWKLst ≡ (∃stΦ1→1)(∀stT 1 ≤ 1)
(
Tst
∞(T)→ (∀stn)(Φ(T)n ∈ T)

)

4 WKL∗ ≡ (∀stT 1 ≤1 1)(Tst
∞(T)→ (∃stα1)(∀x0)(αx ∈ T).

5 UIVTst ≡ (∃stΦ(1→1)→1)(∀stF ∈ C)(F (Φ(F)) =R 0).

6 IVT∗ ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =∗R 0).

7 UWEIst ≡ (∃stΦ)(∀stF ∈ C)(∀sty ∈ [0, 1])(F (y) ≤R F (Φ(F))).

8 WEI∗ ≡ (∀stF ∈ C)(∃stx1 ∈ [0, 1])(∀y1 ∈ [0, 1])(F (y) ≤∗R F (x)).

Structure: (∃2)st ↔ UT st ↔ T ∗ ↔ Π0
1-TRANS

Also for: RT(1), IPP, 1-RAN, WWKL, Peano’s theorem for
y ′ = f (x , y), Gödel’s compactness theorem, Σ0

1-separation,
contraposition of Heine-Borel,(and if T →WKL in BISH)

Functional ACA0

In RCAΩ
0 , the following are equivalent.

1 (∃2)st ≡ (∃stϕ2)(∀st f 1)(ϕf =0 0↔ (∃stx0)f (x0) = 0).

2 Π0
1-TRANS ≡ (∀stF 1)[(∀stx0)F (x) = 0→ (∀x0)F (x) = 0]

3 UWKLst ≡ (∃stΦ1→1)(∀stT 1 ≤ 1)
(
Tst
∞(T)→ (∀stn)(Φ(T)n ∈ T)

)
4 WKL∗ ≡ (∀stT 1 ≤1 1)(Tst

∞(T)→ (∃stα1)(∀x0)(αx ∈ T).

5 UIVTst ≡ (∃stΦ(1→1)→1)(∀stF ∈ C)(F (Φ(F)) =R 0).

6 IVT∗ ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =∗R 0).

7 UWEIst ≡ (∃stΦ)(∀stF ∈ C)(∀sty ∈ [0, 1])(F (y) ≤R F (Φ(F))).

8 WEI∗ ≡ (∀stF ∈ C)(∃stx1 ∈ [0, 1])(∀y1 ∈ [0, 1])(F (y) ≤∗R F (x)).

Structure: (∃2)st ↔ UT st ↔ T ∗ ↔ Π0
1-TRANS

Also for: RT(1), IPP, 1-RAN, WWKL, Peano’s theorem for
y ′ = f (x , y), Gödel’s compactness theorem, Σ0

1-separation,
contraposition of Heine-Borel,(and if T →WKL in BISH)

Functional ACA0

In RCAΩ
0 , the following are equivalent.

1 (∃2)st ≡ (∃stϕ2)(∀st f 1)(ϕf =0 0↔ (∃stx0)f (x0) = 0).

2 Π0
1-TRANS ≡ (∀stF 1)[(∀stx0)F (x) = 0→ (∀x0)F (x) = 0]

3 UWKLst ≡ (∃stΦ1→1)(∀stT 1 ≤ 1)
(
Tst
∞(T)→ (∀stn)(Φ(T)n ∈ T)

)
4 WKL∗ ≡ (∀stT 1 ≤1 1)(Tst

∞(T)→ (∃stα1)(∀x0)(αx ∈ T).

5 UIVTst ≡ (∃stΦ(1→1)→1)(∀stF ∈ C)(F (Φ(F)) =R 0).

6 IVT∗ ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =∗R 0).

7 UWEIst ≡ (∃stΦ)(∀stF ∈ C)(∀sty ∈ [0, 1])(F (y) ≤R F (Φ(F))).

8 WEI∗ ≡ (∀stF ∈ C)(∃stx1 ∈ [0, 1])(∀y1 ∈ [0, 1])(F (y) ≤∗R F (x)).

Structure: (∃2)st ↔ UT st ↔ T ∗ ↔ Π0
1-TRANS

Also for: RT(1), IPP, 1-RAN, WWKL, Peano’s theorem for
y ′ = f (x , y), Gödel’s compactness theorem, Σ0

1-separation,
contraposition of Heine-Borel,(and if T →WKL in BISH)

Functional ACA0

In RCAΩ
0 , the following are equivalent.

1 (∃2)st ≡ (∃stϕ2)(∀st f 1)(ϕf =0 0↔ (∃stx0)f (x0) = 0).

2 Π0
1-TRANS ≡ (∀stF 1)[(∀stx0)F (x) = 0→ (∀x0)F (x) = 0]

3 UWKLst ≡ (∃stΦ1→1)(∀stT 1 ≤ 1)
(
Tst
∞(T)→ (∀stn)(Φ(T)n ∈ T)

)
4 WKL∗ ≡ (∀stT 1 ≤1 1)(Tst

∞(T)→ (∃stα1)(∀x0)(αx ∈ T).

5 UIVTst ≡ (∃stΦ(1→1)→1)(∀stF ∈ C)(F (Φ(F)) =R 0).

6 IVT∗ ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =∗R 0).

7 UWEIst ≡ (∃stΦ)(∀stF ∈ C)(∀sty ∈ [0, 1])(F (y) ≤R F (Φ(F))).

8 WEI∗ ≡ (∀stF ∈ C)(∃stx1 ∈ [0, 1])(∀y1 ∈ [0, 1])(F (y) ≤∗R F (x)).

Structure: (∃2)st ↔ UT st ↔ T ∗ ↔ Π0
1-TRANS

Also for: RT(1), IPP, 1-RAN, WWKL, Peano’s theorem for
y ′ = f (x , y), Gödel’s compactness theorem, Σ0

1-separation,
contraposition of Heine-Borel,(and if T →WKL in BISH)

Functional ACA0

In RCAΩ
0 , the following are equivalent.

1 (∃2)st ≡ (∃stϕ2)(∀st f 1)(ϕf =0 0↔ (∃stx0)f (x0) = 0).

2 Π0
1-TRANS ≡ (∀stF 1)[(∀stx0)F (x) = 0→ (∀x0)F (x) = 0]

3 UWKLst ≡ (∃stΦ1→1)(∀stT 1 ≤ 1)
(
Tst
∞(T)→ (∀stn)(Φ(T)n ∈ T)

)
4 WKL∗ ≡ (∀stT 1 ≤1 1)(Tst

∞(T)→ (∃stα1)(∀x0)(αx ∈ T).

5 UIVTst ≡ (∃stΦ(1→1)→1)(∀stF ∈ C)(F (Φ(F)) =R 0).

6 IVT∗ ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =∗R 0).

7 UWEIst ≡ (∃stΦ)(∀stF ∈ C)(∀sty ∈ [0, 1])(F (y) ≤R F (Φ(F))).

8 WEI∗ ≡ (∀stF ∈ C)(∃stx1 ∈ [0, 1])(∀y1 ∈ [0, 1])(F (y) ≤∗R F (x)).

Structure: (∃2)st ↔ UT st ↔ T ∗ ↔ Π0
1-TRANS

Also for: RT(1), IPP, 1-RAN, WWKL, Peano’s theorem for
y ′ = f (x , y), Gödel’s compactness theorem, Σ0

1-separation,
contraposition of Heine-Borel,(and if T →WKL in BISH)

Functional ACA0

In RCAΩ
0 , the following are equivalent.

1 (∃2)st ≡ (∃stϕ2)(∀st f 1)(ϕf =0 0↔ (∃stx0)f (x0) = 0).

2 Π0
1-TRANS ≡ (∀stF 1)[(∀stx0)F (x) = 0→ (∀x0)F (x) = 0]

3 UWKLst ≡ (∃stΦ1→1)(∀stT 1 ≤ 1)
(
Tst
∞(T)→ (∀stn)(Φ(T)n ∈ T)

)
4 WKL∗ ≡ (∀stT 1 ≤1 1)(Tst

∞(T)→ (∃stα1)(∀x0)(αx ∈ T).

5 UIVTst ≡ (∃stΦ(1→1)→1)(∀stF ∈ C)(F (Φ(F)) =R 0).

6 IVT∗ ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =∗R 0).

7 UWEIst ≡ (∃stΦ)(∀stF ∈ C)(∀sty ∈ [0, 1])(F (y) ≤R F (Φ(F))).

8 WEI∗ ≡ (∀stF ∈ C)(∃stx1 ∈ [0, 1])(∀y1 ∈ [0, 1])(F (y) ≤∗R F (x)).

Structure: (∃2)st ↔ UT st ↔ T ∗ ↔ Π0
1-TRANS

Also for: RT(1), IPP, 1-RAN, WWKL, Peano’s theorem for
y ′ = f (x , y), Gödel’s compactness theorem, Σ0

1-separation,
contraposition of Heine-Borel,(and if T →WKL in BISH)

Functional ACA0

In RCAΩ
0 , the following are equivalent.

1 (∃2)st ≡ (∃stϕ2)(∀st f 1)(ϕf =0 0↔ (∃stx0)f (x0) = 0).

2 Π0
1-TRANS ≡ (∀stF 1)[(∀stx0)F (x) = 0→ (∀x0)F (x) = 0]

3 UWKLst ≡ (∃stΦ1→1)(∀stT 1 ≤ 1)
(
Tst
∞(T)→ (∀stn)(Φ(T)n ∈ T)

)
4 WKL∗ ≡ (∀stT 1 ≤1 1)(Tst

∞(T)→ (∃stα1)(∀x0)(αx ∈ T).

5 UIVTst ≡ (∃stΦ(1→1)→1)(∀stF ∈ C)(F (Φ(F)) =R 0).

6 IVT∗ ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =∗R 0).

7 UWEIst ≡ (∃stΦ)(∀stF ∈ C)(∀sty ∈ [0, 1])(F (y) ≤R F (Φ(F))).

8 WEI∗ ≡ (∀stF ∈ C)(∃stx1 ∈ [0, 1])(∀y1 ∈ [0, 1])(F (y) ≤∗R F (x)).

Structure: (∃2)st ↔ UT st ↔ T ∗ ↔ Π0
1-TRANS

Also for: RT(1), IPP, 1-RAN, WWKL, Peano’s theorem for
y ′ = f (x , y), Gödel’s compactness theorem, Σ0

1-separation,
contraposition of Heine-Borel,(and if T →WKL in BISH)

Functional ACA0

In RCAΩ
0 , the following are equivalent.

1 (∃2)st ≡ (∃stϕ2)(∀st f 1)(ϕf =0 0↔ (∃stx0)f (x0) = 0).

2 Π0
1-TRANS ≡ (∀stF 1)[(∀stx0)F (x) = 0→ (∀x0)F (x) = 0]

3 UWKLst ≡ (∃stΦ1→1)(∀stT 1 ≤ 1)
(
Tst
∞(T)→ (∀stn)(Φ(T)n ∈ T)

)
4 WKL∗ ≡ (∀stT 1 ≤1 1)(Tst

∞(T)→ (∃stα1)(∀x0)(αx ∈ T).

5 UIVTst ≡ (∃stΦ(1→1)→1)(∀stF ∈ C)(F (Φ(F)) =R 0).

6 IVT∗ ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =∗R 0).

7 UWEIst ≡ (∃stΦ)(∀stF ∈ C)(∀sty ∈ [0, 1])(F (y) ≤R F (Φ(F))).

8 WEI∗ ≡ (∀stF ∈ C)(∃stx1 ∈ [0, 1])(∀y1 ∈ [0, 1])(F (y) ≤∗R F (x)).

Structure: (∃2)st ↔ UT st ↔ T ∗ ↔ Π0
1-TRANS

Also for: RT(1), IPP, 1-RAN, WWKL, Peano’s theorem for
y ′ = f (x , y), Gödel’s compactness theorem, Σ0

1-separation,
contraposition of Heine-Borel,

(and if T →WKL in BISH)

Functional ACA0

In RCAΩ
0 , the following are equivalent.

1 (∃2)st ≡ (∃stϕ2)(∀st f 1)(ϕf =0 0↔ (∃stx0)f (x0) = 0).

2 Π0
1-TRANS ≡ (∀stF 1)[(∀stx0)F (x) = 0→ (∀x0)F (x) = 0]

3 UWKLst ≡ (∃stΦ1→1)(∀stT 1 ≤ 1)
(
Tst
∞(T)→ (∀stn)(Φ(T)n ∈ T)

)
4 WKL∗ ≡ (∀stT 1 ≤1 1)(Tst

∞(T)→ (∃stα1)(∀x0)(αx ∈ T).

5 UIVTst ≡ (∃stΦ(1→1)→1)(∀stF ∈ C)(F (Φ(F)) =R 0).

6 IVT∗ ≡ (∀stF ∈ C)(∃stx ∈ [0, 1])(F (x) =∗R 0).

7 UWEIst ≡ (∃stΦ)(∀stF ∈ C)(∀sty ∈ [0, 1])(F (y) ≤R F (Φ(F))).

8 WEI∗ ≡ (∀stF ∈ C)(∃stx1 ∈ [0, 1])(∀y1 ∈ [0, 1])(F (y) ≤∗R F (x)).

Structure: (∃2)st ↔ UT st ↔ T ∗ ↔ Π0
1-TRANS

Also for: RT(1), IPP, 1-RAN, WWKL, Peano’s theorem for
y ′ = f (x , y), Gödel’s compactness theorem, Σ0

1-separation,
contraposition of Heine-Borel,(and if T →WKL in BISH)

Functional principles at the level of WKL0

FAN is the classical contraposition of WKL:

(∀T 1)
[
(∀α1 ≤1 1)(∃n0)(αn 6∈ T)→ (∃k0)(∀α1 ≤1 1)(∃m ≤ k)((αm 6∈ T))

]
If a tree has no path, it is finite.

UFAN is the ‘fully’ uniform version of FAN:

(∃Φ(1×2)→0)(∀T 1, g2)
[
(∀α1 ≤1 1)(αg(α) 6∈ T)

→ (∀α1 ≤1 1)(∃m ≤ Φ(T , g))((αm 6∈ T))
]

We have WKLst ↔ UFANst ↔ FAN∗. (i.e. UTst ↔ T ∗)

Similar sensitive equivalences for Heine-Borel, Riemann integration
and supremum of continuous functions, contraposition of WWKL,
. . . and if FAN→ T in BISH

Functional principles at the level of WKL0

FAN is the classical contraposition of WKL:

(∀T 1)
[
(∀α1 ≤1 1)(∃n0)(αn 6∈ T)→ (∃k0)(∀α1 ≤1 1)(∃m ≤ k)((αm 6∈ T))

]
If a tree has no path, it is finite.

UFAN is the ‘fully’ uniform version of FAN:

(∃Φ(1×2)→0)(∀T 1, g2)
[
(∀α1 ≤1 1)(αg(α) 6∈ T)

→ (∀α1 ≤1 1)(∃m ≤ Φ(T , g))((αm 6∈ T))
]

We have WKLst ↔ UFANst ↔ FAN∗. (i.e. UTst ↔ T ∗)

Similar sensitive equivalences for Heine-Borel, Riemann integration
and supremum of continuous functions, contraposition of WWKL,
. . . and if FAN→ T in BISH

Functional principles at the level of WKL0

FAN is the classical contraposition of WKL:

(∀T 1)
[
(∀α1 ≤1 1)(∃n0)(αn 6∈ T)→ (∃k0)(∀α1 ≤1 1)(∃m ≤ k)((αm 6∈ T))

]
If a tree has no path, it is finite.

UFAN is the ‘fully’ uniform version of FAN:

(∃Φ(1×2)→0)(∀T 1, g2)
[
(∀α1 ≤1 1)(αg(α) 6∈ T)

→ (∀α1 ≤1 1)(∃m ≤ Φ(T , g))((αm 6∈ T))
]

We have WKLst ↔ UFANst ↔ FAN∗. (i.e. UTst ↔ T ∗)

Similar sensitive equivalences for Heine-Borel, Riemann integration
and supremum of continuous functions, contraposition of WWKL,
. . . and if FAN→ T in BISH

Functional principles at the level of WKL0

FAN is the classical contraposition of WKL:

(∀T 1)
[
(∀α1 ≤1 1)(∃n0)(αn 6∈ T)→ (∃k0)(∀α1 ≤1 1)(∃m ≤ k)((αm 6∈ T))

]
If a tree has no path, it is finite.

UFAN is the ‘fully’ uniform version of FAN:

(∃Φ(1×2)→0)(∀T 1, g2)
[
(∀α1 ≤1 1)(αg(α) 6∈ T)

→ (∀α1 ≤1 1)(∃m ≤ Φ(T , g))((αm 6∈ T))
]

We have WKLst ↔ UFANst ↔ FAN∗.

(i.e. UTst ↔ T ∗)

Similar sensitive equivalences for Heine-Borel, Riemann integration
and supremum of continuous functions, contraposition of WWKL,
. . . and if FAN→ T in BISH

Functional principles at the level of WKL0

FAN is the classical contraposition of WKL:

(∀T 1)
[
(∀α1 ≤1 1)(∃n0)(αn 6∈ T)→ (∃k0)(∀α1 ≤1 1)(∃m ≤ k)((αm 6∈ T))

]
If a tree has no path, it is finite.

UFAN is the ‘fully’ uniform version of FAN:

(∃Φ(1×2)→0)(∀T 1, g2)
[
(∀α1 ≤1 1)(αg(α) 6∈ T)

→ (∀α1 ≤1 1)(∃m ≤ Φ(T , g))((αm 6∈ T))
]

We have WKLst ↔ UFANst ↔ FAN∗. (i.e. UTst ↔ T ∗)

Similar sensitive equivalences for Heine-Borel, Riemann integration
and supremum of continuous functions, contraposition of WWKL,
. . . and if FAN→ T in BISH

Functional principles at the level of WKL0

FAN is the classical contraposition of WKL:

(∀T 1)
[
(∀α1 ≤1 1)(∃n0)(αn 6∈ T)→ (∃k0)(∀α1 ≤1 1)(∃m ≤ k)((αm 6∈ T))

]
If a tree has no path, it is finite.

UFAN is the ‘fully’ uniform version of FAN:

(∃Φ(1×2)→0)(∀T 1, g2)
[
(∀α1 ≤1 1)(αg(α) 6∈ T)

→ (∀α1 ≤1 1)(∃m ≤ Φ(T , g))((αm 6∈ T))
]

We have WKLst ↔ UFANst ↔ FAN∗. (i.e. UTst ↔ T ∗)

Similar sensitive equivalences for Heine-Borel, Riemann integration
and supremum of continuous functions, contraposition of WWKL,
. . .

and if FAN→ T in BISH

Functional principles at the level of WKL0

FAN is the classical contraposition of WKL:

(∀T 1)
[
(∀α1 ≤1 1)(∃n0)(αn 6∈ T)→ (∃k0)(∀α1 ≤1 1)(∃m ≤ k)((αm 6∈ T))

]
If a tree has no path, it is finite.

UFAN is the ‘fully’ uniform version of FAN:

(∃Φ(1×2)→0)(∀T 1, g2)
[
(∀α1 ≤1 1)(αg(α) 6∈ T)

→ (∀α1 ≤1 1)(∃m ≤ Φ(T , g))((αm 6∈ T))
]

We have WKLst ↔ UFANst ↔ FAN∗. (i.e. UTst ↔ T ∗)

Similar sensitive equivalences for Heine-Borel, Riemann integration
and supremum of continuous functions, contraposition of WWKL,
. . . and if FAN→ T in BISH

Dysfunctional principles at the level of WKL0

HORM enables the study of intuitionistic principles (i.e. classically false).

(∃Ω3)(∀ϕ2)(∀f 1, g1 ≤1 1)[f (Ω(ϕ)) =0 g(Ω(ϕ))→ ϕ(f) =0 ϕ(g)].

(MUC)
(MUC) says: All type 2 objects are uniformly continuous.

(MUC) contradicts (∃2), but: RCAω0 + (MUC) ≡L2 RCA0 + WKL.

Now RCAΩ
0 proves that (MUC)st is equivalent to:

(∀stϕ2)(∀f 1, g1 ≤1 1)
[
f ≈1 g → ϕ(f) =0 ϕ(g)

]
,

and also equivalent to

(∀stϕ2)(∃stk)(∀f 1, g1 ≤1 1)
[
f k = gk → ϕ(f) =0 ϕ(g)

]
(MUC)∗.

NOTE: (MUC)st ↔ (MUC)∗ has the form UT st ↔ T ∗.

Dysfunctional principles at the level of WKL0

HORM enables the study of intuitionistic principles (i.e. classically false).

(∃Ω3)(∀ϕ2)(∀f 1, g1 ≤1 1)[f (Ω(ϕ)) =0 g(Ω(ϕ))→ ϕ(f) =0 ϕ(g)].

(MUC)
(MUC) says: All type 2 objects are uniformly continuous.

(MUC) contradicts (∃2), but: RCAω0 + (MUC) ≡L2 RCA0 + WKL.

Now RCAΩ
0 proves that (MUC)st is equivalent to:

(∀stϕ2)(∀f 1, g1 ≤1 1)
[
f ≈1 g → ϕ(f) =0 ϕ(g)

]
,

and also equivalent to

(∀stϕ2)(∃stk)(∀f 1, g1 ≤1 1)
[
f k = gk → ϕ(f) =0 ϕ(g)

]
(MUC)∗.

NOTE: (MUC)st ↔ (MUC)∗ has the form UT st ↔ T ∗.

Dysfunctional principles at the level of WKL0

HORM enables the study of intuitionistic principles (i.e. classically false).

(∃Ω3)(∀ϕ2)(∀f 1, g1 ≤1 1)[f (Ω(ϕ)) =0 g(Ω(ϕ))→ ϕ(f) =0 ϕ(g)].

(MUC)

(MUC) says: All type 2 objects are uniformly continuous.

(MUC) contradicts (∃2), but: RCAω0 + (MUC) ≡L2 RCA0 + WKL.

Now RCAΩ
0 proves that (MUC)st is equivalent to:

(∀stϕ2)(∀f 1, g1 ≤1 1)
[
f ≈1 g → ϕ(f) =0 ϕ(g)

]
,

and also equivalent to

(∀stϕ2)(∃stk)(∀f 1, g1 ≤1 1)
[
f k = gk → ϕ(f) =0 ϕ(g)

]
(MUC)∗.

NOTE: (MUC)st ↔ (MUC)∗ has the form UT st ↔ T ∗.

Dysfunctional principles at the level of WKL0

HORM enables the study of intuitionistic principles (i.e. classically false).

(∃Ω3)(∀ϕ2)(∀f 1, g1 ≤1 1)[f (Ω(ϕ)) =0 g(Ω(ϕ))→ ϕ(f) =0 ϕ(g)].

(MUC)
(MUC) says: All type 2 objects are uniformly continuous.

(MUC) contradicts (∃2), but: RCAω0 + (MUC) ≡L2 RCA0 + WKL.

Now RCAΩ
0 proves that (MUC)st is equivalent to:

(∀stϕ2)(∀f 1, g1 ≤1 1)
[
f ≈1 g → ϕ(f) =0 ϕ(g)

]
,

and also equivalent to

(∀stϕ2)(∃stk)(∀f 1, g1 ≤1 1)
[
f k = gk → ϕ(f) =0 ϕ(g)

]
(MUC)∗.

NOTE: (MUC)st ↔ (MUC)∗ has the form UT st ↔ T ∗.

Dysfunctional principles at the level of WKL0

HORM enables the study of intuitionistic principles (i.e. classically false).

(∃Ω3)(∀ϕ2)(∀f 1, g1 ≤1 1)[f (Ω(ϕ)) =0 g(Ω(ϕ))→ ϕ(f) =0 ϕ(g)].

(MUC)
(MUC) says: All type 2 objects are uniformly continuous.

(MUC) contradicts (∃2), but: RCAω0 + (MUC) ≡L2 RCA0 + WKL.

Now RCAΩ
0 proves that (MUC)st is equivalent to:

(∀stϕ2)(∀f 1, g1 ≤1 1)
[
f ≈1 g → ϕ(f) =0 ϕ(g)

]
,

and also equivalent to

(∀stϕ2)(∃stk)(∀f 1, g1 ≤1 1)
[
f k = gk → ϕ(f) =0 ϕ(g)

]
(MUC)∗.

NOTE: (MUC)st ↔ (MUC)∗ has the form UT st ↔ T ∗.

Dysfunctional principles at the level of WKL0

HORM enables the study of intuitionistic principles (i.e. classically false).

(∃Ω3)(∀ϕ2)(∀f 1, g1 ≤1 1)[f (Ω(ϕ)) =0 g(Ω(ϕ))→ ϕ(f) =0 ϕ(g)].

(MUC)
(MUC) says: All type 2 objects are uniformly continuous.

(MUC) contradicts (∃2), but: RCAω0 + (MUC) ≡L2 RCA0 + WKL.

Now RCAΩ
0 proves that (MUC)st is equivalent to:

(∀stϕ2)(∀f 1, g1 ≤1 1)
[
f ≈1 g → ϕ(f) =0 ϕ(g)

]
,

and also equivalent to

(∀stϕ2)(∃stk)(∀f 1, g1 ≤1 1)
[
f k = gk → ϕ(f) =0 ϕ(g)

]
(MUC)∗.

NOTE: (MUC)st ↔ (MUC)∗ has the form UT st ↔ T ∗.

Dysfunctional principles at the level of WKL0

HORM enables the study of intuitionistic principles (i.e. classically false).

(∃Ω3)(∀ϕ2)(∀f 1, g1 ≤1 1)[f (Ω(ϕ)) =0 g(Ω(ϕ))→ ϕ(f) =0 ϕ(g)].

(MUC)
(MUC) says: All type 2 objects are uniformly continuous.

(MUC) contradicts (∃2), but: RCAω0 + (MUC) ≡L2 RCA0 + WKL.

Now RCAΩ
0 proves that (MUC)st is equivalent to:

(∀stϕ2)(∀f 1, g1 ≤1 1)
[
f ≈1 g → ϕ(f) =0 ϕ(g)

]
,

and also equivalent to

(∀stϕ2)(∃stk)(∀f 1, g1 ≤1 1)
[
f k = gk → ϕ(f) =0 ϕ(g)

]
(MUC)∗.

NOTE: (MUC)st ↔ (MUC)∗ has the form UT st ↔ T ∗.

Dysfunctional principles at the level of WKL0

HORM enables the study of intuitionistic principles (i.e. classically false).

(∃Ω3)(∀ϕ2)(∀f 1, g1 ≤1 1)[f (Ω(ϕ)) =0 g(Ω(ϕ))→ ϕ(f) =0 ϕ(g)].

(MUC)
(MUC) says: All type 2 objects are uniformly continuous.

(MUC) contradicts (∃2), but: RCAω0 + (MUC) ≡L2 RCA0 + WKL.

Now RCAΩ
0 proves that (MUC)st is equivalent to:

(∀stϕ2)(∀f 1, g1 ≤1 1)
[
f ≈1 g → ϕ(f) =0 ϕ(g)

]
,

and also equivalent to

(∀stϕ2)(∃stk)(∀f 1, g1 ≤1 1)
[
f k = gk → ϕ(f) =0 ϕ(g)

]
(MUC)∗.

NOTE: (MUC)st ↔ (MUC)∗ has the form UT st ↔ T ∗.

Equivalences

In RCAΩ
0 , we have

1 (MUC)st ≡ (∃Ω3)(∀ϕ2)(∀f 1, g1 ≤1 1)[f (Ω(ϕ)) =0 g(Ω(ϕ))→
ϕ(f) =0 ϕ(g)]. (Existence of Fan Functional)

2 (∀stϕ2)(∀f 1, g1 ≤1 1)
[
f ≈1 g → ϕ(f) =0 ϕ(g)

]
3 (∃stΓ3→1)(∀stϕ2, f 1 ≤1 1)(ϕ(f) ≤ ϕ(Γ(ϕ))) (UMAX)st

4 (∀stϕ2)(∃stg1 ≤1 1)(∀f 1 ≤1 1)(ϕ(f) ≤ ϕ(g)) (MAX)∗

5 Uniform version of QF-FAN. (=quantifier-free fan theorem)

6 Nonstandard version of QF-FAN.

7 Uniform version of FANc . (=continuous fan theorem)

8 Nonstandard version of FANc .

Similar equivalences for: WC-N and axiom F (proof mining!).

UNIVERSAL: Both for classical and intuitionistic principles, we
obtain UT st ↔ T ∗ equivalences.

Equivalences

In RCAΩ
0 , we have

1 (MUC)st ≡ (∃Ω3)(∀ϕ2)(∀f 1, g1 ≤1 1)[f (Ω(ϕ)) =0 g(Ω(ϕ))→
ϕ(f) =0 ϕ(g)]. (Existence of Fan Functional)

2 (∀stϕ2)(∀f 1, g1 ≤1 1)
[
f ≈1 g → ϕ(f) =0 ϕ(g)

]

3 (∃stΓ3→1)(∀stϕ2, f 1 ≤1 1)(ϕ(f) ≤ ϕ(Γ(ϕ))) (UMAX)st

4 (∀stϕ2)(∃stg1 ≤1 1)(∀f 1 ≤1 1)(ϕ(f) ≤ ϕ(g)) (MAX)∗

5 Uniform version of QF-FAN. (=quantifier-free fan theorem)

6 Nonstandard version of QF-FAN.

7 Uniform version of FANc . (=continuous fan theorem)

8 Nonstandard version of FANc .

Similar equivalences for: WC-N and axiom F (proof mining!).

UNIVERSAL: Both for classical and intuitionistic principles, we
obtain UT st ↔ T ∗ equivalences.

Equivalences

In RCAΩ
0 , we have

1 (MUC)st ≡ (∃Ω3)(∀ϕ2)(∀f 1, g1 ≤1 1)[f (Ω(ϕ)) =0 g(Ω(ϕ))→
ϕ(f) =0 ϕ(g)]. (Existence of Fan Functional)

2 (∀stϕ2)(∀f 1, g1 ≤1 1)
[
f ≈1 g → ϕ(f) =0 ϕ(g)

]
3 (∃stΓ3→1)(∀stϕ2, f 1 ≤1 1)(ϕ(f) ≤ ϕ(Γ(ϕ))) (UMAX)st

4 (∀stϕ2)(∃stg1 ≤1 1)(∀f 1 ≤1 1)(ϕ(f) ≤ ϕ(g)) (MAX)∗

5 Uniform version of QF-FAN. (=quantifier-free fan theorem)

6 Nonstandard version of QF-FAN.

7 Uniform version of FANc . (=continuous fan theorem)

8 Nonstandard version of FANc .

Similar equivalences for: WC-N and axiom F (proof mining!).

UNIVERSAL: Both for classical and intuitionistic principles, we
obtain UT st ↔ T ∗ equivalences.

Equivalences

In RCAΩ
0 , we have

1 (MUC)st ≡ (∃Ω3)(∀ϕ2)(∀f 1, g1 ≤1 1)[f (Ω(ϕ)) =0 g(Ω(ϕ))→
ϕ(f) =0 ϕ(g)]. (Existence of Fan Functional)

2 (∀stϕ2)(∀f 1, g1 ≤1 1)
[
f ≈1 g → ϕ(f) =0 ϕ(g)

]
3 (∃stΓ3→1)(∀stϕ2, f 1 ≤1 1)(ϕ(f) ≤ ϕ(Γ(ϕ))) (UMAX)st

4 (∀stϕ2)(∃stg1 ≤1 1)(∀f 1 ≤1 1)(ϕ(f) ≤ ϕ(g)) (MAX)∗

5 Uniform version of QF-FAN. (=quantifier-free fan theorem)

6 Nonstandard version of QF-FAN.

7 Uniform version of FANc . (=continuous fan theorem)

8 Nonstandard version of FANc .

Similar equivalences for: WC-N and axiom F (proof mining!).

UNIVERSAL: Both for classical and intuitionistic principles, we
obtain UT st ↔ T ∗ equivalences.

Equivalences

In RCAΩ
0 , we have

1 (MUC)st ≡ (∃Ω3)(∀ϕ2)(∀f 1, g1 ≤1 1)[f (Ω(ϕ)) =0 g(Ω(ϕ))→
ϕ(f) =0 ϕ(g)]. (Existence of Fan Functional)

2 (∀stϕ2)(∀f 1, g1 ≤1 1)
[
f ≈1 g → ϕ(f) =0 ϕ(g)

]
3 (∃stΓ3→1)(∀stϕ2, f 1 ≤1 1)(ϕ(f) ≤ ϕ(Γ(ϕ))) (UMAX)st

4 (∀stϕ2)(∃stg1 ≤1 1)(∀f 1 ≤1 1)(ϕ(f) ≤ ϕ(g)) (MAX)∗

5 Uniform version of QF-FAN. (=quantifier-free fan theorem)

6 Nonstandard version of QF-FAN.

7 Uniform version of FANc . (=continuous fan theorem)

8 Nonstandard version of FANc .

Similar equivalences for: WC-N and axiom F (proof mining!).

UNIVERSAL: Both for classical and intuitionistic principles, we
obtain UT st ↔ T ∗ equivalences.

Equivalences

In RCAΩ
0 , we have

1 (MUC)st ≡ (∃Ω3)(∀ϕ2)(∀f 1, g1 ≤1 1)[f (Ω(ϕ)) =0 g(Ω(ϕ))→
ϕ(f) =0 ϕ(g)]. (Existence of Fan Functional)

2 (∀stϕ2)(∀f 1, g1 ≤1 1)
[
f ≈1 g → ϕ(f) =0 ϕ(g)

]
3 (∃stΓ3→1)(∀stϕ2, f 1 ≤1 1)(ϕ(f) ≤ ϕ(Γ(ϕ))) (UMAX)st

4 (∀stϕ2)(∃stg1 ≤1 1)(∀f 1 ≤1 1)(ϕ(f) ≤ ϕ(g)) (MAX)∗

5 Uniform version of QF-FAN. (=quantifier-free fan theorem)

6 Nonstandard version of QF-FAN.

7 Uniform version of FANc . (=continuous fan theorem)

8 Nonstandard version of FANc .

Similar equivalences for: WC-N and axiom F (proof mining!).

UNIVERSAL: Both for classical and intuitionistic principles, we
obtain UT st ↔ T ∗ equivalences.

Equivalences

In RCAΩ
0 , we have

1 (MUC)st ≡ (∃Ω3)(∀ϕ2)(∀f 1, g1 ≤1 1)[f (Ω(ϕ)) =0 g(Ω(ϕ))→
ϕ(f) =0 ϕ(g)]. (Existence of Fan Functional)

2 (∀stϕ2)(∀f 1, g1 ≤1 1)
[
f ≈1 g → ϕ(f) =0 ϕ(g)

]
3 (∃stΓ3→1)(∀stϕ2, f 1 ≤1 1)(ϕ(f) ≤ ϕ(Γ(ϕ))) (UMAX)st

4 (∀stϕ2)(∃stg1 ≤1 1)(∀f 1 ≤1 1)(ϕ(f) ≤ ϕ(g)) (MAX)∗

5 Uniform version of QF-FAN. (=quantifier-free fan theorem)

6 Nonstandard version of QF-FAN.

7 Uniform version of FANc . (=continuous fan theorem)

8 Nonstandard version of FANc .

Similar equivalences for: WC-N and axiom F (proof mining!).

UNIVERSAL: Both for classical and intuitionistic principles, we
obtain UT st ↔ T ∗ equivalences.

Equivalences

In RCAΩ
0 , we have

1 (MUC)st ≡ (∃Ω3)(∀ϕ2)(∀f 1, g1 ≤1 1)[f (Ω(ϕ)) =0 g(Ω(ϕ))→
ϕ(f) =0 ϕ(g)]. (Existence of Fan Functional)

2 (∀stϕ2)(∀f 1, g1 ≤1 1)
[
f ≈1 g → ϕ(f) =0 ϕ(g)

]
3 (∃stΓ3→1)(∀stϕ2, f 1 ≤1 1)(ϕ(f) ≤ ϕ(Γ(ϕ))) (UMAX)st

4 (∀stϕ2)(∃stg1 ≤1 1)(∀f 1 ≤1 1)(ϕ(f) ≤ ϕ(g)) (MAX)∗

5 Uniform version of QF-FAN. (=quantifier-free fan theorem)

6 Nonstandard version of QF-FAN.

7 Uniform version of FANc . (=continuous fan theorem)

8 Nonstandard version of FANc .

Similar equivalences for: WC-N and axiom F (proof mining!).

UNIVERSAL: Both for classical and intuitionistic principles, we
obtain UT st ↔ T ∗ equivalences.

Proving T ∗ → UT st via the ‘canonical approximation’

WKL∗ ≡ (∀stT 1 ≤1 1)(Tst
∞(T)→ (∃stα1)(∀x0)(αx ∈ T).

We define a functional Ψ(1×0)→1 (in EFAω).

Ψ(T ,M)(1) :=

{
0 (∀n0 ≤ M)(∃α0)(|α| = n ∧ (0 ∗ α) ∈ T)

1 otherwise

Ψ(T ,M)(n + 1) :=

{
0 (∀n0 ≤ M)(∃α0)

(
|α| = n ∧ (Ψ(T ,M)(n) ∗ 0 ∗ α) ∈ T

)
1 otherwise

Let Ω be the set of infinite numbers. We have

(∀stT 1 ≤1 1)(∀stn0)(∀N,M ∈ Ω)(Ψ(T ,M)(n) = Ψ(T ,N)(n)).

i.e. Ψ(T ,M) is Ω-invariant, the NSA-version of ‘being (∆0
1)st ’.

By ∆0
1-Standard Part Principle (in RCAΩ

0), there is STANDARD Φ s.t.

(∀stT 1 ≤1 1)(∀stn0)(∀N ∈ Ω)(Φ(n) = Ψ(T ,N)(n)).

This Φ is as in UWKLst , i.e. we have WKL∗ → UWKLst .

Proving T ∗ → UT st via the ‘canonical approximation’

WKL∗ ≡ (∀stT 1 ≤1 1)(Tst
∞(T)→ (∃stα1)(∀x0)(αx ∈ T).

We define a functional Ψ(1×0)→1 (in EFAω).

Ψ(T ,M)(1) :=

{
0 (∀n0 ≤ M)(∃α0)(|α| = n ∧ (0 ∗ α) ∈ T)

1 otherwise

Ψ(T ,M)(n + 1) :=

{
0 (∀n0 ≤ M)(∃α0)

(
|α| = n ∧ (Ψ(T ,M)(n) ∗ 0 ∗ α) ∈ T

)
1 otherwise

Let Ω be the set of infinite numbers. We have

(∀stT 1 ≤1 1)(∀stn0)(∀N,M ∈ Ω)(Ψ(T ,M)(n) = Ψ(T ,N)(n)).

i.e. Ψ(T ,M) is Ω-invariant, the NSA-version of ‘being (∆0
1)st ’.

By ∆0
1-Standard Part Principle (in RCAΩ

0), there is STANDARD Φ s.t.

(∀stT 1 ≤1 1)(∀stn0)(∀N ∈ Ω)(Φ(n) = Ψ(T ,N)(n)).

This Φ is as in UWKLst , i.e. we have WKL∗ → UWKLst .

Proving T ∗ → UT st via the ‘canonical approximation’

WKL∗ ≡ (∀stT 1 ≤1 1)(Tst
∞(T)→ (∃stα1)(∀x0)(αx ∈ T).

We define a functional Ψ(1×0)→1 (in EFAω).

Ψ(T ,M)(1) :=

{
0 (∀n0 ≤ M)(∃α0)(|α| = n ∧ (0 ∗ α) ∈ T)

1 otherwise

Ψ(T ,M)(n + 1) :=

{
0 (∀n0 ≤ M)(∃α0)

(
|α| = n ∧ (Ψ(T ,M)(n) ∗ 0 ∗ α) ∈ T

)
1 otherwise

Let Ω be the set of infinite numbers. We have

(∀stT 1 ≤1 1)(∀stn0)(∀N,M ∈ Ω)(Ψ(T ,M)(n) = Ψ(T ,N)(n)).

i.e. Ψ(T ,M) is Ω-invariant, the NSA-version of ‘being (∆0
1)st ’.

By ∆0
1-Standard Part Principle (in RCAΩ

0), there is STANDARD Φ s.t.

(∀stT 1 ≤1 1)(∀stn0)(∀N ∈ Ω)(Φ(n) = Ψ(T ,N)(n)).

This Φ is as in UWKLst , i.e. we have WKL∗ → UWKLst .

Proving T ∗ → UT st via the ‘canonical approximation’

WKL∗ ≡ (∀stT 1 ≤1 1)(Tst
∞(T)→ (∃stα1)(∀x0)(αx ∈ T).

We define a functional Ψ(1×0)→1 (in EFAω).

Ψ(T ,M)(1) :=

{
0 (∀n0 ≤ M)(∃α0)(|α| = n ∧ (0 ∗ α) ∈ T)

1 otherwise

Ψ(T ,M)(n + 1) :=

{
0 (∀n0 ≤ M)(∃α0)

(
|α| = n ∧ (Ψ(T ,M)(n) ∗ 0 ∗ α) ∈ T

)
1 otherwise

Let Ω be the set of infinite numbers. We have

(∀stT 1 ≤1 1)(∀stn0)(∀N,M ∈ Ω)(Ψ(T ,M)(n) = Ψ(T ,N)(n)).

i.e. Ψ(T ,M) is Ω-invariant, the NSA-version of ‘being (∆0
1)st ’.

By ∆0
1-Standard Part Principle (in RCAΩ

0), there is STANDARD Φ s.t.

(∀stT 1 ≤1 1)(∀stn0)(∀N ∈ Ω)(Φ(n) = Ψ(T ,N)(n)).

This Φ is as in UWKLst , i.e. we have WKL∗ → UWKLst .

Proving T ∗ → UT st via the ‘canonical approximation’

WKL∗ ≡ (∀stT 1 ≤1 1)(Tst
∞(T)→ (∃stα1)(∀x0)(αx ∈ T).

We define a functional Ψ(1×0)→1 (in EFAω).

Ψ(T ,M)(1) :=

{
0 (∀n0 ≤ M)(∃α0)(|α| = n ∧ (0 ∗ α) ∈ T)

1 otherwise

Ψ(T ,M)(n + 1) :=

{
0 (∀n0 ≤ M)(∃α0)

(
|α| = n ∧ (Ψ(T ,M)(n) ∗ 0 ∗ α) ∈ T

)
1 otherwise

Let Ω be the set of infinite numbers. We have

(∀stT 1 ≤1 1)(∀stn0)(∀N,M ∈ Ω)(Ψ(T ,M)(n) = Ψ(T ,N)(n)).

i.e. Ψ(T ,M) is Ω-invariant, the NSA-version of ‘being (∆0
1)st ’.

By ∆0
1-Standard Part Principle (in RCAΩ

0), there is STANDARD Φ s.t.

(∀stT 1 ≤1 1)(∀stn0)(∀N ∈ Ω)(Φ(n) = Ψ(T ,N)(n)).

This Φ is as in UWKLst , i.e. we have WKL∗ → UWKLst .

Proving T ∗ → UT st via the ‘canonical approximation’

WKL∗ ≡ (∀stT 1 ≤1 1)(Tst
∞(T)→ (∃stα1)(∀x0)(αx ∈ T).

We define a functional Ψ(1×0)→1 (in EFAω).

Ψ(T ,M)(1) :=

{
0 (∀n0 ≤ M)(∃α0)(|α| = n ∧ (0 ∗ α) ∈ T)

1 otherwise

Ψ(T ,M)(n + 1) :=

{
0 (∀n0 ≤ M)(∃α0)

(
|α| = n ∧ (Ψ(T ,M)(n) ∗ 0 ∗ α) ∈ T

)
1 otherwise

Let Ω be the set of infinite numbers. We have

(∀stT 1 ≤1 1)(∀stn0)(∀N,M ∈ Ω)(Ψ(T ,M)(n) = Ψ(T ,N)(n)).

i.e. Ψ(T ,M) is Ω-invariant, the NSA-version of ‘being (∆0
1)st ’.

By ∆0
1-Standard Part Principle (in RCAΩ

0), there is STANDARD Φ s.t.

(∀stT 1 ≤1 1)(∀stn0)(∀N ∈ Ω)(Φ(n) = Ψ(T ,N)(n)).

This Φ is as in UWKLst , i.e. we have WKL∗ → UWKLst .

Proving T ∗ → UT st via the ‘canonical approximation’

WKL∗ ≡ (∀stT 1 ≤1 1)(Tst
∞(T)→ (∃stα1)(∀x0)(αx ∈ T).

We define a functional Ψ(1×0)→1 (in EFAω).

Ψ(T ,M)(1) :=

{
0 (∀n0 ≤ M)(∃α0)(|α| = n ∧ (0 ∗ α) ∈ T)

1 otherwise

Ψ(T ,M)(n + 1) :=

{
0 (∀n0 ≤ M)(∃α0)

(
|α| = n ∧ (Ψ(T ,M)(n) ∗ 0 ∗ α) ∈ T

)
1 otherwise

Let Ω be the set of infinite numbers. We have

(∀stT 1 ≤1 1)(∀stn0)(∀N,M ∈ Ω)(Ψ(T ,M)(n) = Ψ(T ,N)(n)).

i.e. Ψ(T ,M) is Ω-invariant, the NSA-version of ‘being (∆0
1)st ’.

By ∆0
1-Standard Part Principle (in RCAΩ

0), there is STANDARD Φ s.t.

(∀stT 1 ≤1 1)(∀stn0)(∀N ∈ Ω)(Φ(n) = Ψ(T ,N)(n)).

This Φ is as in UWKLst , i.e. we have WKL∗ → UWKLst .

Proving T ∗ → UT st via the ‘canonical approximation’

WKL∗ ≡ (∀stT 1 ≤1 1)(Tst
∞(T)→ (∃stα1)(∀x0)(αx ∈ T).

We define a functional Ψ(1×0)→1 (in EFAω).

Ψ(T ,M)(1) :=

{
0 (∀n0 ≤ M)(∃α0)(|α| = n ∧ (0 ∗ α) ∈ T)

1 otherwise

Ψ(T ,M)(n + 1) :=

{
0 (∀n0 ≤ M)(∃α0)

(
|α| = n ∧ (Ψ(T ,M)(n) ∗ 0 ∗ α) ∈ T

)
1 otherwise

Let Ω be the set of infinite numbers. We have

(∀stT 1 ≤1 1)(∀stn0)(∀N,M ∈ Ω)(Ψ(T ,M)(n) = Ψ(T ,N)(n)).

i.e. Ψ(T ,M) is Ω-invariant, the NSA-version of ‘being (∆0
1)st ’.

By ∆0
1-Standard Part Principle (in RCAΩ

0), there is STANDARD Φ s.t.

(∀stT 1 ≤1 1)(∀stn0)(∀N ∈ Ω)(Φ(n) = Ψ(T ,N)(n)).

This Φ is as in UWKLst , i.e. we have WKL∗ → UWKLst .

Hilbert’s program

= to reduce infinitary mathematics to finitary mathematics (=PRA) via a

consistency proof of the latter in the former.

Full Hilbert’s program is impossible due to Gödel incompleteness. RM

provides partial realization. Other way to reduce FULL infinitary math to

finitary math?

Inside (RCAω
0)∗+ BASIC (=NSA-version of EFA), for any standard Ξ1→1:

(∀stT ≤1 1)
[
(∀stn0 ≤ M)(∃α0)(|α| = n ∧ α ∈ T)→ (∀stn)(Ξ(T)n ∈ T)

]
.

↔
(∀stn)(∀N ∈ Ω)[Ξ(T)(n) = Ψ(T ,N)(n)].

In other words: If Ξ behaves like the functional Φ from UWKLst , then

Ξ(T) equals Ψ(T ,M) for any M ∈ Ω, and vice versa.

But PRA proves consistency of (RCAω
0)∗ + BASIC. Hence, finitistic

reduction of Φ from UWKL (and hence TJ)!

Hilbert’s program

= to reduce infinitary mathematics to finitary mathematics (=PRA) via a

consistency proof of the latter in the former.

Full Hilbert’s program is impossible due to Gödel incompleteness. RM

provides partial realization. Other way to reduce FULL infinitary math to

finitary math?

Inside (RCAω
0)∗+ BASIC (=NSA-version of EFA), for any standard Ξ1→1:

(∀stT ≤1 1)
[
(∀stn0 ≤ M)(∃α0)(|α| = n ∧ α ∈ T)→ (∀stn)(Ξ(T)n ∈ T)

]
.

↔
(∀stn)(∀N ∈ Ω)[Ξ(T)(n) = Ψ(T ,N)(n)].

In other words: If Ξ behaves like the functional Φ from UWKLst , then

Ξ(T) equals Ψ(T ,M) for any M ∈ Ω, and vice versa.

But PRA proves consistency of (RCAω
0)∗ + BASIC. Hence, finitistic

reduction of Φ from UWKL (and hence TJ)!

Hilbert’s program

= to reduce infinitary mathematics to finitary mathematics (=PRA) via a

consistency proof of the latter in the former.

Full Hilbert’s program is impossible due to Gödel incompleteness.

RM

provides partial realization. Other way to reduce FULL infinitary math to

finitary math?

Inside (RCAω
0)∗+ BASIC (=NSA-version of EFA), for any standard Ξ1→1:

(∀stT ≤1 1)
[
(∀stn0 ≤ M)(∃α0)(|α| = n ∧ α ∈ T)→ (∀stn)(Ξ(T)n ∈ T)

]
.

↔
(∀stn)(∀N ∈ Ω)[Ξ(T)(n) = Ψ(T ,N)(n)].

In other words: If Ξ behaves like the functional Φ from UWKLst , then

Ξ(T) equals Ψ(T ,M) for any M ∈ Ω, and vice versa.

But PRA proves consistency of (RCAω
0)∗ + BASIC. Hence, finitistic

reduction of Φ from UWKL (and hence TJ)!

Hilbert’s program

= to reduce infinitary mathematics to finitary mathematics (=PRA) via a

consistency proof of the latter in the former.

Full Hilbert’s program is impossible due to Gödel incompleteness. RM

provides partial realization.

Other way to reduce FULL infinitary math to

finitary math?

Inside (RCAω
0)∗+ BASIC (=NSA-version of EFA), for any standard Ξ1→1:

(∀stT ≤1 1)
[
(∀stn0 ≤ M)(∃α0)(|α| = n ∧ α ∈ T)→ (∀stn)(Ξ(T)n ∈ T)

]
.

↔
(∀stn)(∀N ∈ Ω)[Ξ(T)(n) = Ψ(T ,N)(n)].

In other words: If Ξ behaves like the functional Φ from UWKLst , then

Ξ(T) equals Ψ(T ,M) for any M ∈ Ω, and vice versa.

But PRA proves consistency of (RCAω
0)∗ + BASIC. Hence, finitistic

reduction of Φ from UWKL (and hence TJ)!

Hilbert’s program

= to reduce infinitary mathematics to finitary mathematics (=PRA) via a

consistency proof of the latter in the former.

Full Hilbert’s program is impossible due to Gödel incompleteness. RM

provides partial realization. Other way to reduce FULL infinitary math to

finitary math?

Inside (RCAω
0)∗+ BASIC (=NSA-version of EFA), for any standard Ξ1→1:

(∀stT ≤1 1)
[
(∀stn0 ≤ M)(∃α0)(|α| = n ∧ α ∈ T)→ (∀stn)(Ξ(T)n ∈ T)

]
.

↔
(∀stn)(∀N ∈ Ω)[Ξ(T)(n) = Ψ(T ,N)(n)].

In other words: If Ξ behaves like the functional Φ from UWKLst , then

Ξ(T) equals Ψ(T ,M) for any M ∈ Ω, and vice versa.

But PRA proves consistency of (RCAω
0)∗ + BASIC. Hence, finitistic

reduction of Φ from UWKL (and hence TJ)!

Hilbert’s program

= to reduce infinitary mathematics to finitary mathematics (=PRA) via a

consistency proof of the latter in the former.

Full Hilbert’s program is impossible due to Gödel incompleteness. RM

provides partial realization. Other way to reduce FULL infinitary math to

finitary math?

Inside (RCAω
0)∗+ BASIC (=NSA-version of EFA), for any standard Ξ1→1:

(∀stT ≤1 1)
[
(∀stn0 ≤ M)(∃α0)(|α| = n ∧ α ∈ T)→ (∀stn)(Ξ(T)n ∈ T)

]
.

↔
(∀stn)(∀N ∈ Ω)[Ξ(T)(n) = Ψ(T ,N)(n)].

In other words: If Ξ behaves like the functional Φ from UWKLst , then

Ξ(T) equals Ψ(T ,M) for any M ∈ Ω, and vice versa.

But PRA proves consistency of (RCAω
0)∗ + BASIC. Hence, finitistic

reduction of Φ from UWKL (and hence TJ)!

Hilbert’s program

= to reduce infinitary mathematics to finitary mathematics (=PRA) via a

consistency proof of the latter in the former.

Full Hilbert’s program is impossible due to Gödel incompleteness. RM

provides partial realization. Other way to reduce FULL infinitary math to

finitary math?

Inside (RCAω
0)∗+ BASIC (=NSA-version of EFA), for any standard Ξ1→1:

(∀stT ≤1 1)
[
(∀stn0 ≤ M)(∃α0)(|α| = n ∧ α ∈ T)→ (∀stn)(Ξ(T)n ∈ T)

]
.

↔

(∀stn)(∀N ∈ Ω)[Ξ(T)(n) = Ψ(T ,N)(n)].

In other words: If Ξ behaves like the functional Φ from UWKLst , then

Ξ(T) equals Ψ(T ,M) for any M ∈ Ω, and vice versa.

But PRA proves consistency of (RCAω
0)∗ + BASIC. Hence, finitistic

reduction of Φ from UWKL (and hence TJ)!

Hilbert’s program

= to reduce infinitary mathematics to finitary mathematics (=PRA) via a

consistency proof of the latter in the former.

Full Hilbert’s program is impossible due to Gödel incompleteness. RM

provides partial realization. Other way to reduce FULL infinitary math to

finitary math?

Inside (RCAω
0)∗+ BASIC (=NSA-version of EFA), for any standard Ξ1→1:

(∀stT ≤1 1)
[
(∀stn0 ≤ M)(∃α0)(|α| = n ∧ α ∈ T)→ (∀stn)(Ξ(T)n ∈ T)

]
.

↔
(∀stn)(∀N ∈ Ω)[Ξ(T)(n) = Ψ(T ,N)(n)].

In other words: If Ξ behaves like the functional Φ from UWKLst , then

Ξ(T) equals Ψ(T ,M) for any M ∈ Ω, and vice versa.

But PRA proves consistency of (RCAω
0)∗ + BASIC. Hence, finitistic

reduction of Φ from UWKL (and hence TJ)!

Hilbert’s program

= to reduce infinitary mathematics to finitary mathematics (=PRA) via a

consistency proof of the latter in the former.

Full Hilbert’s program is impossible due to Gödel incompleteness. RM

provides partial realization. Other way to reduce FULL infinitary math to

finitary math?

Inside (RCAω
0)∗+ BASIC (=NSA-version of EFA), for any standard Ξ1→1:

(∀stT ≤1 1)
[
(∀stn0 ≤ M)(∃α0)(|α| = n ∧ α ∈ T)→ (∀stn)(Ξ(T)n ∈ T)

]
.

↔
(∀stn)(∀N ∈ Ω)[Ξ(T)(n) = Ψ(T ,N)(n)].

In other words: If Ξ behaves like the functional Φ from UWKLst , then

Ξ(T) equals Ψ(T ,M) for any M ∈ Ω, and vice versa.

But PRA proves consistency of (RCAω
0)∗ + BASIC. Hence, finitistic

reduction of Φ from UWKL (and hence TJ)!

Hilbert’s program

= to reduce infinitary mathematics to finitary mathematics (=PRA) via a

consistency proof of the latter in the former.

Full Hilbert’s program is impossible due to Gödel incompleteness. RM

provides partial realization. Other way to reduce FULL infinitary math to

finitary math?

Inside (RCAω
0)∗+ BASIC (=NSA-version of EFA), for any standard Ξ1→1:

(∀stT ≤1 1)
[
(∀stn0 ≤ M)(∃α0)(|α| = n ∧ α ∈ T)→ (∀stn)(Ξ(T)n ∈ T)

]
.

↔
(∀stn)(∀N ∈ Ω)[Ξ(T)(n) = Ψ(T ,N)(n)].

In other words: If Ξ behaves like the functional Φ from UWKLst , then

Ξ(T) equals Ψ(T ,M) for any M ∈ Ω, and vice versa.

But PRA proves consistency of (RCAω
0)∗ + BASIC. Hence, finitistic

reduction of Φ from UWKL (and hence TJ)!

Final Thoughts

And what are these [infinitesimals]? [. . .] They are neither finite

Quantities nor Quantities infinitely small, nor yet nothing. May we

not call them the ghosts of departed quantities?

George Berkeley, The Analyst

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

We thank the John Templeton Foundation and Alexander Von
Humboldt Foundation for its generous support!

Thank you for your attention!
Any questions?

Final Thoughts

And what are these [infinitesimals]? [. . .] They are neither finite

Quantities nor Quantities infinitely small, nor yet nothing. May we

not call them the ghosts of departed quantities?

George Berkeley, The Analyst

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

We thank the John Templeton Foundation and Alexander Von
Humboldt Foundation for its generous support!

Thank you for your attention!
Any questions?

Final Thoughts

And what are these [infinitesimals]? [. . .] They are neither finite

Quantities nor Quantities infinitely small, nor yet nothing. May we

not call them the ghosts of departed quantities?

George Berkeley, The Analyst

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

We thank the John Templeton Foundation and Alexander Von
Humboldt Foundation for its generous support!

Thank you for your attention!
Any questions?

Final Thoughts

And what are these [infinitesimals]? [. . .] They are neither finite

Quantities nor Quantities infinitely small, nor yet nothing. May we

not call them the ghosts of departed quantities?

George Berkeley, The Analyst

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

We thank the John Templeton Foundation and Alexander Von
Humboldt Foundation for its generous support!

Thank you for your attention!
Any questions?

Final Thoughts

And what are these [infinitesimals]? [. . .] They are neither finite

Quantities nor Quantities infinitely small, nor yet nothing. May we

not call them the ghosts of departed quantities?

George Berkeley, The Analyst

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

We thank the John Templeton Foundation and Alexander Von
Humboldt Foundation for its generous support!

Thank you for your attention!

Any questions?

Final Thoughts

And what are these [infinitesimals]? [. . .] They are neither finite

Quantities nor Quantities infinitely small, nor yet nothing. May we

not call them the ghosts of departed quantities?

George Berkeley, The Analyst

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

We thank the John Templeton Foundation and Alexander Von
Humboldt Foundation for its generous support!

Thank you for your attention!
Any questions?

