Transfinite Recursion in Higher Reverse
Mathematics

Noah Schweber

18 February 2014

Noah Schweber Transfinite Recursion in Higher Reverse Mathematics



Outline

Higher Reverse Mathematics

Splitting ATRg

Clopen vs. Open Determinacy

Further Questions

Noah Schweber Transfinite Recursion in Higher Reverse Mathematics



Higher Reverse Mathematics

From Lower to Higher

Noah Schweber finite Recursion in Higher Reverse Mathematics



Higher Reverse Mathematics

From Lower to Higher

» Reverse mathematics beyond reals: finite types

Noah Schweber Transfinite Recursion in Higher Reverse Mathematics



Higher Reverse Mathematics

From Lower to Higher

» Reverse mathematics beyond reals: finite types
» Standard finite types: 0=w, 1=w*=R, 2=w@”) = WR etc.

Noah Schweber Transfinite Recursion in Higher Reverse Mathematics



Higher Reverse Mathematics

From Lower to Higher

» Reverse mathematics beyond reals: finite types
» Standard finite types: 0=w, 1=w*=R, 2=w@”) = WR etc.
» Also mixed types: 1 — 1, etc.

Noah Schweber Transfinite Recursion in Higher Reverse Mathematics



Higher Reverse Mathematics

From Lower to Higher

» Reverse mathematics beyond reals: finite types
» Standard finite types: 0=w, 1=w*=R, 2=w@”) = WR etc.
» Also mixed types: 1 — 1, etc.

» Behavior of general theorems at varying types

Noah Schweber Transfinite Recursion in Higher Reverse Mathematics



Higher Reverse Mathematics

From Lower to Higher

» Reverse mathematics beyond reals: finite types
» Standard finite types: 0=w, 1=w*=R, 2=w@”) = WR etc.
» Also mixed types: 1 — 1, etc.

» Behavior of general theorems at varying types

» “Every non-division ring with domain C R has a nontrivial
proper ideal” (WKLg)

Noah Schweber Transfinite Recursion in Higher Reverse Mathematics



Higher Reverse Mathematics

From Lower to Higher

» Reverse mathematics beyond reals: finite types
» Standard finite types: 0=w, 1=w*=R, 2=w@”) = WR etc.
» Also mixed types: 1 — 1, etc.

» Behavior of general theorems at varying types

» “Every non-division ring with domain C R has a nontrivial
proper ideal” (WKLg)
» “Every map R — R has a range” (ACAy)

Noah Schweber Transfinite Recursion in Higher Reverse Mathematics



Higher Reverse Mathematics

From Lower to Higher

» Reverse mathematics beyond reals: finite types
» Standard finite types: 0=w, 1=w*=R, 2=w@”) = WR etc.
» Also mixed types: 1 — 1, etc.

» Behavior of general theorems at varying types

» “Every non-division ring with domain C R has a nontrivial
proper ideal” (WKLg)

» “Every map R — R has a range” (ACAy)

» “Clopen games on R are determined” (ATRy)

Noah Schweber Transfinite Recursion in Higher Reverse Mathematics



Higher Reverse Mathematics

From Lower to Higher

» Reverse mathematics beyond reals: finite types
» Standard finite types: 0=w, 1=w*=R, 2=w@”) = WR etc.
» Also mixed types: 1 — 1, etc.

» Behavior of general theorems at varying types

» “Every non-division ring with domain C R has a nontrivial
proper ideal” (WKLg)

» “Every map R — R has a range” (ACAy)

» “Clopen games on R are determined” (ATRy)

» Higher-order robust systems?

Noah Schweber Transfinite Recursion in Higher Reverse Mathematics



Higher Reverse Mathematics

From Lower to Higher

» Reverse mathematics beyond reals: finite types
» Standard finite types: 0=w, 1=w*=R, 2=w@”) = WR etc.
» Also mixed types: 1 — 1, etc.
» Behavior of general theorems at varying types
» “Every non-division ring with domain C R has a nontrivial
proper ideal” (WKLg)
» “Every map R — R has a range” (ACAy)
» “Clopen games on R are determined” (ATRy)
» Higher-order robust systems?
» Is there a higher-type analogue of ATRy?
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Base Theories

» Kohlenbach '01: base theory RCAy for arbitrary finite types

» Conservative over RCAg
» Primitive recursion for higher types

» S.: base theory RCA3 for types 0,1,2

» Conservative over RCA, conservative subtheory of RCAg
Presentation similar to RCAq
Language: arithmetic + application operators + coding
(concatenation natural”real; representation of 1 — 1 as 2)
Axioms: P~ +Extensionality; Z?-induction for 0;
AY-comprehension for 1 and 2
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Base Theories

» Kohlenbach '01: base theory RCAy for arbitrary finite types

» Conservative over RCAg
» Primitive recursion for higher types
» S.: base theory RCAS for types 0,1, 2

» Conservative over RCA, conservative subtheory of RCAg

» Presentation similar to RCAq

» Language: arithmetic + application operators + coding
(concatenation natural”real; representation of 1 — 1 as 2)

» Axioms: P~+Extensionality; Z?-induction for 0;
AY-comprehension for 1 and 2

» w-models determined by type-1 and 2 parts
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Splitting ATRg

Robustness of ATRg follows from: “is well-founded” is
Ni-complete

» . . . as a property of relations on w

> As property of relations on R: still M}

» Standard arguments around ATRj fail at higher types
Negative result: separations — e.g. clopen determinacy for
reals strictly weaker than open determinacy

Positive result: principles linearly ordered (modulo choice)

Choice principles also analyzed
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Splitting ATRg

Higher ATRy, 1/11

» Higher-type versions of ATRy:

» CWOR: comparability of well-orders of C R;
TR1(R): X1 recursion along well-orderings of reals;
BR;(R): X1 recursion along well-founded trees C R<¥;
AY-Det: clopen determinacy on R;
Y ¥-Det: open determinacy on R;
¥2-Sep®: ¥ 2-separation

v

vV vy vy

» Choice principles:
» SF(R): selection functions for collections of sets of reals
(Quasi-strategies — strategies)
» WO(R): well-orderability of reals (Kleene-Brouwer: trees —
ordinals)
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|

YR -Det

ﬂ
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Higher ATRy, 11/11

¥2-Sep® + SF(R)

|

YR -Det

ﬂ

TR1(R) + WO(R) + SF(R) — > AR-Det <> BRy(R) + SF(R)

ﬂ

CWOR

> WO(R)«SF(R)

Noah Schweber Transfinite Recursion in Higher Reverse Mathematics



Clopen vs. Open Determinacy

Separating Determinacy Principles

Noah Schweber Transfinite Recursion in Higher Reverse Mathematics



Clopen vs. Open Determinacy

Separating Determinacy Principles

» Over RCA3, Af-Det /¥ -Det

Noah Schweber Transfinite Recursion in Higher Reverse Mathematics



Clopen vs. Open Determinacy

Separating Determinacy Principles

» Over RCA3, Af-Det /¥ -Det
» Ground model V =ZFC+CH

Noah Schweber Transfinite Recursion in Higher Reverse Mathematics



Clopen vs. Open Determinacy

Separating Determinacy Principles

» Over RCA3, Af-Det /¥ -Det
» Ground model V =ZFC+CH

» Force with (countably closed) P to add generic open game

Noah Schweber Transfinite Recursion in Higher Reverse Mathematics



Clopen vs. Open Determinacy

Separating Determinacy Principles

>

Over RCA}, AF-Det/A¥}-Det

Ground model V =ZFC+CH
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Clopen vs. Open Determinacy

Separating Determinacy Principles

>

Over RCA}, AF-Det/A¥}-Det

Ground model V =ZFC+CH

Force with (countably closed) P to add generic open game
Get structure (w, R,w® N V[G])

Take substructure
M = (w,R,{f € w® : f has “stable” name})

v

v

v

v
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Clopen vs. Open Determinacy

The Game O

> wj = wo U {oo}, ordered by co > x for x € w;
> 00 > 0

» Play elements of w3:

Player 1 (Open) | ag fa%]

Player 2 (Closed) | Bo b1
> Legal sequences: o > ajy1 = [i > Bir1
» Player 2 wins unless illegal, or 3i(8; = 0)
» Win for 2 (keep playing c0), but complicated game tree
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unlabelled

» Force with P=countable partial maps

p R = (w3)?
such that
» dom(p) a tree

> () = p2(()) = o0
> |o| =2k = p(0c7a) = p(0),
o] =2k +1 = pi(0c7a) = p1(0)
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Clopen vs. Open Determinacy

The Forcing

» Want to create a game on R which classically is O, but
unlabelled

» Force with P=countable partial maps
p: R = (w3)?

such that
dom(p) a tree

p1(() = p2(()) = o0

lo| =2k = p2(c7a) = pa(0),

lo| =2k +1 = pi(0c7a) = p1(0)

pi(0) > pi(c7a) = p2(0) > p2(07a"b)
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Clopen vs. Open Determinacy

The Forcing

» Want to create a game on R which classically is O, but
unlabelled

» Force with P=countable partial maps
p: R = (w3)?

such that

dom(p) a tree

pr(() = pa({)) = o0

lo| =2k = p2(c7a) = pa(0),

lo| =2k +1 = pi(0c7a) = p1(0)

pi(c) > pi(07a) = pa(0) > pa(07a"b)
p2(0) =0 — 0~ & dom(p)

v

v

v
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Clopen vs. Open Determinacy

The Forcing

» Want to create a game on R which classically is O, but
unlabelled

» Force with P=countable partial maps
p: R = (w3)?

such that
» dom(p) a tree

> () = p2(()) = o0
> |o| =2k = p(0c7a) = p(0),
lo| =2k +1 = pi(0c7a) = p1(0)
> pi(0) > pi(07a) = p(0) > p2(07a"b)
> pa{0) =0 = 0" ¢ dom(p)

» P countably closed
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>

“Name" = appropriate map: P — {partial maps R — w}
For a <wo, p,q € P: Set p =, q if

» dom(p) = dom(q) and

> pi(0) # gi(0c) = pi(0),qi(0) > a
» Name v is a-stable if

v

[p~a g, v(p)(a) =n] = [v(q)(a) = 1]

» Name v is stable if a-stable for some «
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Clopen vs. Open Determinacy

Building M

» “Name” = appropriate map: P — {partial maps R — w}
» For a < wy, p,qg € P: Set p=, qif

» dom(p) = dom(q) and

> pi(0) # gi(0c) = pi(0),qi(0) > a
» Name v is a-stable if

[p~a g, v(p)(a) =n] = [v(q)(a) = 1]

Name v is stable if a-stable for some «

v

v

Separating model is

M = (w, R, {v[G] : v is stable})
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M |= ~5F-Det

» Generic game 7 = dom(G) has 1-stable name, so 7 € M
» Each strategy for Open has play which defeats it; so M ="T
not win for Open” (countable closure)

> If v is a-stable name for Closed-strategy, v can be “tricked”:

» Let plFv({a)) =
» v > «if v winning
» Get p' ~, p with p IFv({(v+ 1)) =~
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Clopen vs. Open Determinacy

M |= ~5F-Det

v

Generic game 7 = dom(G) has 1-stable name, so 7 € M
Each strategy for Open has play which defeats it; so M ="T
not win for Open” (countable closure)

If v is a-stable name for Closed-strategy, v can be “tricked”:

» Let plFv({a)) =
» v > «if v winning
» Get p' ~, p with p IFv({(v+ 1)) =~

So M ="T not win for Closed”

v

v

v
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Clopen vs. Open Determinacy

M [=AR-Det, 1/11: Short games

» P has retagging property:
P ~atw, gand r < p = Is(r =, s and s < q)
> Retagging = “Jumps”
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Clopen vs. Open Determinacy

M [=AR-Det, 1/11: Short games

» P has retagging property:
P ~atw, gand r < p = Is(r =, s and s < q)

> Retagging = “Jumps”
» Ex: vis (o + wy - 2)-stable = name for characteristic
function of {x : Jy(v(x ® y) = 1)} is « stable

» Winning clopen games of rank < wy: iterated retagging
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» Claim: All games in M have rank < wy
» v an a-stable name for well-ordering; show v[G] < w>
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Clopen vs. Open Determinacy

M [=A%-Det, 11/1l: No long games

» Claim: All games in M have rank < wy
» v an a-stable name for well-ordering; show v[G] < w>
» Tree T of pairs (p,a) with
> ran(p) C (aU{oo})?
> pIF"a descending sequence in V"
» (p,a) <{q,b)ifp<gand b<3
» T wellfounded
> |T| = Nl
» T embeds tree of descending sequences in v[G]
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Clopen vs. Open Determinacy

M [=RCA3

» Let p(xt,y0) € 9 (with parameters), and
M = ¥x3ly%p(x, y)
» Type-2 parameters of ¢: F; with names v;
» Fix o with each v; a-stable

» For each a, p(a, —) depends only on values of parameters on
countably many reals

» Countable closure: functional defined by ¢ is a-stable
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Further Questions

Further Questions

>

Do canonical models of AR-Det satisfy ¥}-Det?
» (W, RN Ly, w®NLy)
TR -Det = ¥7-Sep®? AR-Det = WO(R)?
Restrict games based on topological complexity of game tree
coded as set of reals
Is RCAS/RCABJ the “right” base theory?

v

v

v
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Do canonical models of AR-Det satisfy ¥}-Det?
» (W, RN Ly, w®NLy)
TR -Det = ¥7-Sep®? AR-Det = WO(R)?
Restrict games based on topological complexity of game tree
coded as set of reals
Is RCAS/RCA%{ the “right” base theory?

» Ex: existence of jump operator J does not imply existence of
0(w) (Avigad/Feferman '98; Hunter '08, conservativity over
ACAy)

v

v

v
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Further Questions

Further Questions

v

Do canonical models of AR-Det satisfy ¥}-Det?
» (W, RN Ly, w®NLy)
TR -Det = ¥7-Sep®? AR-Det = WO(R)?
Restrict games based on topological complexity of game tree
coded as set of reals
Is RCAS/RCA%{ the “right” base theory?

» Ex: existence of jump operator J does not imply existence of
0(w) (Avigad/Feferman '98; Hunter '08, conservativity over
ACAy)

» Pluralism: may be right “family” of base theories

v

v

v
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