Separating the uniformly computably true from the computably true via strong Weihrauch reducibility

Paul Shafer Universiteit Gent Paul.Shafer@UGent.be http://cage.ugent.be/~pshafer/

> CTFM 2014 February 17, 2014

Joint work with François G. Dorais, Damir D. Dzhafarov, Jeffry L. Hirst, and Joseph R. Mileti

Paul Shafer – UGent

 \leq_{sW} and combinatorics

Let's start with a favorite example

 RT_k^n is the statement for every $f: [\mathbb{N}]^n \to k$ there is an infinite $H \subseteq \mathbb{N}$ such that f is constant on $[H]^n$.

(The H in the statement of RT_k^n is called homogeneous for f.)

 $\mathsf{RT}_2^3 \to \mathsf{RT}_2^2$ by an easy proof:

- Let $f: [\mathbb{N}]^2 \to 2$.
- Define $g \colon [\mathbb{N}]^3 \to 2$ by g(x, y, z) = f(x, y) for all x < y < z.
- Apply RT_2^3 to g to obtain a set H homogenous for g.
- Check that H is also homogeneous for f.

The easy proof is effective

Every set appearing in the easy proof is either given, computable from existing sets, or arises from an application of RT_2^3 :

- Let $f: [\mathbb{N}]^2 \to 2$. f is given
- Define $g \colon [\mathbb{N}]^3 \to 2$ by g(x, y, z) = f(x, y) for all x < y < z. $g \leq_{\mathsf{T}} f$
- Apply RT_2^3 to g to obtain a set H homogenous for g. RT_2^3
- Check that H is also homogeneous for f.

The proof is formalizable in the system RCA_0 . So $\text{RCA}_0 \vdash \text{RT}_2^3 \rightarrow \text{RT}_2^2$. We might say that the implication $\text{RT}_2^3 \rightarrow \text{RT}_2^2$ is computably true.

(RCA₀ essentially says that if sets X_0, \ldots, X_{n-1} exist, then so do all the sets computable from $\bigoplus_{i < n} X_i$.

Formally, the axioms of RCA₀ are those of a discretely ordered commutative semi-ring with 1, the comprehension scheme for Δ_1^0 predicates, and the induction scheme for Σ_1^0 formulas.)

Paul Shafer – UGent

 \leq_{sW} and combinatorics

The easy proof is even more effective

We translated RT_2^2 instances f into RT_2^3 instances g via g(x,y,z) = f(x,y), and we noticed that $g \leq_{\mathsf{T}} f$.

Now notice that the reduction witnessing $g \leq_T f$ does not depend on f.

That is, there is a single Turing functional Φ such that $\Phi(f)(x, y, z) = f(x, y)$ is an RT_2^3 instance whenever f is an RT_2^2 instance.

There is also a single Turing functional Ψ such that $\Psi(H)$ is homogeneous for f whenever H is homogeneous for Φ^f : $\Psi(H) = H$.

So we can uniformly computably translate RT_2^2 instances f into RT_2^3 instances $\Phi(f)$, and then uniformly computably translate solutions H of $\Phi(F)$ back to solutions $\Psi(H)$ of the original instance f.

Thus we might say that the implication $RT_2^3 \rightarrow RT_2^2$ is uniformly computably true.

Paul Shafer - UGent

Strong Weihrauch reducibility

Consider a Π_2^1 statement $\forall X \exists Y \varphi(X, Y)$ in second-order arithmetic, such as RT_2^2 , weak König's lemma (WKL), the extreme value theorem on [0, 1], etc.

The statements we are interested in typically have a natural class of instances (colorings, trees, continuous functions), and a natural class of solutions (homogenous sets, paths, real numbers).

Here is today's key definition:

Definition (strong Weihrauch reducibility)

Let P and Q be Π_2^1 statements. Then P is strongly Weihrauch reducible to Q (P $\leq_{\sf sW}$ Q) if there are Turing functionals Φ and Ψ such that

- when I is an instance of P, $\Phi(I)$ is an instance of Q, and
- when S is a solution to $\Phi(I), \, \Psi(S)$ is a solution to I.

Strong Weihrauch reducibility

Definition (strong Weihrauch reducibility)

Let P and Q be Π_2^1 statements. Then P is strongly Weihrauch reducible to Q (P \leq_{sW} Q) if there are Turing functionals Φ and Ψ such that

- when I is an instance of P, $\Phi(I)$ is an instance of Q, and
- when S is a solution to $\Phi(I)$, $\Psi(S)$ is a solution to I.

We can write $\mathsf{RT}_2^2 \leq_{\mathsf{sW}} \mathsf{RT}_2^3$.

Well-known results of Jockusch tell us that $RT_2^3 \not\leq_{sW} RT_2^2$:

- There is a computable instance of RT_2^3 with no Δ_3^0 solution.
- Every computable instance of RT_2^2 has a Δ_3^0 solution.

$\mathsf{P} \leq_{\mathsf{sW}} \mathsf{Q} \text{ versus } \mathsf{RCA}_0 \vdash \mathsf{Q} \rightarrow \mathsf{P}$

Many proofs of $\mathsf{Q} \to \mathsf{P}$ in RCA_0 describe strong Weihrauch reductions:

- (Friedman, Simpson, Smith) Let P be the statement every commutative ring with 1 has a prime ideal. Then P ≤_{sW} WKL.
- (Cholak, Jockusch, Slaman) COH $\leq_{sW} RT_2^2$.

Guideline:

- $P \leq_{sW} Q$ is stronger than $RCA_0 \vdash Q \rightarrow P$.
- $\mathsf{RCA}_0 \nvDash \mathsf{Q} \to \mathsf{P}$ is stronger than $\mathsf{P} \nleq_{\mathsf{sW}} \mathsf{Q}$.

(This is not strictly fact because \leq_{sW} is over ω , while RCA₀ considers non-standard models.)

Examples:

- $\mathsf{RCA}_0 \vdash \mathsf{RT}_2^3 \leftrightarrow \mathsf{RT}_2^4$, but $\mathsf{RT}_2^4 \nleq_{\mathsf{sW}} \mathsf{RT}_2^3$.
- $\mathsf{RT}_2^3 \not\leq_{\mathsf{sW}} \mathsf{RT}_2^2$ followed from Jockusch. $\mathsf{RCA}_0 \nvDash \mathsf{RT}_2^2 \to \mathsf{RT}_2^3$ (Seetapun) was a major breakthrough.

(Aside: the interesting situation with DNR functions)

Let DNR(k) be the statement for every set X there is a function f that is DNR(k) relative to X.

 $\mathsf{RCA}_0 \vdash \mathsf{DNR}(k) \leftrightarrow \mathsf{WKL}$ for every fixed, standard $k \ge 2$ (by classic results of Friedberg and Jockusch and Soare).

 $\mathsf{WKL} \equiv_{\mathsf{sW}} \mathsf{DNR}(2).$

WKL $\leq_{sW} DNR(k)$ for k > 2 (by a classic result of Jockusch).

In fact, $\mathsf{DNR}(\ell) \not\leq_{\mathsf{sW}} \mathsf{DNR}(k)$ when $2 \leq \ell < k$.

The statement $(\forall k \geq 2)(\text{DNR}(k) \rightarrow \text{WKL})$ is not provable in RCA₀ (or in RCA₀ + B Σ_2^0), but it is provable in RCA₀ + I Σ_2^0 (recent work of Dorais, Hirst, S).

$\mathsf{P} \leq_{\mathsf{sW}} \mathsf{Q}$ versus $\mathsf{RCA}_0 \vdash \mathsf{Q} \rightarrow \mathsf{P}$?

versus

preposition

- (1) against (esp. in sports and legal use): Penn versus Princeton.
- (2) as opposed to; in contrast to: weighing the pros and cons of organic versus inorganic produce.

We mean definition 2!

 \leq_{sW} can detect differences between statements that are equivalent in RCA_0, so one might consider \leq_{sW} and provability in RCA_0 as operating on different scales.

 \leq_{sW} is computability-theoretically motivated, and provability in RCA_0 is proof-theoretically motivated.

On to a more colorful Ramsey's theorem

 $\mathsf{RCA}_0 \vdash \mathsf{RT}_3^2 \to \mathsf{RT}_2^2$ and $\mathsf{RT}_2^2 \leq_{\mathsf{sW}} \mathsf{RT}_3^2$ by trivial proofs.

 $\mathsf{RCA}_0 \vdash \mathsf{RT}_2^2 \to \mathsf{RT}_3^2$ by an easy proof that has interesting features:

- Let $f : [\mathbb{N}]^2 \to 3$ be given.
- Define $g\colon [\mathbb{N}]^2\to 2$ by g(x,y)=0 if f(x,y)=0 and g(x,y)=1 if f(x,y)>0.
- By RT₂², let H₀ be homogeneous for g. If H₀ is homogeneous for color 0, then H₀ is homogeneous for f.
- Otherwise, fix an order-preserving bijection $\iota \colon \mathbb{N} \to H_0$ and define $h \colon [\mathbb{N}]^2 \to 2$ by $h(x, y) = f(\iota(x), \iota(y)) 1$.
- By RT_2^2 , let H be homogeneous for h. Then $\iota(H)$ is homogeneous for f.

Again every set is given, computable from existing sets, or arises from an application of RT_2^2 , but proof uses two applications of RT_2^2 and doesn't seem to describe an \leq_{sW} -reduction. Does $RT_3^2 \leq_{sW} RT_2^2$?

Paul Shafer - UGent

$\mathsf{RT}_3^2 \not\leq_{\mathsf{sW}} \mathsf{RT}_2^2$

Theorem (DDHMS)

 $\mathsf{RT}_3^2 \not\leq_{\mathsf{sW}} \mathsf{RT}_2^2$. In fact, fix $n \ge 1$ and $2 \le j < k$. Then $\mathsf{RT}_k^n \not\leq_{\mathsf{sW}} \mathsf{RT}_j^n$.

We will discuss $RT_4^2 \not\leq_{sW} RT_2^2$. The general result just needs some extra coding tricks.

The plan:

- Assume for a contradiction that $\mathsf{RT}_4^2 \leq_{\mathsf{sW}} \mathsf{RT}_2^2$.
- Show that two simultaneous instances of $RT_2^2 \leq_{sW}$ -reduce to RT_4^2 and hence to RT_2^2 .
- Show that then infinitely many simultaneous instances of RT_2^2 must $\leq_{\mathsf{sW}}\text{-reduce to }\mathsf{RT}_2^2.$
- Show that the previous conclusion is false to get the contradiction.

Parallelization and sequentialization

Definition

Let P and Q be Π_2^1 statements.

- $\langle \mathsf{P},\mathsf{Q}\rangle$ is the Π_2^1 statement whose instances are pairs $\langle I,J\rangle$, where I is an instance of P and J is an instance of Q , and whose solutions are pairs $\langle S,T\rangle$, where S is a solution to I and T is a solution to J.
- SeqP is the Π_2^1 statement whose instances are sequences $\langle I_i : i \in \omega \rangle$ of instances of P and whose solutions are sequences $\langle S_i : i \in \omega \rangle$, where S_i is a solution to I_i for each i.

The first step is to show that $\langle \mathsf{RT}_2^2, \mathsf{RT}_2^2 \rangle \leq_{\mathsf{sW}} \mathsf{RT}_4^2$.

The contradiction will be that both $SeqRT_2^2 \leq_{sW} RT_2^2$ and $SeqRT_2^2 \not\leq_{sW} RT_2^2$.

$\langle \mathsf{RT}_2^2, \mathsf{RT}_2^2 \rangle \leq_{\mathsf{sW}} \mathsf{RT}_4^2$ is pretty easy

Proposition

 $\langle \mathsf{RT}_2^2, \mathsf{RT}_2^2 \rangle \leq_{\mathsf{sW}} \mathsf{RT}_4^2$

Let Φ and Ψ be

- $\Phi(\langle f, g \rangle) = 2f + g$
- $\Psi(H) = \langle H, H \rangle$.

If f and g are functions $[\mathbb{N}]^2 \to 2$, then 2f + g is a function $[\mathbb{N}]^2 \to 4$.

If H is homogeneous for 2f + g, then H is homogeneous for both f and g.

$\mathsf{SeqRT}_2^2 \nleq_{\mathsf{sW}} \mathsf{RT}_2^2$ isn't so bad either

 $\mathsf{SeqRT}_2^2 \not\leq_{\mathsf{sW}} \mathsf{RT}_2^2$ follows from:

Proposition

There is a computable instance of SeqRT₂² such that every solution computes 0". (More generally, for every $n \ge 1$ there is a computable instance of SeqRT₂ⁿ such that every solution computes 0^n .)

The instance is $\langle f_e : e \in \omega \rangle$, where

$$f_e(x,y) = \begin{cases} 0 & \text{if } (\exists n < x) \Phi_{e,y}(n) \uparrow \\ 1 & \text{if } (\forall n < x) \Phi_{e,y}(n) \downarrow. \end{cases}$$

Given a solution $\langle H_e : e \in \omega \rangle$, determine whether or not Φ_e is total by checking whether or not H_e is homogenous for color 1.

SeqRT₂² \leq_{sW} RT₂² isn't so bad either

Suppose SeqRT₂² \leq_{sW} RT₂², and let Φ and Ψ witness the reduction.

Let $\langle f_e : e \in \omega \rangle$ be the computable SeqRT₂² instance from the proposition.

Then $\Phi(\langle f_e : e \in \omega \rangle)$ is a computable RT_2^2 instance.

By Jockusch, $\Phi(\langle f_e : e \in \omega \rangle)$ has a solution $H \not\geq_{\mathsf{T}} 0''$ (in fact, $H' \leq_{\mathsf{T}} 0''$).

Thus $\Psi(H)$ is a solution to $\langle f_e:e\in\omega\rangle$ that does not compute 0'', a contradiction.

Where are we?

Reminder:

- The assumption was $\mathsf{RT}_4^2 \leq_{\mathsf{sW}} \mathsf{RT}_2^2$.
- We showed $\langle \mathsf{RT}_2^2, \mathsf{RT}_2^2 \rangle \leq_{\mathsf{sW}} \mathsf{RT}_4^2$.
- We showed $SeqRT_2^2 \not\leq_{sW} RT_2^2$.

To finish the proof, we need the squashing theorem: if $\langle RT_2^2, RT_2^2 \rangle \leq_{sW} RT_2^2$, then SeqRT₂² $\leq_{sW} RT_2^2$.

The squashing theorem

Theorem (squashing theorem; DDHMS)

Let P and Q be Π^1_2 statements, where P and Q are total and P has finite tolerance. Then $\langle Q, P \rangle \leq_{sW} P \rightarrow SeqQ \leq_{sW} P$.

P is total means that every set is an instance of P.

P has finite tolerance means that if you make a finite change to a P-instance, then you only need to make finite changes to its solutions.

Formally: there is a Turing functional Θ such that when I and J are P-instances with $(\forall x > m)(I(x) = J(x))$ and S is a solution to I, then $\Theta(S,m)$ is a solution to J.

Ramsey theorems are total and have finite tolerance

Proposition

 RT_2^2 (in general, RT_k^n) is total and has finite tolerance.

It's easy to see every set as coding a function $[\mathbb{N}]^2 \to 2$ (and in such a way that all such functions are coded).

Assume our coding of tuples is such that always $x, y \leq \langle x, y \rangle$.

- Let $\Theta(H,m) = \{x \in H : x > m\}.$
- Suppose $f, g : [\mathbb{N}]^2 \to 2$ are such that $(\forall \langle x, y \rangle > m)(f(x, y) = g(x, y)).$
- Let H be homogeneous for f with color c.
- If $x, y \in \Theta(H, m)$, then $x, y \in H$ and $\langle x, y \rangle > m$, so g(x, y) = f(x, y) = c.
- Thus $\Theta(H,m)$ is homogeneous for g.

This finishes the proof

Reminder:

Theorem (squashing theorem; DDHMS)

Let P and Q be Π^1_2 statements, where P and Q are total and P has finite tolerance. Then $\langle Q, P \rangle \leq_{sW} P \rightarrow SeqQ \leq_{sW} P$.

The squashing theorem applies to RT_2^2 .

Thus if $\langle RT_2^2, RT_2^2 \rangle \leq_{sW} RT_2^2$, then SeqRT $_2^2 \leq_{sW} RT_2^2$, giving the contradiction.

Some words on the proof of the squashing theorem

Reminder:

- Have Q total; P total, finite tolerance such that $\langle Q, P \rangle \leq_{sW} P$.
- Want SeqQ \leq_{sW} P.

The basic plan: Uniformly fold Q-instances into a single P-instance.

Given a SeqQ-instance $\langle I_i : I \in \omega \rangle$. Compute a sequence $\langle J_i : i \in \omega \rangle$ of P-instances such that, for all $i \in \omega$:

$$J_i = (C \upharpoonright m_i)^{\frown} \Phi(I_i, J_{i+1}).$$

The P-instance we really want is J_0 .

- C is some fixed, computable P-instance.
- $\langle m_i : i \in \omega \rangle$ is a cleverly chose computable sequence that helps make the folding work.

Special today only: $\sigma^{\uparrow}\tau$ means replace the first $|\sigma|$ bits of τ by $\sigma!!!$

Paul Shafer - UGent

 \leq_{sW} and combinatorics

Some words on the proof of the squashing theorem

The unfolding

For all $i \in \omega$:

$$J_i = (C \upharpoonright m_i)^{\frown} \Phi(I_i, J_{i+1}).$$

From a solution S_0 to J_0 we can recover a solution $\langle T_i : i \in \omega \rangle$ to $\langle I_i : i \in \omega \rangle$:

- P has finite tolerance, so from S_0 we get a solution to $\Phi(I_0, J_1)$.
- The solution to $\Phi(I_0, J_1)$ produces a solution $\langle T_0, S_1 \rangle$ to $\langle I_0, J_1 \rangle$.
- P has finite tolerance, so from S_1 we get a solution to $\Phi(I_1, J_2)$.
- The solution to $\Phi(I_1, J_2)$ produces a solution $\langle T_1, S_2 \rangle$ to $\langle I_1, J_2 \rangle$.
- Et cetera.

A few more results

For a rational $p \in (0,1)$, let p-WWKL denote WKL for trees of measure $\geq p$.

Theorem (DDHMS)

If 0 , then <math>p-WWKL $\not\leq_{sW} q$ -WWKL

 TS_k^n is the statement for every $f : [\mathbb{N}]^n \to k$ there is an infinite $H \subseteq \mathbb{N}$ such that $|f([H]^n)| < k$.

Theorem (DDHMS)

- Let $n \ge 1$ and $j, k \ge 2$. Then $\langle \mathsf{TS}_k^n, \mathsf{TS}_j^n \rangle \not\leq_{\mathsf{sW}} \mathsf{TS}_j^n$.
- If 2 ≤ j < k, then TS¹_j ≰_{sW} TS¹_k. Improved by Hirschfeldt and Jockusch to all exponents.