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Main results of this research

1. Isbell’s zig-zag theorem for countable monoids ⇐⇒RCA0 WKL0.

2. The existence of dominions ⇐⇒RCA0 ACA0.
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Reverse Mathematics

Subsystems of second order arithmetic (Big 5)

• RCA0: Recursive comprehension, Σ0
1 induction.

• WKL0: Weak König’s Lemma.

• ACA0: Arithmetical comprehension.

• ATR0: Arithmetical transfinite recursion.

• Π1
1 − CA0: Π1

1 comprehension.

Reverse mathematics phenomenon

Very often, a formalized mathematical theorem can be proved in RCA0

or equivalent to one of WKL0, ACA0, ATR0 or Π1
1 − CA0 over RCA0.
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Isbell’s zig-zag theorem

Definition 1 (countable monoids). The following definitions are made
in RCA0.

• A countable monoid A consists of a set |A| ⊂ N together with binary
operation ·A : A × A → A and an element 1A ∈ |A| satisfying

1. (∀a, b, c ∈ A)((a ·A b) ·A c = a ·A (b ·A c)).
2. (∀a ∈ A)(a ·A 1A = 1A ·A a = a).

• If B is a monoid and a subset A of B satisfies following then we say that
A is a submonoid of B.

1. (∀a1, a2 ∈ A)(a1 ·B a2 ∈ A).
2. 1B ∈ A.

(We write “A ⊂ B” for a monoid B and a submonoid A of B.)
• For two monoids A and B, a monoid homomorphism α : A → B is a

function α : A → B satisfying following.
1. α(1A) = 1B .
2. (∀a1, a2 ∈ A)(α(a1 ·A a2) = α(a1) ·B α(a2)).
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Definition 2 (dominions). The following definitions are made in RCA0.
Let A ⊂ B be monoids and b ∈ B. b is dominated by A if for

any monoid C and for any pair of homomorphisms α : B → C and
β : B → C, if (∀a ∈ A)(α(a) = β(a)), then α(b) = β(b).

The dominion of A is a set of all elements of B that is dominated by
A.

• Note that the assertion “b is dominated by A” is Π1
1 and the do-

minion of A may not exist in RCA0.

• Which set existence axiom is required to prove the existence of
dominions?
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Definition 2 (dominions). The following definitions are made in RCA0.
Let A ⊂ B be monoids and b ∈ B. b is dominated by A if for

any monoid C and for any pair of homomorphisms α : B → C and
β : B → C, if (∀a ∈ A)(α(a) = β(a)), then α(b) = β(b).

The dominion of A is a set of all elements of B that is dominated by
A.

• Note that the assertion “b is dominated by A” is Π1
1 and the do-

minion of A may not exist in RCA0.

• Which set existence axiom is required to prove the existence of
dominions?

• This research reveals that ACA0 is sufficient and necessary to prove
the existence of dominions.
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Example 3. Let A ⊂ B be monoids and b ∈ B. A tuple of elements

a0, a1, a2, a3, a4 ∈ A, x1, x2, y1, y2 ∈ B

is a zig-zag of b over A if

b =x1a0

x1a1y1

x2a2y1

x2a3y2

a4y2.
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Definition 4 (zig-zags). The following definitions are made in RCA0.
Let A ⊂ B be monoids and b ∈ B. A zig-zag of b over A is a triple of

sequences 〈〈a0, a1, . . . , a2m〉, 〈x1, x2, . . . , xm〉, 〈y1, y2, . . . , ym〉〉 such that

1. ai ∈ A and xj , yj ∈ B (0 ≤ i ≤ 2m, 1 ≤ j ≤ m),
2. b = x1a0 = a2mym,

3. a0 = a1y1, a2iyi = a2i+1yi+1(1 ≤ i < m) ,

4. xia2i−1 = xi+1a2i(1 ≤ i < m), xma2m−1 = a2m .

• Note that the assertion “b has a zig-zag over A” is Σ0
1.
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Theorem 5 (Isbell’s zig-zag theorem for countable monoids, [3]). If A
is a submonoid of a monoid B, then b ∈ B is dominated by A if and only
if b has a zig-zag over A.

• First stated by Isbell [3] (1966), and Philip [4] (1974) completed
the proof.

• Many simpler proofs have been published including those of Storre
[8] (1976), Higgins [1] (1990), Renshaw [5] (2002) or Hoffman [2]
(2008).
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Example 6. Let A ⊂ B be monoids and b ∈ B. If b has a zig-zag

b = x1a0

= x1a1y1

= a2y1,

then
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α(b) = α(x1a0)
= α(x1)α(a0)
= α(x1)β(a0)
= α(x1)β(a1y1)
= α(x1)β(a1)β(y1)
= α(x1)α(a1)β(y1)
= α(x1a1)β(y1)
= α(a2)β(y1)
= β(a2)β(y1)
= β(a2y1)
= β(b).

for any monoid C and two homomorphisms α, β : B → C such that
(∀a ∈ A)(α(a) = β(a)).

Namely b is dominated by A.
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Standard proofs of the zig-zag theorem

(⇐=)(easy direction): By ∆0
1 induction on the length of the zig-zag.

(=⇒):

• Show the contraposition.

• Let A ⊂ B be monoids and b ∈ B, suppose that b has no zig-zag.

• Construct a monoid C and two homomorphisms α, β : B → C such
that (∀a ∈ A)(α(a) = β(a)) and α(b) ,= β(b).

• Typical proofs involve construction of an algebraic structure with
a Σ0

1 definable equality relation which can be formalized in ACA0.
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Standard proofs of the zig-zag theorem

(⇐=)(easy direction): By ∆0
1 induction on the length of the zig-zag.

(=⇒):

• Show the contraposition.

• Let A ⊂ B be monoids and b ∈ B, suppose that b has no zig-zag.

• Construct a monoid C and two homomorphisms α, β : B → C such
that (∀a ∈ A)(α(a) = β(a)) and α(b) ,= β(b).

• Typical proofs involve construction of an algebraic structure with
a Σ0

1 definable equality relation which can be formalized in ACA0.

• This research reveals that WKL0 is sufficient and necessary to prove
the zig-zag theorem.

0-12



Key lemma

Lemma 7 (S. [6]). The following is provable in WKL0.
Let S be a set. For any symmetric relation R ⊂ S × S and elements

s, s′ ∈ S, if there is no sequence of elements of S such that

s = s1 ∧ s1Rs2 ∧ s2Rs3 ∧ · · · ∧ sn−1Rsn ∧ sn = s′ (2 ≤ n, si ∈ S),

then R can be extended to an equivalence relation R′ such that ¬sR′s′.
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Main theorems of this research

Theorem 8 (S. [6]). The following is equivalent over RCA0.

1. WKL0.
2. Isbell’s zig-zag theorem for countable monoids.

Theorem 9 (S. [6]). The following are equivalent over RCA0.

1. ACA0.
2. If A is a submonoid of B, the dominion of A exists.
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