Transfinite Recursion in Higher Reverse Mathematics

Noah Schweber

18 February 2014

- - 4 回 ト - 4 回 ト

Outline

Higher Reverse Mathematics Splitting ATR₀ Clopen vs. Open Determinacy Further Questions

Higher Reverse Mathematics

Splitting ATR_0

Clopen vs. Open Determinacy

Further Questions

イロン 不同と 不同と 不同と

э

From Lower to Higher

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

From Lower to Higher

Reverse mathematics beyond reals: finite types

イロト イヨト イヨト イヨト

From Lower to Higher

Reverse mathematics beyond reals: finite types

▶ Standard finite types: $\mathbf{0}=\omega$, $\mathbf{1}=\omega^{\omega}=\mathbb{R}$, $\mathbf{2}=\omega^{(\omega^{\omega})}=\omega^{\mathbb{R}}$, etc.

イロト イポト イヨト イヨト

From Lower to Higher

- Reverse mathematics beyond reals: finite types
 - ▶ Standard finite types: $\mathbf{0}=\omega$, $\mathbf{1}=\omega^{\omega}=\mathbb{R}$, $\mathbf{2}=\omega^{(\omega^{\omega})}=\omega^{\mathbb{R}}$, etc.
 - Also mixed types: $\mathbf{1} \rightarrow \mathbf{1}$, etc.

- 4 同 6 4 日 6 4 日 6

From Lower to Higher

- Reverse mathematics beyond reals: finite types
 - ▶ Standard finite types: $\mathbf{0}=\omega$, $\mathbf{1}=\omega^{\omega}=\mathbb{R}$, $\mathbf{2}=\omega^{(\omega^{\omega})}=\omega^{\mathbb{R}}$, etc.
 - Also mixed types: $\mathbf{1} \rightarrow \mathbf{1}$, etc.
- Behavior of general theorems at varying types

(4月) イヨト イヨト

From Lower to Higher

- Reverse mathematics beyond reals: finite types
 - ▶ Standard finite types: $\mathbf{0}=\omega$, $\mathbf{1}=\omega^{\omega}=\mathbb{R}$, $\mathbf{2}=\omega^{(\omega^{\omega})}=\omega^{\mathbb{R}}$, etc.
 - Also mixed types: $\mathbf{1}
 ightarrow \mathbf{1}$, etc.
- Behavior of general theorems at varying types
 - ▶ "Every non-division ring with domain $\subseteq \mathbb{R}$ has a nontrivial proper ideal" (WKL₀)

From Lower to Higher

- Reverse mathematics beyond reals: finite types
 - ▶ Standard finite types: $\mathbf{0}=\omega$, $\mathbf{1}=\omega^{\omega}=\mathbb{R}$, $\mathbf{2}=\omega^{(\omega^{\omega})}=\omega^{\mathbb{R}}$, etc.
 - Also mixed types: $\mathbf{1}
 ightarrow \mathbf{1}$, etc.
- Behavior of general theorems at varying types
 - "Every non-division ring with domain $\subseteq \mathbb{R}$ has a nontrivial proper ideal" (WKL₀)
 - "Every map $\mathbb{R} \to \mathbb{R}$ has a range" (ACA₀)

From Lower to Higher

- Reverse mathematics beyond reals: finite types
 - ▶ Standard finite types: $\mathbf{0}=\omega$, $\mathbf{1}=\omega^{\omega}=\mathbb{R}$, $\mathbf{2}=\omega^{(\omega^{\omega})}=\omega^{\mathbb{R}}$, etc.
 - Also mixed types: $\mathbf{1}
 ightarrow \mathbf{1}$, etc.
- Behavior of general theorems at varying types
 - "Every non-division ring with domain $\subseteq \mathbb{R}$ has a nontrivial proper ideal" (WKL₀)
 - "Every map $\mathbb{R} \to \mathbb{R}$ has a range" (ACA₀)
 - "Clopen games on \mathbb{R} are determined" (ATR₀)

From Lower to Higher

- Reverse mathematics beyond reals: finite types
 - ▶ Standard finite types: $\mathbf{0}=\omega$, $\mathbf{1}=\omega^{\omega}=\mathbb{R}$, $\mathbf{2}=\omega^{(\omega^{\omega})}=\omega^{\mathbb{R}}$, etc.
 - Also mixed types: $\mathbf{1}
 ightarrow \mathbf{1}$, etc.
- Behavior of general theorems at varying types
 - "Every non-division ring with domain $\subseteq \mathbb{R}$ has a nontrivial proper ideal" (WKL₀)
 - "Every map $\mathbb{R} \to \mathbb{R}$ has a range" (ACA₀)
 - "Clopen games on \mathbb{R} are determined" (ATR₀)
- Higher-order robust systems?

From Lower to Higher

- Reverse mathematics beyond reals: finite types
 - ▶ Standard finite types: $\mathbf{0}=\omega$, $\mathbf{1}=\omega^{\omega}=\mathbb{R}$, $\mathbf{2}=\omega^{(\omega^{\omega})}=\omega^{\mathbb{R}}$, etc.
 - Also mixed types: $\mathbf{1}
 ightarrow \mathbf{1}$, etc.
- Behavior of general theorems at varying types
 - ▶ "Every non-division ring with domain $\subseteq \mathbb{R}$ has a nontrivial proper ideal" (WKL₀)
 - "Every map $\mathbb{R} \to \mathbb{R}$ has a range" (ACA₀)
 - "Clopen games on \mathbb{R} are determined" (ATR₀)
- Higher-order robust systems?
 - ▶ Is there a higher-type analogue of ATR₀?

Base Theories

Base Theories

• Kohlenbach '01: base theory RCA_0^{ω} for arbitrary finite types

<ロ> (日) (日) (日) (日) (日)

Base Theories

• Kohlenbach '01: base theory RCA_0^{ω} for arbitrary finite types

Conservative over RCA₀

<ロ> (日) (日) (日) (日) (日)

Base Theories

• Kohlenbach '01: base theory RCA_0^{ω} for arbitrary finite types

- Conservative over RCA₀
- Primitive recursion for higher types

イロト イヨト イヨト イヨト

Base Theories

- Kohlenbach '01: base theory RCA_0^{ω} for arbitrary finite types
 - Conservative over RCA₀
 - Primitive recursion for higher types
- S.: base theory RCA_0^3 for types 0, 1, 2

- 4 同 6 4 日 6 4 日 6

Base Theories

- Kohlenbach '01: base theory RCA_0^{ω} for arbitrary finite types
 - Conservative over RCA₀
 - Primitive recursion for higher types
- ▶ S.: base theory RCA_0^3 for types 0, 1, 2
 - Conservative over RCA₀, conservative subtheory of RCA₀^ω

- 4 同 6 4 日 6 4 日 6

Base Theories

- Kohlenbach '01: base theory RCA_0^{ω} for arbitrary finite types
 - Conservative over RCA₀
 - Primitive recursion for higher types
- S.: base theory RCA_0^3 for types 0, 1, 2
 - Conservative over RCA₀, conservative subtheory of RCA₀^ω
 - Presentation similar to RCA₀

Base Theories

- Kohlenbach '01: base theory RCA_0^{ω} for arbitrary finite types
 - Conservative over RCA₀
 - Primitive recursion for higher types
- S.: base theory RCA_0^3 for types 0, 1, 2
 - Conservative over RCA₀, conservative subtheory of RCA₀^ω
 - Presentation similar to RCA₀
 - Language: arithmetic + application operators + coding (concatenation natural^{real}; representation of $1 \rightarrow 1$ as 2)

Base Theories

- Kohlenbach '01: base theory RCA_0^{ω} for arbitrary finite types
 - Conservative over RCA₀
 - Primitive recursion for higher types
- S.: base theory RCA_0^3 for types 0, 1, 2
 - Conservative over RCA₀, conservative subtheory of RCA₀^ω
 - Presentation similar to RCA₀
 - Language: arithmetic + application operators + coding (concatenation natural^{real}; representation of $1 \rightarrow 1$ as 2)
 - Axioms: P⁻+Extensionality; Σ₁⁰-induction for 0; Δ₁⁰-comprehension for 1 and 2

・ロト ・回ト ・ヨト ・ヨト

Base Theories

- Kohlenbach '01: base theory RCA_0^{ω} for arbitrary finite types
 - Conservative over RCA₀
 - Primitive recursion for higher types
- S.: base theory RCA_0^3 for types 0, 1, 2
 - Conservative over RCA₀, conservative subtheory of RCA₀^ω
 - Presentation similar to RCA₀
 - Language: arithmetic + application operators + coding (concatenation natural^{real}; representation of $1 \rightarrow 1$ as 2)
 - Axioms: P⁻+Extensionality; Σ₁⁰-induction for 0;
 Δ₁⁰-comprehension for 1 and 2
 - ω-models determined by type-1 and 2 parts

・ロト ・回ト ・ヨト ・ヨト

Why ATR_0 ?

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

 \blacktriangleright Robustness of ATR₀ follows from: "is well-founded" is $\Pi^1_1\text{-complete}$

・ロト ・回ト ・ヨト ・ヨト

- ► Robustness of ATR_0 follows from: "is well-founded" is Π_1^1 -complete
 - \blacktriangleright . . . as a property of relations on ω

(ロ) (同) (E) (E) (E)

- ▶ Robustness of ATR_0 follows from: "is well-founded" is Π_1^1 -complete
 - \blacktriangleright . . . as a property of relations on ω
 - As property of relations on \mathbb{R} : still Π_1^1

イロン イヨン イヨン イヨン

- ▶ Robustness of ATR_0 follows from: "is well-founded" is Π_1^1 -complete
 - \blacktriangleright . . . as a property of relations on ω
 - As property of relations on \mathbb{R} : still Π_1^1
 - Standard arguments around ATR₀ fail at higher types

イロン イヨン イヨン イヨン

- ▶ Robustness of ATR_0 follows from: "is well-founded" is Π_1^1 -complete
 - \blacktriangleright . . . as a property of relations on ω
 - As property of relations on \mathbb{R} : still Π_1^1
 - Standard arguments around ATR₀ fail at higher types
- Negative result: separations e.g. clopen determinacy for reals strictly weaker than open determinacy

- ▶ Robustness of ATR_0 follows from: "is well-founded" is Π_1^1 -complete
 - \blacktriangleright . . . as a property of relations on ω
 - As property of relations on \mathbb{R} : still Π_1^1
 - Standard arguments around ATR₀ fail at higher types
- Negative result: separations e.g. clopen determinacy for reals strictly weaker than open determinacy
- Positive result: principles linearly ordered (modulo choice)

- ▶ Robustness of ATR_0 follows from: "is well-founded" is Π_1^1 -complete
 - \blacktriangleright . . . as a property of relations on ω
 - As property of relations on \mathbb{R} : still Π_1^1
 - Standard arguments around ATR₀ fail at higher types
- Negative result: separations e.g. clopen determinacy for reals strictly weaker than open determinacy
- Positive result: principles linearly ordered (modulo choice)
- Choice principles also analyzed

Higher ATR_0 , I/II

<ロ> (四) (四) (三) (三) (三)

Higher-type versions of ATR₀:

・ロン ・回と ・ヨン・

Higher ATR_0 , I/II

▶ Higher-type versions of ATR₀:

• CWO^{\mathbb{R}}: comparability of well-orders of $\subseteq \mathbb{R}$;

イロト イヨト イヨト イヨト

Higher ATR₀, I/II

- ► Higher-type versions of ATR₀:
 - CWO^{\mathbb{R}}: comparability of well-orders of $\subseteq \mathbb{R}$;
 - $\mathsf{TR}_1(\mathbb{R})$: Σ_1^1 recursion along well-orderings of reals;

- 4 同 6 4 日 6 4 日 6

Higher ATR₀, I/II

Higher-type versions of ATR₀:

- CWO^{\mathbb{R}}: comparability of well-orders of $\subseteq \mathbb{R}$;
- $\mathsf{TR}_1(\mathbb{R})$: Σ_1^1 recursion along well-orderings of reals;
- BR₁(\mathbb{R}): Σ_1^{i} recursion along well-founded trees $\subseteq \mathbb{R}^{<\omega}$;

・ 同 ト ・ ヨ ト ・ ヨ ト

Higher ATR₀, I/II

Higher-type versions of ATR₀:

- CWO^{\mathbb{R}}: comparability of well-orders of $\subseteq \mathbb{R}$;
- $\mathsf{TR}_1(\mathbb{R})$: Σ_1^1 recursion along well-orderings of reals;
- BR₁(\mathbb{R}): Σ_1^1 recursion along well-founded trees $\subseteq \mathbb{R}^{<\omega}$;
- $\Delta_1^{\mathbb{R}}$ -Det: clopen determinacy on \mathbb{R} ;

イロト イポト イヨト イヨト
Higher ATR₀, I/II

Higher-type versions of ATR₀:

- CWO^{\mathbb{R}}: comparability of well-orders of $\subseteq \mathbb{R}$;
- $\mathsf{TR}_1(\mathbb{R})$: Σ_1^1 recursion along well-orderings of reals;
- BR₁(\mathbb{R}): Σ_1^1 recursion along well-founded trees $\subseteq \mathbb{R}^{<\omega}$;
- $\Delta_1^{\mathbb{R}}$ -Det: clopen determinacy on \mathbb{R} ;
- $\Sigma_1^{\mathbb{R}}$ -Det: open determinacy on \mathbb{R} ;

イロト イポト イヨト イヨト

Higher ATR₀, I/II

Higher-type versions of ATR₀:

- CWO^{\mathbb{R}}: comparability of well-orders of $\subseteq \mathbb{R}$;
- ► TR₁(ℝ): Σ¹₁ recursion along well-orderings of reals;
- BR₁(ℝ): Σ¹₁ recursion along well-founded trees ⊆ ℝ^{<ω};
- $\Delta_1^{\mathbb{R}}$ -Det: clopen determinacy on \mathbb{R} ;
- $\Sigma_1^{\mathbb{R}}$ -Det: open determinacy on \mathbb{R} ;
- Σ_1^2 -Sep \mathbb{R} : Σ_1^2 -separation

イロト イポト イラト イラト 一日

Higher ATR₀, I/II

► Higher-type versions of ATR₀:

- CWO^{\mathbb{R}}: comparability of well-orders of $\subseteq \mathbb{R}$;
- $\mathsf{TR}_1(\mathbb{R})$: Σ_1^1 recursion along well-orderings of reals;
- $\mathsf{BR}_1(\mathbb{R})$: Σ_1^1 recursion along well-founded trees $\subseteq \mathbb{R}^{<\omega}$;
- $\Delta_1^{\mathbb{R}}$ -Det: clopen determinacy on \mathbb{R} ;
- $\Sigma_1^{\mathbb{R}}$ -Det: open determinacy on \mathbb{R} ;

Choice principles:

Higher ATR₀, I/II

Higher-type versions of ATR₀:

- CWO^{\mathbb{R}}: comparability of well-orders of $\subseteq \mathbb{R}$;
- $\mathsf{TR}_1(\mathbb{R})$: Σ_1^1 recursion along well-orderings of reals;
- $\mathsf{BR}_1(\mathbb{R})$: Σ_1^1 recursion along well-founded trees $\subseteq \mathbb{R}^{<\omega}$;
- $\Delta_1^{\mathbb{R}}$ -Det: clopen determinacy on \mathbb{R} ;
- $\Sigma_1^{\mathbb{R}}$ -Det: open determinacy on \mathbb{R} ;
- $\Sigma_1^{\overline{2}}$ -Sep^{\mathbb{R}}: Σ_1^2 -separation
- Choice principles:
 - SF(ℝ): selection functions for collections of sets of reals (Quasi-strategies → strategies)

イロン イ部ン イヨン イヨン 三日

Higher ATR₀, I/II

- ► Higher-type versions of ATR₀:
 - $\mathsf{CWO}^{\mathbb{R}}$: comparability of well-orders of $\subseteq \mathbb{R}$;
 - $\mathsf{TR}_1(\mathbb{R})$: Σ_1^1 recursion along well-orderings of reals;
 - BR₁(ℝ): Σ¹₁ recursion along well-founded trees ⊆ ℝ^{<ω};
 - $\Delta_1^{\mathbb{R}}$ -Det: clopen determinacy on \mathbb{R} ;
 - $\Sigma_1^{\mathbb{R}}$ -Det: open determinacy on \mathbb{R} ;
 - Σ_1^2 -Sep \mathbb{R} : Σ_1^2 -separation
- Choice principles:
 - SF(ℝ): selection functions for collections of sets of reals (Quasi-strategies → strategies)
 - ▶ WO(\mathbb{R}): well-orderability of reals (Kleene-Brouwer: trees \rightarrow ordinals)

(ロ) (同) (E) (E) (E)

Higher ATR₀, II/II

イロン イ部ン イヨン イヨン 三日

Higher ATR₀, II/II

▶ $WO(\mathbb{R}) \leftrightarrow SF(\mathbb{R})$

イロン イ部ン イヨン イヨン 三日

Separating Determinacy Principles

イロン イヨン イヨン イヨン

æ

Separating Determinacy Principles

• Over RCA₀³, $\Delta_1^{\mathbb{R}}$ -Det $\not\rightarrow \Sigma_1^{\mathbb{R}}$ -Det

イロト イヨト イヨト イヨト

æ

Separating Determinacy Principles

- Over RCA $_0^3$, $\Delta_1^{\mathbb{R}}$ -Det $\not\rightarrow \Sigma_1^{\mathbb{R}}$ -Det
- Ground model $V \models ZFC+CH$

イロト イポト イヨト イヨト

Separating Determinacy Principles

- Over RCA $_0^3$, $\Delta_1^{\mathbb{R}}$ -Det $\not\rightarrow \Sigma_1^{\mathbb{R}}$ -Det
- Ground model $V \models ZFC+CH$
- Force with (countably closed) \mathbb{P} to add generic open game

Separating Determinacy Principles

- Over RCA $_0^3$, $\Delta_1^{\mathbb{R}}$ -Det $\not\rightarrow \Sigma_1^{\mathbb{R}}$ -Det
- Ground model $V \models \mathsf{ZFC} + \mathsf{CH}$
- Force with (countably closed) \mathbb{P} to add generic open game
- Get structure $(\omega, \mathbb{R}, \omega^{\mathbb{R}} \cap V[G])$

Separating Determinacy Principles

- Over RCA $_0^3$, $\Delta_1^{\mathbb{R}}$ -Det $\not\rightarrow \Sigma_1^{\mathbb{R}}$ -Det
- Ground model $V \models \mathsf{ZFC} + \mathsf{CH}$
- Force with (countably closed) \mathbb{P} to add generic open game
- Get structure $(\omega, \mathbb{R}, \omega^{\mathbb{R}} \cap V[G])$
- Take substructure

$$M = (\omega, \mathbb{R}, \{f \in \omega^{\mathbb{R}} : f \text{ has "stable" name}\})$$

The Game \mathcal{O}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Game \mathcal{O}

•
$$\omega_2^* = \omega_2 \cup \{\infty\}$$
, ordered by $\infty > x$ for $x \in \omega_2^*$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Game \mathcal{O}

▶
$$\omega_2^* = \omega_2 \cup \{\infty\}$$
, ordered by $\infty > x$ for $x \in \omega_2^*$
▶ $\infty > \infty$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Game ${\cal O}$

- ▶ $\omega_2^* = \omega_2 \cup \{\infty\}$, ordered by $\infty > x$ for $x \in \omega_2^*$ ▶ $\infty > \infty$
- Play elements of ω_2^* :

イロン イヨン イヨン イヨン

æ

The Game \mathcal{O}

▶
$$\omega_2^* = \omega_2 \cup \{\infty\}$$
, ordered by $\infty > x$ for $x \in \omega_2^*$
▶ $\infty > \infty$

• Play elements of
$$\omega_2^*$$
:

$$\blacktriangleright \frac{\text{Player 1 (Open)}}{\text{Player 2 (Closed)}} \frac{\alpha_0}{\beta_0} \frac{\alpha_1}{\beta_1} \cdots$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

The Game \mathcal{O}

•
$$\omega_2^* = \omega_2 \cup \{\infty\}$$
, ordered by $\infty > x$ for $x \in \omega_2^*$
• $\infty > \infty$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

The Game \mathcal{O}

•
$$\omega_2^* = \omega_2 \cup \{\infty\}$$
, ordered by $\infty > x$ for $x \in \omega_2^*$
• $\infty > \infty$

• Player 2 wins unless illegal, or $\exists i(\beta_i = 0)$

・ロン ・回と ・ヨン ・ヨン

æ

The Game \mathcal{O}

•
$$\omega_2^* = \omega_2 \cup \{\infty\}$$
, ordered by $\infty > x$ for $x \in \omega_2^*$
• $\infty > \infty$

Play elements of
$$\omega_2^*$$
:

 Player 1 (Open)
 α_0
 α_1

 Player 2 (Closed)
 β_0
 β_1

• Legal sequences: $\alpha_i > \alpha_{i+1} \implies \beta_i > \beta_{i+1}$

- Player 2 wins unless illegal, or $\exists i(\beta_i = 0)$
- \blacktriangleright Win for 2 (keep playing $\infty),$ but complicated game tree

. . .

・ロン ・回 と ・ ヨ と ・ ヨ と

The Forcing

æ

The Forcing

► Want to create a game on R which classically is O, but unlabelled

・ロン ・回と ・ヨン・

æ

The Forcing

- ► Want to create a game on R which classically is O, but unlabelled
- Force with \mathbb{P} =countable partial maps

$$p:\mathbb{R}^{<\omega}
ightarrow(\omega_2^*)^2$$

such that

イロト イヨト イヨト イヨト

The Forcing

- ► Want to create a game on R which classically is O, but unlabelled
- Force with \mathbb{P} =countable partial maps

$$p:\mathbb{R}^{<\omega}
ightarrow(\omega_2^*)^2$$

such that

dom(p) a tree

イロン イヨン イヨン イヨン

The Forcing

- ► Want to create a game on R which classically is O, but unlabelled
- Force with \mathbb{P} =countable partial maps

$$p:\mathbb{R}^{<\omega}
ightarrow(\omega_2^*)^2$$

such that

•
$$p_1(\langle \rangle) = p_2(\langle \rangle) = \infty$$

イロト イヨト イヨト イヨト

The Forcing

- ▶ Want to create a game on ℝ which classically is O, but unlabelled
- Force with \mathbb{P} =countable partial maps

$$p:\mathbb{R}^{<\omega}
ightarrow(\omega_2^*)^2$$

such that

►
$$dom(p)$$
 a tree
► $p_1(\langle \rangle) = p_2(\langle \rangle) = \infty$
► $|\sigma| = 2k \implies p_2(\sigma^a) = p_2(\sigma),$
 $|\sigma| = 2k + 1 \implies p_1(\sigma^a) = p_1(\sigma)$

イロト イヨト イヨト イヨト

The Forcing

- ▶ Want to create a game on ℝ which classically is O, but unlabelled
- Force with \mathbb{P} =countable partial maps

$$p:\mathbb{R}^{<\omega}
ightarrow(\omega_2^*)^2$$

such that

▶
$$dom(p)$$
 a tree
▶ $p_1(\langle \rangle) = p_2(\langle \rangle) = \infty$
▶ $|\sigma| = 2k \implies p_2(\sigma^a) = p_2(\sigma),$
 $|\sigma| = 2k + 1 \implies p_1(\sigma^a) = p_1(\sigma)$
▶ $p_1(\sigma) > p_1(\sigma^a) \implies p_2(\sigma) > p_2(\sigma^a b)$

イロト イヨト イヨト イヨト

The Forcing

- ► Want to create a game on R which classically is O, but unlabelled
- Force with \mathbb{P} =countable partial maps

$$p:\mathbb{R}^{<\omega}
ightarrow(\omega_2^*)^2$$

such that

イロト イヨト イヨト イヨト

The Forcing

- ► Want to create a game on R which classically is O, but unlabelled
- Force with \mathbb{P} =countable partial maps

$$p:\mathbb{R}^{<\omega}
ightarrow(\omega_2^*)^2$$

such that

> dom(p) a tree
>
$$p_1(\langle \rangle) = p_2(\langle \rangle) = \infty$$

> $|\sigma| = 2k \implies p_2(\sigma^a) = p_2(\sigma),$
 $|\sigma| = 2k + 1 \implies p_1(\sigma^a) = p_1(\sigma)$
> $p_1(\sigma) > p_1(\sigma^a) \implies p_2(\sigma) > p_2(\sigma^a^b)$
> $p_2(\sigma) = 0 \implies \sigma^a \notin dom(p)$

• \mathbb{P} countably closed

- 4 同 6 4 日 6 4 日 6

Building M

æ

Building M

• "Name" = appropriate map: $\mathbb{P} \to \{ \text{partial maps } \mathbb{R} \to \omega \}$

<ロ> (四) (四) (三) (三) (三)

Building M

- "Name" = appropriate map: $\mathbb{P} \to \{ \text{partial maps } \mathbb{R} \to \omega \}$
- ▶ For $\alpha < \omega_2$, $p, q \in \mathbb{P}$: Set $p \approx_{\alpha} q$ if

イロン イボン イヨン イヨン 三日

Building M

- "Name" = appropriate map: $\mathbb{P} \to \{ \text{partial maps } \mathbb{R} \to \omega \}$
- ▶ For $\alpha < \omega_2$, $p, q \in \mathbb{P}$: Set $p \approx_{\alpha} q$ if
 - dom(p) = dom(q) and

イロン イ部ン イヨン イヨン 三日

Building M

- "Name" = appropriate map: $\mathbb{P} \to \{ \text{partial maps } \mathbb{R} \to \omega \}$
- ▶ For $\alpha < \omega_2$, $p, q \in \mathbb{P}$: Set $p \approx_{\alpha} q$ if
 - dom(p) = dom(q) and
 - $p_i(\sigma) \neq q_i(\sigma) \implies p_i(\sigma), q_i(\sigma) \geq \alpha$

Building M

- "Name" = appropriate map: $\mathbb{P} \to \{ \text{partial maps } \mathbb{R} \to \omega \}$
- ▶ For $\alpha < \omega_2$, $p, q \in \mathbb{P}$: Set $p \approx_{\alpha} q$ if
 - dom(p) = dom(q) and
 - $p_i(\sigma) \neq q_i(\sigma) \implies p_i(\sigma), q_i(\sigma) \geq \alpha$
- Name ν is α -stable if

$$[p \approx_{\alpha} q, \ \nu(p)(a) = n] \implies [\nu(q)(a) = n]$$

イロト イポト イラト イラト 一日
Building M

- "Name" = appropriate map: $\mathbb{P} \to \{ \text{partial maps } \mathbb{R} \to \omega \}$
- ▶ For $\alpha < \omega_2$, $p, q \in \mathbb{P}$: Set $p \approx_{\alpha} q$ if
 - dom(p) = dom(q) and
 - $p_i(\sigma) \neq q_i(\sigma) \implies p_i(\sigma), q_i(\sigma) \geq \alpha$
- Name ν is α -stable if

$$[p \approx_{\alpha} q, \ \nu(p)(a) = n] \implies [\nu(q)(a) = n]$$

• Name ν is *stable* if α -stable for some α

・ 同 ト ・ ヨ ト ・ ヨ ト

Building M

- "Name" = appropriate map: $\mathbb{P} \to \{ \text{partial maps } \mathbb{R} \to \omega \}$
- ▶ For $\alpha < \omega_2$, $p, q \in \mathbb{P}$: Set $p \approx_{\alpha} q$ if
 - dom(p) = dom(q) and
 - $p_i(\sigma) \neq q_i(\sigma) \implies p_i(\sigma), q_i(\sigma) \geq \alpha$
- Name ν is α -stable if

$$[p \approx_{\alpha} q, \ \nu(p)(a) = n] \implies [\nu(q)(a) = n]$$

- Name ν is *stable* if α -stable for some α
- Separating model is

$$M = (\omega, \mathbb{R}, \{\nu[G] : \nu \text{ is stable}\})$$

・ロト ・回 ト ・ヨト ・ヨー

• Generic game $\mathcal{T} = dom(G)$ has 1-stable name, so $\mathcal{T} \in M$

・ロト ・回ト ・ヨト ・ヨト

æ

$M \models \neg \Sigma_1^{\mathbb{R}}$ -Det

- Generic game $\mathcal{T} = dom(G)$ has 1-stable name, so $\mathcal{T} \in M$
- ► Each strategy for Open has play which defeats it; so M ⊨ "T not win for Open" (countable closure)

イロン イ部ン イヨン イヨン 三日

$M \models \neg \Sigma_1^{\mathbb{R}}$ -Det

- Generic game $\mathcal{T} = dom(G)$ has 1-stable name, so $\mathcal{T} \in M$
- ► Each strategy for Open has play which defeats it; so M ⊨ "T not win for Open" (countable closure)
- If ν is α -stable name for Closed-strategy, ν can be "tricked":

(ロ) (同) (E) (E) (E)

$M \models \neg \Sigma_1^{\mathbb{R}}$ -Det

- Generic game $\mathcal{T} = dom(G)$ has 1-stable name, so $\mathcal{T} \in M$
- ► Each strategy for Open has play which defeats it; so M ⊨ "T not win for Open" (countable closure)
- If ν is α -stable name for Closed-strategy, ν can be "tricked":

• Let
$$p \Vdash \nu(\langle \alpha \rangle) = \gamma$$

(ロ) (同) (E) (E) (E)

$M \models \neg \Sigma_1^{\mathbb{R}}$ -Det

- Generic game $\mathcal{T} = dom(G)$ has 1-stable name, so $\mathcal{T} \in M$
- ► Each strategy for Open has play which defeats it; so M ⊨ "T not win for Open" (countable closure)
- If ν is α -stable name for Closed-strategy, ν can be "tricked":

• Let
$$p \Vdash \nu(\langle \alpha \rangle) = \gamma$$

• $\gamma \geq \alpha$ if ν winning

イロト イポト イラト イラト 一日

$M \models \neg \Sigma_1^{\mathbb{R}}$ -Det

- Generic game $\mathcal{T} = dom(G)$ has 1-stable name, so $\mathcal{T} \in M$
- ► Each strategy for Open has play which defeats it; so M ⊨ "T not win for Open" (countable closure)
- If ν is α -stable name for Closed-strategy, ν can be "tricked":

• Let
$$p \Vdash \nu(\langle \alpha \rangle) = \gamma$$

- $\gamma \geq \alpha$ if ν winning
- Get $p' \approx_{\alpha} p$ with $p' \Vdash \nu(\langle \gamma + 1 \rangle) = \gamma$

イロト イポト イラト イラト 一日

$M \models \neg \Sigma_1^{\mathbb{R}}$ -Det

- Generic game $\mathcal{T} = dom(G)$ has 1-stable name, so $\mathcal{T} \in M$
- ► Each strategy for Open has play which defeats it; so M ⊨ "T not win for Open" (countable closure)
- If ν is α -stable name for Closed-strategy, ν can be "tricked":

• Let
$$p \Vdash \nu(\langle \alpha \rangle) = \gamma$$

- $\gamma \geq \alpha$ if ν winning
- Get $p' \approx_{\alpha} p$ with $p' \Vdash \nu(\langle \gamma + 1 \rangle) = \gamma$

So $M \models ``T$ not win for Closed''

(ロ) (同) (E) (E) (E)

$M \models \Delta_1^{\mathbb{R}}$ -Det, I/II: Short games

・ロン ・回と ・ヨン ・ヨン

Э

 $M \models \Delta_1^{\mathbb{R}}$ -Det, I/II: Short games

P has retagging property:

$$p \approx_{lpha + \omega_1} q$$
 and $r \leq p \implies \exists s (r \approx_{lpha} s \text{ and } s \leq q)$

イロト イヨト イヨト イヨト

æ

 $M \models \Delta_1^{\mathbb{R}}$ -Det, I/II: Short games

P has retagging property:

$$ppprox_{lpha+\omega_1} q$$
 and $r\leq p\implies \exists s(rpprox_lpha s$ and $s\leq q)$

Retagging = "Jumps"

イロン イヨン イヨン イヨン

æ

 $M \models \Delta_1^{\mathbb{R}}$ -Det, I/II: Short games

P has retagging property:

$$ppprox_{lpha+\omega_1} q$$
 and $r\leq p\implies \exists s(rpprox_lpha s ext{ and } s\leq q)$

- Retagging = "Jumps"
 - Ex: ν is (α + ω₁ · 2)-stable ⇒ name for characteristic function of {x : ∃y(ν(x ⊕ y) = 1)} is α stable

イロト イポト イヨト イヨト

 $M \models \Delta_1^{\mathbb{R}}$ -Det, I/II: Short games

P has retagging property:

$$p pprox_{lpha + \omega_1} q ext{ and } r \leq p \implies \exists s (r pprox_{lpha} s ext{ and } s \leq q)$$

- Ex: ν is (α + ω₁ · 2)-stable ⇒ name for characteristic function of {x : ∃y(ν(x ⊕ y) = 1)} is α stable
- Winning clopen games of rank $< \omega_2$: iterated retagging

イロト イポト イヨト イヨト

$M \models \Delta_1^{\mathbb{R}}$ -Det, II/II: No long games

・ロン ・回と ・ヨン ・ヨン

Э

$M \models \Delta_1^{\mathbb{R}}$ -Det, II/II: No long games

• Claim: All games in M have rank $< \omega_2$

イロン 不同と 不同と 不同と

æ

$M \models \Delta_1^{\mathbb{R}}$ -Det, II/II: No long games

- Claim: All games in M have rank $< \omega_2$
- ν an α -stable name for well-ordering; show $\nu[G] < \omega_2$

イロン イヨン イヨン イヨン

$M \models \Delta_1^{\mathbb{R}}$ -Det, II/II: No long games

- Claim: All games in M have rank $< \omega_2$
- ▶ ν an α -stable name for well-ordering; show $\nu[G] < \omega_2$
- Tree \mathbb{T} of pairs $\langle p, \overline{a} \rangle$ with

イロン イヨン イヨン イヨン

$M \models \Delta_1^{\mathbb{R}}$ -Det, II/II: No long games

- Claim: All games in M have rank $< \omega_2$
- ▶ ν an α -stable name for well-ordering; show $\nu[G] < \omega_2$
- Tree \mathbb{T} of pairs $\langle p, \overline{a} \rangle$ with
 - $ran(p) \subseteq (\alpha \cup \{\infty\})^2$

イロト イポト イヨト イヨト

$M \models \Delta_1^{\mathbb{R}}$ -Det, II/II: No long games

- Claim: All games in M have rank $< \omega_2$
- ▶ ν an α -stable name for well-ordering; show $\nu[G] < \omega_2$
- Tree \mathbb{T} of pairs $\langle p, \overline{a} \rangle$ with
 - $ran(p) \subseteq (\alpha \cup \{\infty\})^2$
 - ▶ $p \Vdash$ " \overline{a} descending sequence in ν "

$M \models \Delta_1^{\mathbb{R}}$ -Det, II/II: No long games

- Claim: All games in M have rank $< \omega_2$
- ▶ ν an α -stable name for well-ordering; show $\nu[G] < \omega_2$
- Tree \mathbb{T} of pairs $\langle p, \overline{a} \rangle$ with
 - $ran(p) \subseteq (\alpha \cup \{\infty\})^2$
 - ▶ $p \Vdash$ "ā descending sequence in ν "
 - $\langle p, \overline{a} \rangle \leq \langle q, \overline{b} \rangle$ if $p \leq q$ and $\overline{b} \prec \overline{a}$

$M \models \Delta_1^{\mathbb{R}}$ -Det, II/II: No long games

- Claim: All games in M have rank $< \omega_2$
- ▶ ν an α -stable name for well-ordering; show $\nu[G] < \omega_2$
- Tree \mathbb{T} of pairs $\langle p, \overline{a} \rangle$ with

•
$$ran(p) \subseteq (\alpha \cup \{\infty\})^2$$

- $p \Vdash$ " \overline{a} descending sequence in ν "
- $\langle p, \overline{a} \rangle \leq \langle q, \overline{b} \rangle$ if $p \leq q$ and $\overline{b} \prec \overline{a}$
- \mathbb{T} wellfounded

$M \models \Delta_1^{\mathbb{R}}$ -Det, II/II: No long games

- Claim: All games in M have rank $< \omega_2$
- ▶ ν an α -stable name for well-ordering; show $\nu[G] < \omega_2$
- Tree \mathbb{T} of pairs $\langle p, \overline{a} \rangle$ with

•
$$ran(p) \subseteq (\alpha \cup \{\infty\})^2$$

- $p \Vdash$ " \overline{a} descending sequence in ν "
- $\langle p, \overline{a} \rangle \leq \langle q, \overline{b} \rangle$ if $p \leq q$ and $\overline{b} \prec \overline{a}$
- \mathbb{T} wellfounded

$$\blacktriangleright |\mathbb{T}| = \aleph_1$$

$M \models \Delta_1^{\mathbb{R}}$ -Det, II/II: No long games

- Claim: All games in M have rank $< \omega_2$
- ▶ ν an α -stable name for well-ordering; show $\nu[G] < \omega_2$
- Tree \mathbb{T} of pairs $\langle p, \overline{a} \rangle$ with
 - $ran(p) \subseteq (\alpha \cup \{\infty\})^2$
 - ▶ $p \Vdash$ " \overline{a} descending sequence in ν "
 - $\langle p, \overline{a} \rangle \leq \langle q, \overline{b} \rangle$ if $p \leq q$ and $\overline{b} \prec \overline{a}$
- \mathbb{T} wellfounded
- $\blacktriangleright |\mathbb{T}| = \aleph_1$
- \mathbb{T} embeds tree of descending sequences in $\nu[G]$

イロト イポト イヨト イヨト

► Let
$$\varphi(x^1, y^0) \in \Sigma_n^0$$
 (with parameters), and
 $M \models \forall x^1 \exists ! y^0 \varphi(x, y)$

► Let
$$\varphi(x^1, y^0) \in \Sigma_n^0$$
 (with parameters), and
 $M \models \forall x^1 \exists ! y^0 \varphi(x, y)$

• Type-2 parameters of φ : F_i with names ν_i

<ロ> (四) (四) (三) (三) (三)

► Let
$$\varphi(x^1, y^0) \in \Sigma_n^0$$
 (with parameters), and
 $M \models \forall x^1 \exists ! y^0 \varphi(x, y)$

- Type-2 parameters of φ : F_i with names ν_i
- Fix α with each $\nu_i \alpha$ -stable

・ロト ・回ト ・ヨト ・ヨト

► Let
$$\varphi(x^1, y^0) \in \Sigma_n^0$$
 (with parameters), and
 $M \models \forall x^1 \exists ! y^0 \varphi(x, y)$

- Type-2 parameters of φ : F_i with names ν_i
- Fix α with each $\nu_i \alpha$ -stable
- For each a, φ(a, −) depends only on values of parameters on countably many reals

・ロン ・回 と ・ ヨ と ・ ヨ と

$M \models \mathsf{RCA}_0^3$

- ► Let $\varphi(x^1, y^0) \in \Sigma_n^0$ (with parameters), and $M \models \forall x^1 \exists ! y^0 \varphi(x, y)$
 - Type-2 parameters of φ : F_i with names ν_i
 - Fix α with each $\nu_i \alpha$ -stable
- For each a, φ(a, −) depends only on values of parameters on countably many reals
- Countable closure: functional defined by φ is α -stable

イロト イポト イラト イラト 一日

Further Questions

æ

Further Questions

• Do canonical models of $\Delta_1^{\mathbb{R}}$ -Det satisfy $\Sigma_1^{\mathbb{R}}$ -Det?

イロト イヨト イヨト イヨト

æ

Further Questions

- Do canonical models of $\Delta_1^{\mathbb{R}}$ -Det satisfy $\Sigma_1^{\mathbb{R}}$ -Det?
 - $\blacktriangleright (\omega, \mathbb{R} \cap L_{\alpha}, \omega^{\mathbb{R}} \cap L_{\alpha})$

イロト イヨト イヨト イヨト

Further Questions

- Do canonical models of Δ₁^ℝ-Det satisfy Σ₁^ℝ-Det?
 (ω, ℝ ∩ L_α, ω^ℝ ∩ L_α)
- $\blacktriangleright \ \Sigma_1^{\mathbb{R}} \text{-}\mathsf{Det} \Longrightarrow \ \Sigma_1^2 \text{-}\mathsf{Sep}^{\mathbb{R}} ? \ \Delta_1^{\mathbb{R}} \text{-}\mathsf{Det} \Longrightarrow \mathsf{WO}(\mathbb{R}) ?$

・ 同 ト ・ ヨ ト ・ ヨ ト

Further Questions

- Do canonical models of $\Delta_1^{\mathbb{R}}$ -Det satisfy $\Sigma_1^{\mathbb{R}}$ -Det?
 - $\blacktriangleright (\omega, \mathbb{R} \cap L_{\alpha}, \omega^{\mathbb{R}} \cap L_{\alpha})$
- $\blacktriangleright \ \Sigma_1^{\mathbb{R}} \text{-}\mathsf{Det} \Longrightarrow \ \Sigma_1^2 \text{-}\mathsf{Sep}^{\mathbb{R}}? \ \Delta_1^{\mathbb{R}} \text{-}\mathsf{Det} \Longrightarrow \mathsf{WO}(\mathbb{R})?$
- Restrict games based on topological complexity of game tree coded as set of reals

・ 同 ト ・ ヨ ト ・ ヨ ト
Outline Higher Reverse Mathematics Splitting ATR₀ Clopen vs. Open Determinacy Further Questions

Further Questions

- Do canonical models of $\Delta_1^{\mathbb{R}}$ -Det satisfy $\Sigma_1^{\mathbb{R}}$ -Det?
 - $\blacktriangleright (\omega, \mathbb{R} \cap L_{\alpha}, \omega^{\mathbb{R}} \cap L_{\alpha})$
- $\blacktriangleright \ \Sigma_1^{\mathbb{R}} \text{-}\mathsf{Det} \Longrightarrow \ \Sigma_1^2 \text{-}\mathsf{Sep}^{\mathbb{R}}? \ \Delta_1^{\mathbb{R}} \text{-}\mathsf{Det} \Longrightarrow \mathsf{WO}(\mathbb{R})?$
- Restrict games based on topological complexity of game tree coded as set of reals
- ► Is RCA³₀/RCA^ω₀ the "right" base theory?

(1) マン・ション・

Outline Higher Reverse Mathematics Splitting ATR₀ Clopen vs. Open Determinacy Further Questions

Further Questions

- Do canonical models of $\Delta_1^{\mathbb{R}}$ -Det satisfy $\Sigma_1^{\mathbb{R}}$ -Det?
 - $\blacktriangleright (\omega, \mathbb{R} \cap L_{\alpha}, \omega^{\mathbb{R}} \cap L_{\alpha})$
- $\blacktriangleright \ \Sigma_1^{\mathbb{R}}\text{-}\mathsf{Det} \Longrightarrow \ \Sigma_1^2\text{-}\mathsf{Sep}^{\mathbb{R}}? \ \Delta_1^{\mathbb{R}}\text{-}\mathsf{Det} \Longrightarrow \mathsf{WO}(\mathbb{R})?$
- Restrict games based on topological complexity of game tree coded as set of reals
- ▶ Is RCA₀³/RCA₀^ω the "right" base theory?

소리가 소문가 소문가 소문가

Outline Higher Reverse Mathematics Splitting ATR₀ Clopen vs. Open Determinacy Further Questions

Further Questions

- Do canonical models of $\Delta_1^{\mathbb{R}}$ -Det satisfy $\Sigma_1^{\mathbb{R}}$ -Det?
 - $\blacktriangleright (\omega, \mathbb{R} \cap L_{\alpha}, \omega^{\mathbb{R}} \cap L_{\alpha})$
- $\blacktriangleright \ \Sigma_1^{\mathbb{R}}\text{-}\mathsf{Det} \Longrightarrow \ \Sigma_1^2\text{-}\mathsf{Sep}^{\mathbb{R}}? \ \Delta_1^{\mathbb{R}}\text{-}\mathsf{Det} \Longrightarrow \mathsf{WO}(\mathbb{R})?$
- Restrict games based on topological complexity of game tree coded as set of reals
- ▶ Is RCA₀³/RCA₀^ω the "right" base theory?

 - Pluralism: may be right "family" of base theories

소리가 소문가 소문가 소문가