Universal properties in higher-order Reverse Mathematics

Sam Sanders¹

CTFM, Tokyo Institute of Technology

¹This research is generously supported by the John Templeton Foundation.

What is the right language for formalizing Mathematics?

What is the right language for formalizing Mathematics? Simpson and Friedman: SOA suffices for ordinary math.

What is the right language for formalizing Mathematics? Simpson and Friedman: SOA suffices for ordinary math. Two sorts: natural numbers and sets thereof (type 0 and 1).

What is the right language for formalizing Mathematics? Simpson and Friedman: SOA suffices for ordinary math. Two sorts: natural numbers and sets thereof (type 0 and 1). Higher-type objects (like continuous functions) can be coded.

What is the right language for formalizing Mathematics? Simpson and Friedman: SOA suffices for ordinary math. Two sorts: natural numbers and sets thereof (type 0 and 1). Higher-type objects (like continuous functions) can be coded. Feferman and Kohlenbach: All finite types.

What is the right language for formalizing Mathematics? Simpson and Friedman: SOA suffices for ordinary math. Two sorts: natural numbers and sets thereof (type 0 and 1). Higher-type objects (like continuous functions) can be coded. Feferman and Kohlenbach: All finite types.

The set of finite types **T**:

What is the right language for formalizing Mathematics? Simpson and Friedman: SOA suffices for ordinary math. Two sorts: natural numbers and sets thereof (type 0 and 1). Higher-type objects (like continuous functions) can be coded. Feferman and Kohlenbach: All finite types. The set of finite types $T: 0 \in T$

What is the right language for formalizing Mathematics? Simpson and Friedman: SOA suffices for ordinary math. Two sorts: natural numbers and sets thereof (type 0 and 1). Higher-type objects (like continuous functions) can be coded. Feferman and Kohlenbach: All finite types.

The set of finite types $\mathbf{T}: \mathbf{0} \in \mathbf{T}$ and if $\sigma, \rho \in \mathbf{T}$ then $\sigma \to \rho \in \mathbf{T}$.

What is the right language for formalizing Mathematics? Simpson and Friedman: SOA suffices for ordinary math. Two sorts: natural numbers and sets thereof (type 0 and 1). Higher-type objects (like continuous functions) can be coded. Feferman and Kohlenbach: All finite types.

The set of finite types $\mathbf{T}: \mathbf{0} \in \mathbf{T}$ and if $\sigma, \rho \in \mathbf{T}$ then $\sigma \to \rho \in \mathbf{T}$. No coding is required, but ...

What is the right language for formalizing Mathematics? Simpson and Friedman: SOA suffices for ordinary math. Two sorts: natural numbers and sets thereof (type 0 and 1). Higher-type objects (like continuous functions) can be coded.

Feferman and Kohlenbach: All finite types.

The set of finite types $\mathbf{T}: \mathbf{0} \in \mathbf{T}$ and if $\sigma, \rho \in \mathbf{T}$ then $\sigma \to \rho \in \mathbf{T}$. No coding is required, but ...

This talk: An intermediate POV via NSA

What is the right language for formalizing Mathematics? Simpson and Friedman: SOA suffices for ordinary math. Two sorts: natural numbers and sets thereof (type 0 and 1). Higher-type objects (like continuous functions) can be coded.

Feferman and Kohlenbach: All finite types.

The set of finite types $\mathbf{T}: \mathbf{0} \in \mathbf{T}$ and if $\sigma, \rho \in \mathbf{T}$ then $\sigma \to \rho \in \mathbf{T}$. No coding is required, but ...

This talk: An intermediate POV via NSA For many thms T of ordinary math:

What is the right language for formalizing Mathematics? Simpson and Friedman: SOA suffices for ordinary math. Two sorts: natural numbers and sets thereof (type 0 and 1). Higher-type objects (like continuous functions) can be coded.

Feferman and Kohlenbach: All finite types.

The set of finite types $\mathbf{T}: \mathbf{0} \in \mathbf{T}$ and if $\sigma, \rho \in \mathbf{T}$ then $\sigma \to \rho \in \mathbf{T}$. No coding is required, but ...

This talk: An intermediate POV via NSA

For many thms T of ordinary math:

 UT^{st} (= 'uniform' version of T with standard higher-type objects)

What is the right language for formalizing Mathematics? Simpson and Friedman: SOA suffices for ordinary math. Two sorts: natural numbers and sets thereof (type 0 and 1). Higher-type objects (like continuous functions) can be coded.

Feferman and Kohlenbach: All finite types.

The set of finite types $\mathbf{T}: \mathbf{0} \in \mathbf{T}$ and if $\sigma, \rho \in \mathbf{T}$ then $\sigma \to \rho \in \mathbf{T}$. No coding is required, but ...

This talk: An intermediate POV via NSA

For many thms T of ordinary math:

 UT^{st} (= 'uniform' version of T with standard higher-type objects) $\leftrightarrow T^*$ (=version of T with only nonstandard lower-type objects)

What is the right language for formalizing Mathematics? Simpson and Friedman: SOA suffices for ordinary math. Two sorts: natural numbers and sets thereof (type 0 and 1). Higher-type objects (like continuous functions) can be coded.

Feferman and Kohlenbach: All finite types.

The set of finite types $\mathbf{T}: \mathbf{0} \in \mathbf{T}$ and if $\sigma, \rho \in \mathbf{T}$ then $\sigma \to \rho \in \mathbf{T}$. No coding is required, but ...

This talk: An intermediate POV via NSA

For many thms T of ordinary math:

 UT^{st} (= 'uniform' version of T with standard higher-type objects) $\leftrightarrow T^*$ (=version of T with only nonstandard lower-type objects)

 $\mathsf{RCA}_0 = I\Sigma_1 + \Delta_1^0 - \mathsf{CA}.$

 $RCA_0 = I\Sigma_1 + \Delta_1^0$ -CA. The latter states 'all computable sets exist'.

 $RCA_0 = I\Sigma_1 + \Delta_1^0$ -CA. The latter states 'all computable sets exist'.

 $\text{RCA}_0^{\omega} = I\Sigma_1 + \text{ 'All computable finite-type functionals exist'.}$

 $RCA_0 = I\Sigma_1 + \Delta_1^0$ -CA. The latter states 'all computable sets exist'.

 $\mathsf{RCA}_0^\omega = I\Sigma_1 + \text{ 'All computable finite-type functionals exist'.}$

 RCA_0^{ω} is conservative over RCA_0 in the L_2 -language.

 $RCA_0 = I\Sigma_1 + \Delta_1^0$ -CA. The latter states 'all computable sets exist'. $RCA_0^{\omega} = I\Sigma_1 +$ 'All computable finite-type functionals exist'. RCA_0^{ω} is conservative over RCA_0 in the L_2 -language.

Consider a new unary predicate st(x) defined on all finite types

 $RCA_0 = I\Sigma_1 + \Delta_1^0$ -CA. The latter states 'all computable sets exist'. $RCA_0^{\omega} = I\Sigma_1 +$ 'All computable finite-type functionals exist'. RCA_0^{ω} is conservative over RCA_0 in the L_2 -language.

Consider a new unary predicate st(x) defined on all finite types and let BASIC define its basic properties like $st(x) \wedge st(f) \rightarrow st(f(x))$.

 $RCA_0 = I\Sigma_1 + \Delta_1^0$ -CA. The latter states 'all computable sets exist'. $RCA_0^{\omega} = I\Sigma_1$ + 'All computable finite-type functionals exist'.

 RCA_0^{ω} is conservative over RCA_0 in the L_2 -language.

Consider a new unary predicate st(x) defined on all finite types and let BASIC define its basic properties like $st(x) \wedge st(f) \rightarrow st(f(x))$.

 $\mathsf{RCA}_0^\Omega = \mathsf{RCA}_0^\omega + \mathsf{BASIC} \text{ plus } `\Delta_1^0 \text{-}\mathsf{Transfer'} \text{ and } `\Delta_1^0 \text{-}\mathsf{Standard} \text{ Part'}.$

 $RCA_0 = I\Sigma_1 + \Delta_1^0$ -CA. The latter states 'all computable sets exist'. $RCA_0^{\omega} = I\Sigma_1 +$ 'All computable finite-type functionals exist'. RCA_0^{ω} is conservative over RCA_0 in the L_2 -language.

Consider a new unary predicate st(x) defined on all finite types and let BASIC define its basic properties like $st(x) \wedge st(f) \rightarrow st(f(x))$. RCA₀^{Ω} = RCA₀^{ω} + BASIC plus ' Δ_1^0 -Transfer' and ' Δ_1^0 -Standard Part'. TRANSFER: $A \leftrightarrow A^{st}$ for all formulas A without 'st(x)'

 $RCA_0 = I\Sigma_1 + \Delta_1^0$ -CA. The latter states 'all computable sets exist'. $RCA_0^{\omega} = I\Sigma_1 +$ 'All computable finite-type functionals exist'. RCA_0^{ω} is conservative over RCA_0 in the L_2 -language.

Consider a new unary predicate st(x) defined on all finite types and let BASIC define its basic properties like $st(x) \wedge st(f) \rightarrow st(f(x))$. RCA₀^{Ω} = RCA₀^{ω} + BASIC plus ' Δ_1^0 -Transfer' and ' Δ_1^0 -Standard Part'. TRANSFER: $A \leftrightarrow A^{st}$ for all formulas A without 'st(x)'

 A^{st} is obtained from A by replacing $\exists x/\forall y$ by $\exists^{st}x/\forall^{st}y$

 $RCA_0 = I\Sigma_1 + \Delta_1^0$ -CA. The latter states 'all computable sets exist'. $RCA_0^\omega = I\Sigma_1 +$ 'All computable finite-type functionals exist'. RCA_0^ω is conservative over RCA_0 in the L_2 -language.

Consider a new unary predicate st(x) defined on all finite types and let BASIC define its basic properties like $st(x) \wedge st(f) \rightarrow st(f(x))$. RCA₀^{Ω} = RCA₀^{ω} + BASIC plus ' Δ_1^0 -Transfer' and ' Δ_1^0 -Standard Part'. TRANSFER: $A \leftrightarrow A^{st}$ for all formulas A without 'st(x)' A^{st} is obtained from A by replacing $\exists x / \forall y$ by $\exists^{st} x / \forall^{st} y$ STANDARD PART: $(\forall X)(\exists^{st} Y)(\forall^{st} n)(n \in X \leftrightarrow n \in Y)$.

 $RCA_0 = I\Sigma_1 + \Delta_1^0$ -CA. The latter states 'all computable sets exist'. $RCA_0^\omega = I\Sigma_1 +$ 'All computable finite-type functionals exist'. RCA_0^ω is conservative over RCA_0 in the L_2 -language.

Consider a new unary predicate st(x) defined on all finite types and let BASIC define its basic properties like $st(x) \wedge st(f) \rightarrow st(f(x))$. RCA₀^Ω = RCA₀^ω + BASIC plus ' Δ_1^0 -Transfer' and ' Δ_1^0 -Standard Part'. TRANSFER: $A \leftrightarrow A^{st}$ for all formulas A without 'st(x)' A^{st} is obtained from A by replacing $\exists x/\forall y$ by $\exists^{st}x/\forall^{st}y$ STANDARD PART: $(\forall X)(\exists^{st}Y)(\forall^{st}n)(n \in X \leftrightarrow n \in Y)$. Later: What is Δ_1^0 -Standard Part?

 $RCA_0 = I\Sigma_1 + \Delta_1^0$ -CA. The latter states 'all computable sets exist'. $RCA_0^\omega = I\Sigma_1 +$ 'All computable finite-type functionals exist'. RCA_0^ω is conservative over RCA_0 in the L_2 -language.

Consider a new unary predicate st(x) defined on all finite types and let BASIC define its basic properties like $st(x) \wedge st(f) \rightarrow st(f(x))$. $\mathsf{RCA}^\Omega_\mathsf{n} = \mathsf{RCA}^\omega_\mathsf{n} + \mathsf{BASIC} \text{ plus } `\Delta^0_\mathsf{1} \text{-} \mathsf{Transfer'} \text{ and } `\Delta^0_\mathsf{1} \text{-} \mathsf{Standard} \text{ Part'}.$ TRANSFER: $A \leftrightarrow A^{st}$ for all formulas A without 'st(x)' A^{st} is obtained from A by replacing $\exists x / \forall y$ by $\exists^{st} x / \forall^{st} y$ STANDARD PART: $(\forall X)(\exists^{st} Y)(\forall^{st} n)(n \in X \leftrightarrow n \in Y).$ Later: What is Δ_1^0 -Standard Part? NO stars: *f vs f

Define $F \in \overline{C}$ as $F \in C \land F(1) >_{\mathbb{R}} 0 \land F(0) <_{\mathbb{R}} 0$.

Define $F \in \overline{C}$ as $F \in C \land F(1) >_{\mathbb{R}} 0 \land F(0) <_{\mathbb{R}} 0$.

 $\mathsf{IVT}^{st} \equiv (\forall^{st} F \in \overline{C}) (\exists^{st} x \in [0,1]) (F(x) =_{\mathbb{R}} 0)$

Define
$$F \in \overline{C}$$
 as $F \in C \land F(1) >_{\mathbb{R}} 0 \land F(0) <_{\mathbb{R}} 0$.
 $I \lor T^{st} \equiv (\forall^{st} F \in \overline{C}) (\exists^{st} x \in [0, 1]) (F(x) =_{\mathbb{R}} 0)$
Over RCA_0^Ω , we have
 $\bigcup I \lor T^{st} \equiv (\exists^{st} \Phi^{(1 \to 1) \to 1}) (\forall^{st} F \in \overline{C}) (F(\Phi(F)) =_{\mathbb{R}} 0)$

Define
$$F \in \overline{C}$$
 as $F \in C \land F(1) >_{\mathbb{R}} 0 \land F(0) <_{\mathbb{R}} 0$.
 $I \lor T^{st} \equiv (\forall^{st} F \in \overline{C})(\exists^{st} x \in [0,1])(F(x) =_{\mathbb{R}} 0)$
Over RCA_0^{Ω} , we have
 $U \lor T^{st} \equiv (\exists^{st} \Phi^{(1 \to 1) \to 1})(\forall^{st} F \in \overline{C})(F(\Phi(F)) =_{\mathbb{R}} 0)$
 \downarrow
 $I \lor T^* \equiv (\forall^{st} F \in \overline{C})(\exists^{st} x \in [0,1])(F(x) =_{*\mathbb{R}} 0)$

Define
$$F \in \overline{C}$$
 as $F \in C \land F(1) >_{\mathbb{R}} 0 \land F(0) <_{\mathbb{R}} 0$.
 $IVT^{st} \equiv (\forall^{st}F \in \overline{C})(\exists^{st}x \in [0,1])(F(x) =_{\mathbb{R}} 0)$
Over RCA_0^{Ω} , we have
 $UIVT^{st} \equiv (\exists^{st}\Phi^{(1\to 1)\to 1})(\forall^{st}F \in \overline{C})(F(\Phi(F)) =_{\mathbb{R}} 0)$
 \downarrow
 $IVT^* \equiv (\forall^{st}F \in \overline{C})(\exists^{st}x \in [0,1])(F(x) =_{*\mathbb{R}} 0)$
For $z = (w_n)$, define symbolically $z =_{*\mathbb{R}} 0$ as $(\forall n)(|w_n| \leq \frac{1}{2^n})$

Define
$$F \in \overline{C}$$
 as $F \in C \land F(1) >_{\mathbb{R}} 0 \land F(0) <_{\mathbb{R}} 0$.
 $I \lor T^{st} \equiv (\forall^{st} F \in \overline{C}) (\exists^{st} x \in [0, 1]) (F(x) =_{\mathbb{R}} 0)$
Over RCA_0^{Ω} , we have
 $U I \lor T^{st} \equiv (\exists^{st} \Phi^{(1 \to 1) \to 1}) (\forall^{st} F \in \overline{C}) (F(\Phi(F)) =_{\mathbb{R}} 0)$
 \downarrow
 $I \lor T^* \equiv (\forall^{st} F \in \overline{C}) (\exists^{st} x \in [0, 1]) (F(x) =_{*\mathbb{R}} 0)$
For $z = (w_n)$, define symbolically $z =_{*\mathbb{R}} 0$ as $(\forall n) (|w_n| \le \frac{1}{2^n})$
and $z =_{\mathbb{R}} 0$ as $(\forall^{st} n) (|w_n| \le \frac{1}{2^n})$.

General theme: $UT^{st} \leftrightarrow T^*$
General theme: $UT^{st} \leftrightarrow T^*$

Let T^{st} be of the following form:

 $(\forall^{st}x^{\tau})[A^{st}(x) \to (\exists^{st}y^{\rho})B^{st}(x,y))$ (Tst)

General theme: $UT^{st} \leftrightarrow T^*$

Let T^{st} be of the following form:

$$(\forall^{st}x^{\tau})[A^{st}(x) \to (\exists^{st}y^{\rho})B^{st}(x,y))$$
 (*T*st)

In many cases, TFAE over RCA^Ω_0

$$(\exists^{st} \Phi^{\tau \to \rho})(\forall^{st} x^{\tau})[A^{st}(x) \to B^{st}(x, \Phi(x)). \tag{UT}^{st})$$

and

General theme: $UT^{st} \leftrightarrow T^*$

Let T^{st} be of the following form:

$$(\forall^{st}x^{\tau})[A^{st}(x) \to (\exists^{st}y^{\rho})B^{st}(x,y))$$
 (Tst)

In many cases, TFAE over RCA^Ω_0

$$(\exists^{st} \Phi^{\tau \to \rho})(\forall^{st} x^{\tau})[A^{st}(x) \to B^{st}(x, \Phi(x)). \tag{UT}^{st})$$

and

$$(\forall^{st}x^{\tau})[A^{st}(x) \to (\exists^{st}y^{\rho})B(x,y))$$
 (T*)

In RCA $_0^{\Omega}$, the following are equivalent.

 $(\exists^2)^{st} \equiv (\exists^{st}\varphi^2)(\forall^{st}f^1)(\varphi f =_0 0 \leftrightarrow (\exists^{st}x^0)f(x_0) = 0).$

In $\mathsf{RCA}_0^\Omega,$ the following are equivalent.

- $(\exists^2)^{st} \equiv (\exists^{st}\varphi^2)(\forall^{st}f^1)(\varphi f =_0 0 \leftrightarrow (\exists^{st}x^0)f(x_0) = 0).$

In $\mathsf{RCA}_0^\Omega,$ the following are equivalent.

- $(\exists^2)^{st} \equiv (\exists^{st}\varphi^2)(\forall^{st}f^1)(\varphi f =_0 0 \leftrightarrow (\exists^{st}x^0)f(x_0) = 0).$

In $\mathsf{RCA}^\Omega_0,$ the following are equivalent.

- $(\exists^2)^{st} \equiv (\exists^{st}\varphi^2)(\forall^{st}f^1)(\varphi f =_0 0 \leftrightarrow (\exists^{st}x^0)f(x_0) = 0).$
- $\textbf{O} \quad \mathsf{UWKL}^{st} \equiv (\exists^{st} \Phi^{1 \to 1}) (\forall^{st} T^1 \le 1) \big(\mathbb{T}_{\infty}^{st} (T) \to (\forall^{st} n) (\overline{\Phi(T)} n \in T) \big)$

In $\mathsf{RCA}^\Omega_0,$ the following are equivalent.

- $(\exists^2)^{st} \equiv (\exists^{st}\varphi^2)(\forall^{st}f^1)(\varphi f =_0 0 \leftrightarrow (\exists^{st}x^0)f(x_0) = 0).$

- $\bullet \ UIVT^{st} \equiv (\exists^{st} \Phi^{(1 \to 1) \to 1}) (\forall^{st} F \in \overline{C}) (F(\Phi(F)) =_{\mathbb{R}} 0).$

In $\mathsf{RCA}^\Omega_0,$ the following are equivalent.

$$(\exists^2)^{st} \equiv (\exists^{st}\varphi^2)(\forall^{st}f^1)(\varphi f =_0 0 \leftrightarrow (\exists^{st}x^0)f(x_0) = 0).$$

$$\textbf{3} \quad \mathsf{UWKL}^{st} \equiv (\exists^{st} \Phi^{1 \to 1})(\forall^{st} T^1 \le 1) \big(\mathbb{T}^{st}_{\infty}(T) \to (\forall^{st} n)(\overline{\Phi(T)}n \in T) \big)$$

$$IVT^* \equiv (\forall^{st} F \in \overline{C}) (\exists^{st} x \in [0,1]) (F(x) =_{*\mathbb{R}} 0).$$

In $\mathsf{RCA}_0^\Omega,$ the following are equivalent.

$$(\exists^2)^{st} \equiv (\exists^{st}\varphi^2)(\forall^{st}f^1)(\varphi f =_0 0 \leftrightarrow (\exists^{st}x^0)f(x_0) = 0).$$

$$\textbf{3} \quad \mathsf{UWKL}^{st} \equiv (\exists^{st} \Phi^{1 \to 1})(\forall^{st} T^1 \le 1) \big(\mathbb{T}^{st}_{\infty}(T) \to (\forall^{st} n)(\overline{\Phi(T)}n \in T) \big)$$

$$3 UIVTst \equiv (\exists^{st} \Phi^{(1 \to 1) \to 1})(\forall^{st} F \in \overline{C})(F(\Phi(F)) =_{\mathbb{R}} 0).$$

•
$$\mathsf{IVT}^* \equiv (\forall^{st} F \in \overline{C})(\exists^{st} x \in [0,1])(F(x) =_{*\mathbb{R}} 0).$$

 $\textbf{O} \quad \mathsf{UWEI}^{st} \equiv (\exists^{st} \Phi)(\forall^{st} F \in \overline{C})(\forall^{st} y \in [0,1])(F(y) \leq_{\mathbb{R}} F(\Phi(F))).$

In RCA $_{\Omega}^{\Omega}$, the following are equivalent.

- $(\exists^2)^{st} \equiv (\exists^{st}\varphi^2)(\forall^{st}f^1)(\varphi f =_0 0 \leftrightarrow (\exists^{st}x^0)f(x_0) = 0).$
- **2** Π_1^0 -TRANS $\equiv (\forall^{st} F^1)[(\forall^{st} x^0)F(x) = 0 \rightarrow (\forall x^0)F(x) = 0]$
- $UWKL^{st} \equiv (\exists^{st} \Phi^{1 \to 1})(\forall^{st} T^1 \leq 1)(\mathbb{T}^{st}_{\infty}(T) \to (\forall^{st} n)(\overline{\Phi(T)}n \in T))$
- $WKL^* \equiv (\forall^{st} T^1 \leq_1 1)(\mathbb{T}^{st}_{\infty}(T) \to (\exists^{st} \alpha^1)(\forall x^0)(\overline{\alpha} x \in T).$
- $IVVT^{st} \equiv (\exists^{st} \Phi^{(1 \to 1) \to 1}) (\forall^{st} F \in \overline{C}) (F(\Phi(F)) =_{\mathbb{R}} 0).$
- $\mathsf{IVT}^* \equiv (\forall^{st} F \in \overline{C})(\exists^{st} x \in [0, 1])(F(x) =_{\mathbb{R}} 0).$
- $UWEI^{st} \equiv (\exists^{st} \Phi)(\forall^{st} F \in \overline{C})(\forall^{st} y \in [0,1])(F(y) \leq_{\mathbb{R}} F(\Phi(F))).$

- $WEI^* \equiv (\forall^{st} F \in \overline{C})(\exists^{st} x^1 \in [0,1])(\forall y^1 \in [0,1])(F(y) \leq_{*\mathbb{R}} F(x)).$

In RCA_0^Ω , the following are equivalent.

 $(\exists^2)^{st} \equiv (\exists^{st}\varphi^2)(\forall^{st}f^1)(\varphi f =_0 0 \leftrightarrow (\exists^{st}x^0)f(x_0) = 0).$

 $\bullet \ UIVT^{st} \equiv (\exists^{st} \Phi^{(1 \to 1) \to 1})(\forall^{st} F \in \overline{C})(F(\Phi(F)) =_{\mathbb{R}} 0).$

 $IVT^* \equiv (\forall^{st} F \in \overline{C})(\exists^{st} x \in [0,1])(F(x) =_{*\mathbb{R}} 0).$

 $\textbf{O} \quad \mathsf{UWEI}^{st} \equiv (\exists^{st} \Phi)(\forall^{st} F \in \overline{C})(\forall^{st} y \in [0,1])(F(y) \leq_{\mathbb{R}} F(\Phi(F))).$

Structure: $(\exists^2)^{st} \leftrightarrow UT^{st} \leftrightarrow T^* \leftrightarrow \Pi_1^0$ -TRANS

In $\mathsf{RCA}_0^\Omega,$ the following are equivalent.

$$(\exists^2)^{st} \equiv (\exists^{st}\varphi^2)(\forall^{st}f^1)(\varphi f =_0 0 \leftrightarrow (\exists^{st}x^0)f(x_0) = 0).$$

$$IVT^* \equiv (\forall^{st} F \in \overline{C}) (\exists^{st} x \in [0,1]) (F(x) =_{*\mathbb{R}} 0).$$

$$\textbf{O} \quad \mathsf{UWEI}^{st} \equiv (\exists^{st} \Phi)(\forall^{st} F \in \overline{C})(\forall^{st} y \in [0,1])(F(y) \leq_{\mathbb{R}} F(\Phi(F))).$$

Structure: $(\exists^2)^{st} \leftrightarrow UT^{st} \leftrightarrow T^* \leftrightarrow \Pi_1^0$ -TRANS

Also for: RT(1), IPP, 1-RAN, WWKL, Peano's theorem for y' = f(x, y), Gödel's compactness theorem, Σ_1^0 -separation, contraposition of Heine-Borel,

In $\mathsf{RCA}_0^\Omega,$ the following are equivalent.

$$(\exists^2)^{st} \equiv (\exists^{st}\varphi^2)(\forall^{st}f^1)(\varphi f =_0 0 \leftrightarrow (\exists^{st}x^0)f(x_0) = 0).$$

$$IVT^* \equiv (\forall^{st} F \in \overline{C}) (\exists^{st} x \in [0,1]) (F(x) =_{*\mathbb{R}} 0).$$

$$\textbf{O} \quad \mathsf{UWEI}^{st} \equiv (\exists^{st} \Phi)(\forall^{st} F \in \overline{C})(\forall^{st} y \in [0,1])(F(y) \leq_{\mathbb{R}} F(\Phi(F))).$$

Structure: $(\exists^2)^{st} \leftrightarrow UT^{st} \leftrightarrow T^* \leftrightarrow \Pi_1^0$ -TRANS

Also for: RT(1), IPP, 1-RAN, WWKL, Peano's theorem for y' = f(x, y), Gödel's compactness theorem, Σ_1^0 -separation, contraposition of Heine-Borel, (and if $T \rightarrow \text{WKL in BISH}$)

Functional principles at the level of WKL_0

FAN is the classical contraposition of WKL:

 $(\forall T^1) [(\forall \alpha^1 \leq_1 1) (\exists n^0) (\alpha n \notin T) \to (\exists k^0) (\forall \alpha^1 \leq_1 1) (\exists m \leq k) ((\overline{\alpha} m \notin T))]$

If a tree has no path, it is finite.

FAN is the classical contraposition of WKL:

 $(\forall T^1) [(\forall \alpha^1 \leq_1 1) (\exists n^0) (\alpha n \notin T) \rightarrow (\exists k^0) (\forall \alpha^1 \leq_1 1) (\exists m \leq k) ((\overline{\alpha} m \notin T))]$

If a tree has no path, it is finite.

UFAN is the 'fully' uniform version of FAN:

 $\begin{array}{l} (\exists \Phi^{(1\times 2)\to 0})(\forall T^1, g^2) \big[(\forall \alpha^1 \leq_1 1)(\overline{\alpha}g(\alpha) \notin T) \\ & \rightarrow (\forall \alpha^1 \leq_1 1)(\exists m \leq \Phi(T, g))((\overline{\alpha}m \notin T)) \big] \end{array}$

FAN is the classical contraposition of WKL:

 $(\forall T^1) [(\forall \alpha^1 \leq_1 1) (\exists n^0) (\alpha n \notin T) \to (\exists k^0) (\forall \alpha^1 \leq_1 1) (\exists m \leq k) ((\overline{\alpha} m \notin T))]$

If a tree has no path, it is finite.

UFAN is the 'fully' uniform version of FAN:

$$\begin{aligned} (\exists \Phi^{(1\times 2)\to 0})(\forall T^1, g^2) \big[(\forall \alpha^1 \leq_1 1)(\overline{\alpha}g(\alpha) \notin T) \\ & \to (\forall \alpha^1 \leq_1 1)(\exists m \leq \Phi(T, g))((\overline{\alpha}m \notin T)) \big] \end{aligned}$$

We have $\mathsf{WKL}^{st} \leftrightarrow \mathsf{UFAN}^{st} \leftrightarrow \mathsf{FAN}^*$.

FAN is the classical contraposition of WKL:

 $(\forall T^1) [(\forall \alpha^1 \leq_1 1) (\exists n^0) (\alpha n \notin T) \to (\exists k^0) (\forall \alpha^1 \leq_1 1) (\exists m \leq k) ((\overline{\alpha} m \notin T))]$

If a tree has no path, it is finite.

UFAN is the 'fully' uniform version of FAN:

$$\begin{aligned} (\exists \Phi^{(1\times 2)\to 0})(\forall T^1, g^2) \big[(\forall \alpha^1 \leq_1 1)(\overline{\alpha}g(\alpha) \notin T) \\ & \to (\forall \alpha^1 \leq_1 1)(\exists m \leq \Phi(T, g))((\overline{\alpha}m \notin T)) \big] \end{aligned}$$

We have $\mathsf{WKL}^{st} \leftrightarrow \mathsf{UFAN}^{st} \leftrightarrow \mathsf{FAN}^*$. (i.e. $\mathsf{UT}^{st} \leftrightarrow T^*$)

FAN is the classical contraposition of WKL:

 $(\forall T^1) [(\forall \alpha^1 \leq_1 1) (\exists n^0) (\alpha n \notin T) \to (\exists k^0) (\forall \alpha^1 \leq_1 1) (\exists m \leq k) ((\overline{\alpha} m \notin T))]$

If a tree has no path, it is finite.

. . .

UFAN is the 'fully' uniform version of FAN:

$$(\exists \Phi^{(1\times 2)\to 0})(\forall T^1, g^2) [(\forall \alpha^1 \leq_1 1)(\overline{\alpha}g(\alpha) \notin T) \\ \rightarrow (\forall \alpha^1 \leq_1 1)(\exists m \leq \Phi(T, g))((\overline{\alpha}m \notin T))]$$

We have $\mathsf{WKL}^{st} \leftrightarrow \mathsf{UFAN}^{st} \leftrightarrow \mathsf{FAN}^*$. (i.e. $\mathsf{UT}^{st} \leftrightarrow T^*$)

Similar sensitive equivalences for Heine-Borel, Riemann integration and supremum of continuous functions, contraposition of WWKL,

FAN is the classical contraposition of WKL:

 $(\forall T^1) [(\forall \alpha^1 \leq_1 1) (\exists n^0) (\alpha n \notin T) \to (\exists k^0) (\forall \alpha^1 \leq_1 1) (\exists m \leq k) ((\overline{\alpha} m \notin T))]$

If a tree has no path, it is finite.

UFAN is the 'fully' uniform version of FAN:

$$(\exists \Phi^{(1\times 2)\to 0})(\forall T^1, g^2) [(\forall \alpha^1 \leq_1 1)(\overline{\alpha}g(\alpha) \notin T) \\ \rightarrow (\forall \alpha^1 \leq_1 1)(\exists m \leq \Phi(T, g))((\overline{\alpha}m \notin T))]$$

We have $\mathsf{WKL}^{st} \leftrightarrow \mathsf{UFAN}^{st} \leftrightarrow \mathsf{FAN}^*$. (i.e. $\mathsf{UT}^{st} \leftrightarrow T^*$)

Similar sensitive equivalences for Heine-Borel, Riemann integration and supremum of continuous functions, contraposition of WWKL, ... and if FAN $\rightarrow T$ in BISH Dysfunctional principles at the level of WKL_0

Dysfunctional principles at the level of WKL_0

HORM enables the study of intuitionistic principles (i.e. classically false).

HORM enables the study of intuitionistic principles (i.e. classically false).

 $(\exists \Omega^3)(\forall \varphi^2)(\forall f^1, g^1 \leq_1 1)[\overline{f}(\Omega(\varphi)) =_0 \overline{g}(\Omega(\varphi)) \to \varphi(f) =_0 \varphi(g)].$ (MUC)

HORM enables the study of intuitionistic principles (i.e. classically false).

 $(\exists \Omega^3)(\forall \varphi^2)(\forall f^1, g^1 \leq_1 1)[\overline{f}(\Omega(\varphi)) =_0 \overline{g}(\Omega(\varphi)) \to \varphi(f) =_0 \varphi(g)].$ (MUC)

(MUC) says: All type 2 objects are uniformly continuous.

HORM enables the study of intuitionistic principles (i.e. classically false).

 $\begin{array}{l} (\exists \Omega^3)(\forall \varphi^2)(\forall f^1, g^1 \leq_1 1)[\overline{f}(\Omega(\varphi)) =_0 \overline{g}(\Omega(\varphi)) \rightarrow \varphi(f) =_0 \varphi(g)]. \\ (MUC) \\ (MUC) \text{ says: All type 2 objects are uniformly continuous.} \\ (MUC) \text{ contradicts } (\exists^2), \text{ but: } \operatorname{RCA}_0^\omega + (\operatorname{MUC}) \equiv_{L_2} \operatorname{RCA}_0 + \operatorname{WKL}. \end{array}$

HORM enables the study of intuitionistic principles (i.e. classically false).

 $\begin{array}{l} (\exists \Omega^3)(\forall \varphi^2)(\forall f^1, g^1 \leq_1 1)[\overline{f}(\Omega(\varphi)) =_0 \overline{g}(\Omega(\varphi)) \rightarrow \varphi(f) =_0 \varphi(g)]. \\ (MUC) \\ (MUC) \text{ says: All type 2 objects are uniformly continuous.} \\ (MUC) \text{ contradicts } (\exists^2), \text{ but: } \operatorname{RCA}_0^{\omega} + (\operatorname{MUC}) \equiv_{L_2} \operatorname{RCA}_0 + \operatorname{WKL}. \\ \operatorname{Now } \operatorname{RCA}_0^{\Omega} \text{ proves that } (\operatorname{MUC})^{st} \text{ is equivalent to:} \end{array}$

 $(\forall^{st}\varphi^2)(\forall f^1, g^1 \leq_1 1) [f \approx_1 g \to \varphi(f) =_0 \varphi(g)],$

HORM enables the study of intuitionistic principles (i.e. classically false).

 $\begin{array}{l} (\exists \Omega^3)(\forall \varphi^2)(\forall f^1, g^1 \leq_1 1)[\overline{f}(\Omega(\varphi)) =_0 \overline{g}(\Omega(\varphi)) \rightarrow \varphi(f) =_0 \varphi(g)]. \\ (MUC) \\ (MUC) \text{ says: All type 2 objects are uniformly continuous.} \\ (MUC) \text{ contradicts } (\exists^2), \text{ but: } \operatorname{RCA}_0^{\omega} + (\operatorname{MUC}) \equiv_{L_2} \operatorname{RCA}_0 + \operatorname{WKL}. \\ \operatorname{Now } \operatorname{RCA}_0^{\Omega} \text{ proves that } (\operatorname{MUC})^{st} \text{ is equivalent to:} \end{array}$

 $(\forall^{st}\varphi^2)(\forall f^1, g^1 \leq_1 1) [f \approx_1 g \to \varphi(f) =_0 \varphi(g)],$

and also equivalent to

 $(\forall^{st}\varphi^2)(\exists^{st}k)(\forall f^1,g^1\leq_1 1)[\overline{f}k=\overline{g}k\to\varphi(f)=_0\varphi(g)] \quad (\mathsf{MUC})^*.$

HORM enables the study of intuitionistic principles (i.e. classically false).

 $\begin{array}{l} (\exists \Omega^3)(\forall \varphi^2)(\forall f^1, g^1 \leq_1 1)[\overline{f}(\Omega(\varphi)) =_0 \overline{g}(\Omega(\varphi)) \rightarrow \varphi(f) =_0 \varphi(g)]. \\ (MUC) \\ (MUC) \text{ says: All type 2 objects are uniformly continuous.} \\ (MUC) \text{ contradicts } (\exists^2), \text{ but: } \operatorname{RCA}_0^{\omega} + (\operatorname{MUC}) \equiv_{L_2} \operatorname{RCA}_0 + \operatorname{WKL}. \\ \operatorname{Now } \operatorname{RCA}_0^{\Omega} \text{ proves that } (\operatorname{MUC})^{st} \text{ is equivalent to:} \end{array}$

 $(\forall^{st}\varphi^2)(\forall f^1, g^1 \leq_1 1) [f \approx_1 g \to \varphi(f) =_0 \varphi(g)],$

and also equivalent to

 $(\forall^{st}\varphi^2)(\exists^{st}k)(\forall f^1, g^1 \leq_1 1) [\overline{f}k = \overline{g}k \to \varphi(f) =_0 \varphi(g)] \quad (\mathsf{MUC})^*.$ NOTE: $(\mathsf{MUC})^{st} \leftrightarrow (\mathsf{MUC})^*$ has the form $UT^{st} \leftrightarrow T^*.$

In $\mathsf{RCA}_0^\Omega,$ we have

• (MUC)st $\equiv (\exists \Omega^3)(\forall \varphi^2)(\forall f^1, g^1 \leq_1 1)[\overline{f}(\Omega(\varphi)) =_0 \overline{g}(\Omega(\varphi)) \rightarrow \varphi(f) =_0 \varphi(g)].$ (Existence of Fan Functional)

- (MUC)st $\equiv (\exists \Omega^3)(\forall \varphi^2)(\forall f^1, g^1 \leq_1 1)[\overline{f}(\Omega(\varphi)) =_0 \overline{g}(\Omega(\varphi)) \rightarrow \varphi(f) =_0 \varphi(g)].$ (Existence of Fan Functional)

- (MUC)st $\equiv (\exists \Omega^3)(\forall \varphi^2)(\forall f^1, g^1 \leq_1 1)[\overline{f}(\Omega(\varphi)) =_0 \overline{g}(\Omega(\varphi)) \rightarrow \varphi(f) =_0 \varphi(g)].$ (Existence of Fan Functional)
- $\ \ \, { (\forall^{st}\varphi^2)(\forall f^1,g^1\leq_1 1) \big[f\thickapprox_{1} g \to \varphi(f)=_0 \varphi(g) \big] }$
- $(\exists^{st} \Gamma^{3 \to 1})(\forall^{st} \varphi^2, f^1 \leq_1 1)(\varphi(f) \leq \varphi(\Gamma(\varphi))) (\mathsf{UMAX})^{st}$

- (MUC)st $\equiv (\exists \Omega^3)(\forall \varphi^2)(\forall f^1, g^1 \leq_1 1)[\overline{f}(\Omega(\varphi)) =_0 \overline{g}(\Omega(\varphi)) \rightarrow \varphi(f) =_0 \varphi(g)].$ (Existence of Fan Functional)
- $\ \ \, { (\forall^{st}\varphi^2)(\forall f^1,g^1\leq_1 1) \big[f\thickapprox_{1} g \to \varphi(f)=_0 \varphi(g) \big] }$
- $(\exists^{st} \Gamma^{3 \to 1})(\forall^{st} \varphi^2, f^1 \leq_1 1)(\varphi(f) \leq \varphi(\Gamma(\varphi))) (\mathsf{UMAX})^{st}$
- $(\forall^{st}\varphi^2)(\exists^{st}g^1 \leq_1 1)(\forall f^1 \leq_1 1)(\varphi(f) \leq \varphi(g)) (\mathsf{MAX})^*$

- (MUC)st $\equiv (\exists \Omega^3)(\forall \varphi^2)(\forall f^1, g^1 \leq_1 1)[\overline{f}(\Omega(\varphi)) =_0 \overline{g}(\Omega(\varphi)) \rightarrow \varphi(f) =_0 \varphi(g)].$ (Existence of Fan Functional)
- $(\exists^{st} \Gamma^{3 \to 1})(\forall^{st} \varphi^2, f^1 \leq_1 1)(\varphi(f) \leq \varphi(\Gamma(\varphi))) (\mathsf{UMAX})^{st}$
- $(\forall^{st}\varphi^2)(\exists^{st}g^1 \leq_1 1)(\forall f^1 \leq_1 1)(\varphi(f) \leq \varphi(g)) (\mathsf{MAX})^*$
- Uniform version of QF-FAN. (=quantifier-free fan theorem)
- Nonstandard version of QF-FAN.

- (MUC)st $\equiv (\exists \Omega^3)(\forall \varphi^2)(\forall f^1, g^1 \leq_1 1)[\overline{f}(\Omega(\varphi)) =_0 \overline{g}(\Omega(\varphi)) \rightarrow \varphi(f) =_0 \varphi(g)].$ (Existence of Fan Functional)
- $(\exists^{st} \Gamma^{3 \to 1})(\forall^{st} \varphi^2, f^1 \leq_1 1)(\varphi(f) \leq \varphi(\Gamma(\varphi))) (\mathsf{UMAX})^{st}$
- $(\forall^{st}\varphi^2)(\exists^{st}g^1 \leq_1 1)(\forall f^1 \leq_1 1)(\varphi(f) \leq \varphi(g))$ (MAX)*
- O Uniform version of QF-FAN. (=quantifier-free fan theorem)
- **O** Nonstandard version of QF-FAN.
- **O** Uniform version of FAN_c. (=continuous fan theorem)
- **\bigcirc** Nonstandard version of FAN_c.

In $\mathsf{RCA}_0^\Omega,$ we have

- (MUC)st $\equiv (\exists \Omega^3)(\forall \varphi^2)(\forall f^1, g^1 \leq_1 1)[\overline{f}(\Omega(\varphi)) =_0 \overline{g}(\Omega(\varphi)) \rightarrow \varphi(f) =_0 \varphi(g)].$ (Existence of Fan Functional)
- $\ \ \, { (\forall^{st}\varphi^2)(\forall f^1,g^1\leq_1 1) \big[f\thickapprox_1 g\to \varphi(f)=_0 \varphi(g)\big] }$
- $(\exists^{st} \Gamma^{3 \to 1})(\forall^{st} \varphi^2, f^1 \leq_1 1)(\varphi(f) \leq \varphi(\Gamma(\varphi))) (\mathsf{UMAX})^{st}$
- $(\forall^{st}\varphi^2)(\exists^{st}g^1 \leq_1 1)(\forall f^1 \leq_1 1)(\varphi(f) \leq \varphi(g))$ (MAX)*
- Uniform version of QF-FAN. (=quantifier-free fan theorem)
- **1** Nonstandard version of QF-FAN.
- Uniform version of FAN_c . (=continuous fan theorem)
- **\bigcirc** Nonstandard version of FAN_c.

Similar equivalences for: WC-N and axiom F (proof mining!).
Equivalences

In $\mathsf{RCA}^\Omega_0,$ we have

- (MUC)st $\equiv (\exists \Omega^3)(\forall \varphi^2)(\forall f^1, g^1 \leq_1 1)[\overline{f}(\Omega(\varphi)) =_0 \overline{g}(\Omega(\varphi)) \rightarrow \varphi(f) =_0 \varphi(g)].$ (Existence of Fan Functional)
- $\ \ \, { (\forall^{st}\varphi^2)(\forall f^1,g^1\leq_1 1) \big[f\thickapprox_1 g\to \varphi(f)=_0 \varphi(g)\big] }$
- $(\exists^{st} \Gamma^{3 \to 1})(\forall^{st} \varphi^2, f^1 \leq_1 1)(\varphi(f) \leq \varphi(\Gamma(\varphi))) (\mathsf{UMAX})^{st}$
- $(\forall^{st}\varphi^2)(\exists^{st}g^1 \leq_1 1)(\forall f^1 \leq_1 1)(\varphi(f) \leq \varphi(g))$ (MAX)*
- Uniform version of QF-FAN. (=quantifier-free fan theorem)
- O Nonstandard version of QF-FAN.
- Uniform version of FAN_c . (=continuous fan theorem)
- **1** Nonstandard version of FAN_c .

Similar equivalences for: WC-N and axiom F (proof mining!).

UNIVERSAL: Both for classical and intuitionistic principles, we obtain $UT^{st} \leftrightarrow T^*$ equivalences.

Proving $T^* \rightarrow UT^{st}$ via the 'canonical approximation'

Proving $T^* \to UT^{st}$ via the 'canonical approximation' WKL* $\equiv (\forall^{st} T^1 \leq_1 1)(\mathbb{T}^{st}_{\infty}(T) \to (\exists^{st} \alpha^1)(\forall x^0)(\overline{\alpha}x \in T).$ Proving $T^* \to UT^{st}$ via the 'canonical approximation' $WKL^* \equiv (\forall^{st} T^1 \leq_1 1)(\mathbb{T}^{st}_{\infty}(T) \to (\exists^{st} \alpha^1)(\forall x^0)(\overline{\alpha}x \in T))$. We define a functional $\Psi^{(1 \times 0) \to 1}$ (in EFA^{ω}).

$$\Psi(T,M)(1) := \begin{cases} 0 & (\forall n^0 \leq M)(\exists \alpha^0)(|\alpha| = n \land (0 * \alpha) \in T) \\ 1 & \text{otherwise} \end{cases}$$

Proving $T^* \to UT^{st}$ via the 'canonical approximation' $WKL^* \equiv (\forall^{st} T^1 \leq_1 1)(\mathbb{T}^{st}_{\infty}(T) \to (\exists^{st} \alpha^1)(\forall x^0)(\overline{\alpha}x \in T)).$ We define a functional $\Psi^{(1 \times 0) \to 1}$ (in EFA^{ω}).

$$\Psi(T, M)(1) := \begin{cases} 0 & (\forall n^0 \le M)(\exists \alpha^0)(|\alpha| = n \land (0 \ast \alpha) \in T) \\ 1 & \text{otherwise} \end{cases}$$
$$\Psi(T, M)(n+1) := \begin{cases} 0 & (\forall n^0 \le M)(\exists \alpha^0)(|\alpha| = n \land (\Psi(T, M)(n) \ast 0 \ast \alpha) \in T) \\ 1 & \text{otherwise} \end{cases}$$

Proving $T^* \to UT^{st}$ via the 'canonical approximation' $WKL^* \equiv (\forall^{st} T^1 \leq_1 1)(\mathbb{T}^{st}_{\infty}(T) \to (\exists^{st} \alpha^1)(\forall x^0)(\overline{\alpha} x \in T)).$ We define a functional $\Psi^{(1 \times 0) \to 1}$ (in EFA^{ω}).

$$\Psi(T,M)(1) := egin{cases} 0 & (orall n^0 \leq M)(\exists lpha^0)(|lpha| = n \land (0*lpha) \in T) \ 1 & ext{otherwise} \end{cases}$$

$$\Psi(T,M)(n+1) := \begin{cases} 0 & (\forall n^0 \le M)(\exists \alpha^0)(|\alpha| = n \land (\Psi(T,M)(n) * 0 * \alpha) \in T) \\ 1 & \text{otherwise} \end{cases}$$

Let Ω be the set of infinite numbers. We have

 $(\forall^{st} T^1 \leq_1 1)(\forall^{st} n^0)(\forall N, M \in \Omega)(\Psi(T, M)(n) = \Psi(T, N)(n)).$

Proving $T^* \to UT^{st}$ via the 'canonical approximation' $WKL^* \equiv (\forall^{st} T^1 \leq_1 1)(\mathbb{T}^{st}_{\infty}(T) \to (\exists^{st} \alpha^1)(\forall x^0)(\overline{\alpha} x \in T)).$ We define a functional $\Psi^{(1 \times 0) \to 1}$ (in EFA^{ω}).

$$\Psi(T,M)(1) := egin{cases} 0 & (orall n^0 \leq M)(\exists lpha^0)(|lpha| = n \land (0*lpha) \in T) \ 1 & ext{otherwise} \end{cases}$$

$$\Psi(T, M)(n+1) := \begin{cases} 0 & (\forall n^0 \le M)(\exists \alpha^0)(|\alpha| = n \land (\Psi(T, M)(n) * 0 * \alpha) \in T) \\ 1 & \text{otherwise} \end{cases}$$

Let $\boldsymbol{\Omega}$ be the set of infinite numbers. We have

 $(\forall^{st} T^1 \leq_1 1)(\forall^{st} n^0)(\forall N, M \in \Omega)(\Psi(T, M)(n) = \Psi(T, N)(n)).$ i.e. $\Psi(T, M)$ is Ω -invariant, the NSA-version of 'being $(\Delta_1^0)^{st}$ '. Proving $T^* \to UT^{st}$ via the 'canonical approximation' $WKL^* \equiv (\forall^{st} T^1 \leq_1 1)(\mathbb{T}^{st}_{\infty}(T) \to (\exists^{st} \alpha^1)(\forall x^0)(\overline{\alpha} x \in T)).$ We define a functional $\Psi^{(1 \times 0) \to 1}$ (in EFA $^{\omega}$).

$$\Psi(T, M)(1) := egin{cases} 0 & (orall n^0 \leq M)(\exists lpha^0)(|lpha| = n \land (0 * lpha) \in T) \ 1 & ext{otherwise} \end{cases}$$

 $\Psi(T,M)(n+1) := \begin{cases} 0 & (\forall n^0 \leq M)(\exists \alpha^0)(|\alpha| = n \land (\Psi(T,M)(n) * 0 * \alpha) \in T) \\ 1 & \text{otherwise} \end{cases}$

Let $\boldsymbol{\Omega}$ be the set of infinite numbers. We have

 $(\forall^{st} T^1 \leq_1 1)(\forall^{st} n^0)(\forall N, M \in \Omega)(\Psi(T, M)(n) = \Psi(T, N)(n)).$

i.e. $\Psi(\mathcal{T}, M)$ is Ω -invariant, the NSA-version of 'being $(\Delta_1^0)^{st'}$. By Δ_1^0 -Standard Part Principle (in RCA $_0^\Omega$), there is STANDARD Φ s.t. $(\forall^{st} \mathcal{T}^1 \leq_1 1)(\forall^{st} n^0)(\forall N \in \Omega)(\Phi(n) = \Psi(\mathcal{T}, N)(n)).$ Proving $T^* \to UT^{st}$ via the 'canonical approximation' $WKL^* \equiv (\forall^{st} T^1 \leq_1 1)(\mathbb{T}^{st}_{\infty}(T) \to (\exists^{st} \alpha^1)(\forall x^0)(\overline{\alpha}x \in T)).$ We define a functional $\Psi^{(1 \times 0) \to 1}$ (in EFA^{ω}).

$$\Psi(T, M)(1) := egin{cases} 0 & (orall n^0 \leq M)(\exists lpha^0)(|lpha| = n \land (0 * lpha) \in T) \ 1 & ext{otherwise} \end{cases}$$

 $\Psi(T,M)(n+1) := \begin{cases} 0 & (\forall n^0 \leq M)(\exists \alpha^0) (|\alpha| = n \land (\Psi(T,M)(n) * 0 * \alpha) \in T) \\ 1 & \text{otherwise} \end{cases}$

Let $\boldsymbol{\Omega}$ be the set of infinite numbers. We have

 $(\forall^{st} T^1 \leq_1 1)(\forall^{st} n^0)(\forall N, M \in \Omega)(\Psi(T, M)(n) = \Psi(T, N)(n)).$

i.e. $\Psi(T, M)$ is Ω -invariant, the NSA-version of 'being $(\Delta_1^0)^{st'}$.

By Δ_1^0 -Standard Part Principle (in RCA_0^{\Omega}), there is STANDARD Φ s.t.

 $(\forall^{st} T^1 \leq_1 1)(\forall^{st} n^0)(\forall N \in \Omega)(\Phi(n) = \Psi(T, N)(n)).$

This Φ is as in UWKLst, i.e. we have WKL^{*} \rightarrow UWKLst.

= to reduce infinitary mathematics to finitary mathematics (=PRA) via a consistency proof of the latter in the former.

= to reduce infinitary mathematics to finitary mathematics (=PRA) via a consistency proof of the latter in the former.

Full Hilbert's program is impossible due to Gödel incompleteness.

= to reduce infinitary mathematics to finitary mathematics (=PRA) via a consistency proof of the latter in the former.

Full Hilbert's program is impossible due to Gödel incompleteness. RM provides partial realization.

= to reduce infinitary mathematics to finitary mathematics (=PRA) via a consistency proof of the latter in the former.

Full Hilbert's program is impossible due to Gödel incompleteness. RM provides partial realization. Other way to reduce FULL infinitary math to finitary math?

= to reduce infinitary mathematics to finitary mathematics (=PRA) via a consistency proof of the latter in the former.

Full Hilbert's program is impossible due to Gödel incompleteness. RM provides partial realization. Other way to reduce FULL infinitary math to finitary math?

Inside $(RCA_0^{\omega})^* + BASIC$ (=NSA-version of EFA), for any standard $\Xi^{1 \rightarrow 1}$:

= to reduce infinitary mathematics to finitary mathematics (=PRA) via a consistency proof of the latter in the former.

Full Hilbert's program is impossible due to Gödel incompleteness. RM provides partial realization. Other way to reduce FULL infinitary math to finitary math?

Inside $(RCA_0^{\omega})^* + BASIC$ (=NSA-version of EFA), for any standard $\Xi^{1 \rightarrow 1}$:

$$(\forall^{st} T \leq_1 1) [(\forall^{st} n^0 \leq M)(\exists \alpha^0)(|\alpha| = n \land \alpha \in T) \rightarrow (\forall^{st} n)(\overline{\Xi(T)} n \in T)].$$

 \leftrightarrow

= to reduce infinitary mathematics to finitary mathematics (=PRA) via a consistency proof of the latter in the former.

Full Hilbert's program is impossible due to Gödel incompleteness. RM provides partial realization. Other way to reduce FULL infinitary math to finitary math?

Inside $(RCA_0^{\omega})^* + BASIC$ (=NSA-version of EFA), for any standard $\Xi^{1 \rightarrow 1}$:

$$(\forall^{st} T \leq_1 1) [(\forall^{st} n^0 \leq M)(\exists \alpha^0)(|\alpha| = n \land \alpha \in T) \to (\forall^{st} n)(\overline{\Xi(T)}n \in T)].$$

$$(\forall^{st} n)(\forall N \in \Omega)[\Xi(T)(n) = \Psi(T, N)(n)].$$

= to reduce infinitary mathematics to finitary mathematics (=PRA) via a consistency proof of the latter in the former.

Full Hilbert's program is impossible due to Gödel incompleteness. RM provides partial realization. Other way to reduce FULL infinitary math to finitary math?

Inside $(RCA_0^{\omega})^* + BASIC$ (=NSA-version of EFA), for any standard $\Xi^{1 \rightarrow 1}$:

$$(\forall^{st} T \leq_1 1) [(\forall^{st} n^0 \leq M)(\exists \alpha^0)(|\alpha| = n \land \alpha \in T) \rightarrow (\forall^{st} n)(\overline{\Xi(T)}n \in T)].$$

$$(\forall^{st} n)(\forall N \in \Omega)[\Xi(T)(n) = \Psi(T, N)(n)].$$

In other words: If Ξ behaves like the functional Φ from UWKLst, then $\Xi(T)$ equals $\Psi(T, M)$ for any $M \in \Omega$, and vice versa.

= to reduce infinitary mathematics to finitary mathematics (=PRA) via a consistency proof of the latter in the former.

Full Hilbert's program is impossible due to Gödel incompleteness. RM provides partial realization. Other way to reduce FULL infinitary math to finitary math?

Inside $(RCA_0^{\omega})^* + BASIC$ (=NSA-version of EFA), for any standard $\Xi^{1 \rightarrow 1}$:

$$(\forall^{st} T \leq_1 1) [(\forall^{st} n^0 \leq M)(\exists \alpha^0)(|\alpha| = n \land \alpha \in T) \rightarrow (\forall^{st} n)(\overline{\Xi(T)} n \in T)].$$

$$(\forall^{st} n)(\forall N \in \Omega)[\Xi(T)(n) = \Psi(T, N)(n)].$$

In other words: If Ξ behaves like the functional Φ from UWKLst, then $\Xi(T)$ equals $\Psi(T, M)$ for any $M \in \Omega$, and vice versa.

But PRA proves consistency of $(RCA_0^{\omega})^* + BASIC$. Hence, finitistic reduction of Φ from UWKL (and hence TJ)!

And what are these [infinitesimals]? [...] They are neither finite Quantities nor Quantities infinitely small, nor yet nothing. May we not call them the ghosts of departed quantities? George Berkeley, The Analyst

And what are these [infinitesimals]? [...] They are neither finite Quantities nor Quantities infinitely small, nor yet nothing. May we not call them the ghosts of departed quantities? George Berkeley, The Analyst

...there are good reasons to believe that Nonstandard Analysis, in some version or other, will be the analysis of the future. Kurt Gödel

And what are these [infinitesimals]? [...] They are neither finite Quantities nor Quantities infinitely small, nor yet nothing. May we not call them the ghosts of departed quantities? George Berkeley, The Analyst

...there are good reasons to believe that Nonstandard Analysis, in some version or other, will be the analysis of the future. Kurt Gödel

We thank the John Templeton Foundation and Alexander Von Humboldt Foundation for its generous support!

And what are these [infinitesimals]? [...] They are neither finite Quantities nor Quantities infinitely small, nor yet nothing. May we not call them the ghosts of departed quantities? George Berkeley, The Analyst

...there are good reasons to believe that Nonstandard Analysis, in some version or other, will be the analysis of the future. Kurt Gödel

We thank the John Templeton Foundation and Alexander Von Humboldt Foundation for its generous support!

Thank you for your attention!

And what are these [infinitesimals]? [...] They are neither finite Quantities nor Quantities infinitely small, nor yet nothing. May we not call them the ghosts of departed quantities? George Berkeley, The Analyst

...there are good reasons to believe that Nonstandard Analysis, in some version or other, will be the analysis of the future. Kurt Gödel

We thank the John Templeton Foundation and Alexander Von Humboldt Foundation for its generous support!

Thank you for your attention! Any questions?