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Further Questions

From Lower to Higher

I Reverse mathematics beyond reals: finite types

I Standard finite types: 0=ω, 1=ωω=R, 2=ω(ωω) = ωR, etc.
I Also mixed types: 1→ 1, etc.

I Behavior of general theorems at varying types

I “Every non-division ring with domain ⊆ R has a nontrivial
proper ideal” (WKL0)

I “Every map R→ R has a range” (ACA0)
I “Clopen games on R are determined” (ATR0)

I Higher-order robust systems?

I Is there a higher-type analogue of ATR0?
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Further Questions

Base Theories

I Kohlenbach ’01: base theory RCAω0 for arbitrary finite types

I Conservative over RCA0

I Primitive recursion for higher types

I S.: base theory RCA3
0 for types 0, 1, 2

I Conservative over RCA0, conservative subtheory of RCAω0
I Presentation similar to RCA0

I Language: arithmetic + application operators + coding
(concatenation naturalareal; representation of 1→ 1 as 2)

I Axioms: P−+Extensionality; Σ0
1-induction for 0;

∆0
1-comprehension for 1 and 2

I ω-models determined by type-1 and 2 parts
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Further Questions

Why ATR0?

I Robustness of ATR0 follows from: “is well-founded” is
Π1
1-complete

I . . . as a property of relations on ω
I As property of relations on R: still Π1

1
I Standard arguments around ATR0 fail at higher types

I Negative result: separations – e.g. clopen determinacy for
reals strictly weaker than open determinacy

I Positive result: principles linearly ordered (modulo choice)

I Choice principles also analyzed
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Further Questions

Higher ATR0, I/II

I Higher-type versions of ATR0:

I CWOR: comparability of well-orders of ⊆ R;
I TR1(R): Σ1

1 recursion along well-orderings of reals;
I BR1(R): Σ1

1 recursion along well-founded trees ⊆ R<ω;
I ∆R

1 -Det: clopen determinacy on R;
I ΣR

1 -Det: open determinacy on R;
I Σ2

1-SepR: Σ2
1-separation

I Choice principles:

I SF(R): selection functions for collections of sets of reals
(Quasi-strategies → strategies)

I WO(R): well-orderability of reals (Kleene-Brouwer: trees →
ordinals)
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I TR1(R): Σ1

1 recursion along well-orderings of reals;
I BR1(R): Σ1

1 recursion along well-founded trees ⊆ R<ω;
I ∆R

1 -Det: clopen determinacy on R;
I ΣR

1 -Det: open determinacy on R;
I Σ2

1-SepR: Σ2
1-separation

I Choice principles:
I SF(R): selection functions for collections of sets of reals

(Quasi-strategies → strategies)
I WO(R): well-orderability of reals (Kleene-Brouwer: trees →

ordinals)
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Further Questions

Higher ATR0, II/II

I (S.)

Σ2
1-SepR + SF(R)

��
ΣR

1 -Det

��
TR1(R) + WO(R) + SF(R) // ∆R

1 -Det

��

oo // BR1(R) + SF(R)

CWOR

I WO(R)=SF(R)
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Further Questions

Separating Determinacy Principles

I Over RCA3
0, ∆R

1 -Det 6→ΣR
1 -Det

I Ground model V |=ZFC+CH

I Force with (countably closed) P to add generic open game

I Get structure (ω,R, ωR ∩ V [G ])

I Take substructure
M = (ω,R, {f ∈ ωR : f has “stable” name})
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Further Questions

The Game O

I ω∗
2 = ω2 ∪ {∞}, ordered by ∞ > x for x ∈ ω∗

2

I ∞ >∞

I Play elements of ω∗
2:

I
Player 1 (Open) α0 α1 · · ·
Player 2 (Closed) β0 β1 · · ·

I Legal sequences: αi > αi+1 =⇒ βi > βi+1

I Player 2 wins unless illegal, or ∃i(βi = 0)

I Win for 2 (keep playing ∞), but complicated game tree
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Further Questions

The Forcing

I Want to create a game on R which classically is O, but
unlabelled

I Force with P=countable partial maps

p : R<ω → (ω∗
2)2

such that

I dom(p) a tree
I p1(〈〉) = p2(〈〉) =∞
I |σ| = 2k =⇒ p2(σaa) = p2(σ),
|σ| = 2k + 1 =⇒ p1(σaa) = p1(σ)

I p1(σ) > p1(σaa) =⇒ p2(σ) > p2(σaaab)
I p2(σ) = 0 =⇒ σaa 6∈ dom(p)

I P countably closed
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Further Questions

Building M

I “Name” = appropriate map: P→ {partial maps R→ ω}
I For α < ω2, p, q ∈ P: Set p ≈α q if

I dom(p) = dom(q) and
I pi (σ) 6= qi (σ) =⇒ pi (σ), qi (σ) ≥ α

I Name ν is α-stable if

[p ≈α q, ν(p)(a) = n] =⇒ [ν(q)(a) = n]

I Name ν is stable if α-stable for some α

I Separating model is

M = (ω,R, {ν[G ] : ν is stable})
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Further Questions

M |= ¬ΣR
1 -Det

I Generic game T = dom(G ) has 1-stable name, so T ∈ M

I Each strategy for Open has play which defeats it; so M |=“T
not win for Open” (countable closure)

I If ν is α-stable name for Closed-strategy, ν can be “tricked”:

I Let p 
 ν(〈α〉) = γ
I γ ≥ α if ν winning
I Get p′ ≈α p with p′ 
 ν(〈γ + 1〉) = γ

I So M |=“T not win for Closed”
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Further Questions

M |=∆R
1 -Det, I/II: Short games

I P has retagging property:

p ≈α+ω1 q and r ≤ p =⇒ ∃s(r ≈α s and s ≤ q)

I Retagging = “Jumps”

I Ex: ν is (α + ω1 · 2)-stable =⇒ name for characteristic
function of {x : ∃y(ν(x ⊕ y) = 1)} is α stable

I Winning clopen games of rank < ω2: iterated retagging
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Further Questions

M |=∆R
1 -Det, II/II: No long games

I Claim: All games in M have rank < ω2

I ν an α-stable name for well-ordering; show ν[G ] < ω2

I Tree T of pairs 〈p, a〉 with

I ran(p) ⊆ (α ∪ {∞})2
I p 
“a descending sequence in ν”
I 〈p, a〉 ≤ 〈q, b〉 if p ≤ q and b ≺ a

I T wellfounded

I |T| = ℵ1
I T embeds tree of descending sequences in ν[G ]
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Further Questions

M |=RCA3
0

I Let ϕ(x1, y0) ∈ Σ0
n (with parameters), and

M |= ∀x1∃!y0ϕ(x , y)

I Type-2 parameters of ϕ: Fi with names νi
I Fix α with each νi α-stable

I For each a, ϕ(a,−) depends only on values of parameters on
countably many reals

I Countable closure: functional defined by ϕ is α-stable
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Further Questions

I Do canonical models of ∆R
1 -Det satisfy ΣR

1 -Det?

I (ω,R ∩ Lα, ω
R ∩ Lα)

I ΣR
1 -Det =⇒ Σ2

1-SepR? ∆R
1 -Det =⇒WO(R)?

I Restrict games based on topological complexity of game tree
coded as set of reals

I Is RCA3
0/RCAω0 the “right” base theory?

I Ex: existence of jump operator J does not imply existence of
0(ω) (Avigad/Feferman ’98; Hunter ’08, conservativity over
ACA0)

I Pluralism: may be right “family” of base theories
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