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Let's start with a favorite example

RT} is the statement for every f: [N]" — k there is an infinite H C N
such that f is constant on [H|".

(The H in the statement of RT} is called homogeneous for f.)

RT3 — RT3 by an easy proof:
o Let f: [N]2 — 2.
e Define g: [N]> = 2 by g(w,y,2) = f(z,y) forall z < y < 2.
e Apply RT3 to g to obtain a set H homogenous for g.

e Check that H is also homogeneous for f.
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The easy proof is effective

Every set appearing in the easy proof is either given, computable from
existing sets, or arises from an application of RT%:

Let f: [N]2 — 2. f is given

Define g: [N]® — 2 by g(x,y,2) = f(x,y) forall x <y < z. g <t f
Apply RT% to g to obtain a set H homogenous for g. RT%

Check that H is also homogeneous for f.

The proof is formalizable in the system RCAy. So RCAg - RT3 — RT3.
We might say that the implication RT% — RT% is computably true.

(RCA( essentially says that if sets Xy, ..., X, 1 exist, then so do all the

sets computable from @,_,, X;

Formally, the axioms of RCA( are those of a discretely ordered
commutative semi-ring with 1, the comprehension scheme for A{
predicates, and the induction scheme for %9 formulas.)
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The easy proof is even more effective

We translated RT3 instances f into RTj instances g via
g(z,y,2) = f(x,y), and we noticed that g <t f.

Now notice that the reduction witnessing g <t f does not depend on f.

That is, there is a single Turing functional ® such that
®(f)(z,y,2) = f(z,y) is an RT3 instance whenever f is an RT3 instance.

There is also a single Turing functional ¥ such that W(H) is homogeneous
for f whenever H is homogeneous for ®/: U(H) = H.

So we can uniformly computably translate RT% instances f into RT%
instances ®(f), and then uniformly computably translate solutions H of
®(F) back to solutions W(H) of the original instance f.

Thus we might say that the implication RT3 — RT3 is uniformly
computably true.
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Strong Weihrauch reducibility

Consider a IT3 statement VX3Y (X,Y) in second-order arithmetic, such
as RT3, weak Konig's lemma (WKL), the extreme value theorem on [0, 1],
etc.

The statements we are interested in typically have a natural class of
instances (colorings, trees, continuous functions), and a natural class of
solutions (homogenous sets, paths, real numbers).

Here is today’s key definition:

Definition (strong Weihrauch reducibility)

Let P and Q be TI} statements. Then P is strongly Weihrauch reducible to
Q (P <sw Q) if there are Turing functionals ® and ¥ such that

e when I is an instance of P, ®(I) is an instance of Q, and

e when S is a solution to ®(I), ¥U(S) is a solution to I.

4
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Strong Weihrauch reducibility

Definition (strong Weihrauch reducibility)

Let P and Q be II} statements. Then P is strongly Weihrauch reducible to
Q (P <w Q) if there are Turing functionals ® and ¥ such that

e when [ is an instance of P, ®(I) is an instance of Q, and
e when S is a solution to ®(I), ¥(S) is a solution to I.

We can write RT3 <w RT3.

Well-known results of Jockusch tell us that RT3 Lew RT3
e There is a computable instance of RT3 with no AJ solution.

e Every computable instance of RT3 has a AJ solution.
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P <. Q versus RCAgFQ — P

Many proofs of Q — P in RCA( describe strong Weihrauch reductions:

e (Friedman, Simpson, Smith) Let P be the statement every
commutative ring with 1 has a prime ideal. Then P <,y WKL.

e (Cholak, Jockusch, Slaman) COH <.,y RT3.

Guideline:
o P <,wv Q is stronger than RCAq - Q — P.
e RCAy ¥ Q — P is stronger than P £ Q.

(This is not strictly fact because <qy is over w, while RCA( considers
non-standard models.)

Examples:
e RCAq - RTS < RT3, but RT3 £ew RTS.

o RT3 £ RT3 followed from Jockusch. RCAq ¥ RT3 — RT3
(Seetapun) was a major breakthrough.
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(Aside: the interesting situation with DNR functions)

Let DNR(k) be the statement for every set X there is a function f that is
DNR(k) relative to X .

RCA( + DNR(k) +» WKL for every fixed, standard k > 2 (by classic
results of Friedberg and Jockusch and Soare).

WKL =qw DNR(2).

WKL %qw DNR(k) for k > 2 (by a classic result of Jockusch).

In fact, DNR(£) £ DNR(k) when 2 < ¢ < k.

The statement (Vk > 2)(DNR(k) — WKL) is not provable in RCAq (or in

RCA, + BX), but it is provable in RCAg + 1% (recent work of Dorais,
Hirst, S).
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P <. Q versus RCA) - Q — P?

versus
preposition
(1) against (esp. in sports and legal use): Penn versus Princeton.

(2) as opposed to; in contrast to: weighing the pros and cons of organic
versus inorganic produce.

We mean definition 2!

<<w can detect differences between statements that are equivalent in
RCAy, so one might consider <qy and provability in RCAq as operating on
different scales.

<ew is computability-theoretically motivated, and provability in RCAj is

proof-theoretically motivated.
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On to a more colorful Ramsey's theorem

RCAg - RT2Z — RTZ and RT3 <. RT? by trivial proofs.

RCAp - RT2 — RT§ by an easy proof that has interesting features:
e Let f: [N]2 — 3 be given.
e Define g: [N]? — 2 by g(z,y) = 0 if f(z,y) =0 and g(x,y) = 1 if
f(z,y) > 0.
e By RT%, let Hy be homogeneous for g. If Hy is homogeneous for
color 0, then Hy is homogeneous for f.
e Otherwise, fix an order-preserving bijection ¢: N — Hg and define
he [N]* = 2 by h(z,y) = f(u(2), ¢(y)) - 1.
e By RT?, let H be homogeneous for h. Then +(H) is homogeneous for
I
Again every set is given, computable from existing sets, or arises from an

application of RT2, but proof uses two applications of RT and doesn't
seem to describe an <qy-reduction. Does RT3 <sw RT27
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RT; £ RT;

Theorem (DDHMS)
RT3 Zeaw RT3. In fact, fixn > 1 and 2 < j < k. Then RT} #qw RTY. J

We will discuss RTi Lew RT%. The general result just needs some extra
coding tricks.

The plan:
Assume for a contradiction that RT2 <sw RT2

Show that two simultaneous instances of RT3 <w-reduce to RT?
and hence to RT3.

Show that then infinitely many simultaneous instances of RT3 must
< w-reduce to RT%.

e Show that the previous conclusion is false to get the contradiction.
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Parallelization and sequentialization

Definition
Let P and Q be I1} statements.

e (P,Q) is the I} statement whose instances are pairs (I,.J), where I
is an instance of P and J is an instance of Q, and whose solutions are
pairs (S,T'), where S is a solution to I and T is a solution to J.

e SeqP is the I1} statement whose instances are sequences (I; : i € w)
of instances of P and whose solutions are sequences (S; : i € w),
where S; is a solution to I; for each i.

The first step is to show that (RT3, RT2) <w RT3

The contradiction will be that both SeqRT2 <sw RT2 and
SeqRT3 %.w RT3.
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(RT3, RT3) <qv RTZis pretty easy

Proposition
(RT3,RT3) <qw RT} J

Let ® and W be

o ®((f,9) =2f+g
e U(H)=(H,H).

If f and g are functions [N]? — 2, then 2f + g is a function [N]? — 4.

If H is homogeneous for 2f + g, then H is homogeneous for both f and g.
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SeqRT; %aw RT3 isn't so bad either

SeqRT3 £ew RT3 follows from:

Proposition

There is a computable instance of Seq RT% such that every solution
computes 0". (More generally, for every n > 1 there is a computable
instance of SeqRTY such that every solution computes 0".)

The instance is (fe : € € w), where

0 if (In < x)Pey(n)t

fele,y) = {1 if (Vn < )@, (n) .

Given a solution (H, : e € w), determine whether or not ®. is total by
checking whether or not H,. is homogenous for color 1.
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SeqRT; %aw RT3 isn't so bad either

Suppose SeqRT2 «w RTZ, and let ® and ¥ witness the reduction.

Let (fe : e € w) be the computable SeqRT% instance from the proposition.
Then ®((f.: e € w)) is a computable RT3 instance.

By Jockusch, ®((f. : e € w)) has a solution H %7 0" (in fact, H' <t 0").

Thus W(H) is a solution to (f. : e € w) that does not compute 0”, a
contradiction.
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Where are we?

Reminder:
e The assumpt|on was RT4 <w RT2
e We showed (RT3, RT3) <. RT3
e We showed SeqRT2 Zow RT3.

To finish the proof, we need the squashing theorem: if
(RTZ,RT2) <,w RT3, then SeqRT3 <. RT3.
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The squashing theorem

Theorem (squashing theorem; DDHMS)

Let P and Q be I1} statements, where P and Q are total and P has finite
tolerance. Then (Q,P) <.w P — SeqQ <.w P.

P is total means that every set is an instance of P.

P has finite tolerance means that if you make a finite change to a
P-instance, then you only need to make finite changes to its solutions.

Formally: there is a Turing functional © such that when I and J are

P-instances with (Vx > m)(I(x) = J(z)) and S is a solution to I, then
©(S,m) is a solution to J.
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Ramsey theorems are total and have finite tolerance

Proposition

RT3 (in general, RT}) is total and has finite tolerance.

It's easy to see every set as coding a function [N]? — 2 (and in such a way
that all such functions are coded).

Assume our coding of tuples is such that always z,y < (x,y).

o Let O(H,m)={x € H:x >m}.

e Suppose f,g: [N]?> — 2 are such that
(V{z,y) >m)(f(z,y) = g(z,y))-

e Let H be homogeneous for f with color c.

o Ifz,y € ©(H,m), then z,y € H and (z,y) > m, so
9(@,y) = f(z,y) =c

e Thus ©(H,m) is homogeneous for g.
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This finishes the proof

Reminder:
Theorem (squashing theorem; DDHMS)

Let P and Q be H% statements, where P and Q are total and P has finite
tolerance. Then (Q,P) <qw P — SeqQ <.w P.

The squashing theorem applies to RT%.

Thus if (RT3, RT3) <qw RT3, then SeqRT3 <qw RT%, giving the
contradiction.
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Some words on the proof of the squashing theorem

Reminder:
e Have Q total; P total, finite tolerance such that (Q,P) <. P.
e Want SeqQ <.w P.

The basic plan: Uniformly fold Q-instances into a single P-instance.

Given a SeqQ-instance (I; : I € w). Compute a sequence (J; : i € w) of
P-instances such that, for all i € w:

Ji = (C I mi)"@(L;, Jiya).
The P-instance we really want is Jp.
e (' is some fixed, computable P-instance.

e (m; :i € w) is a cleverly chose computable sequence that helps make
the folding work.

Special today only: o7 means replace the first |o| bits of 7 by o!!!
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Some words on the proof of the squashing theorem

The unfolding
For all i € w:

Ji = (C [ mi)"®(Li, Jit1).

From a solution Sy to Jy we can recover a solution (7} : i € w) to
(I; 1 € w):

e P has finite tolerance, so from Sy we get a solution to ®(ly, J1).
The solution to ®(Ip, J1) produces a solution (Tp,S1) to (Ip, J1).
P has finite tolerance, so from S; we get a solution to ® (I, J2).
The solution to ®([3, J2) produces a solution (77,S2) to (I, Ja).
Et cetera.
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A few more results

For a rational p € (0, 1), let p-WWKL denote WKL for trees of measure

> p.

Theorem (DDHMS)

If0 < p<q<1, then p-WWKL Zqw ¢-WWKL J

TS} is the statement for every f: [N|" — k there is an infinite H C N
such that | f([H]™)| < k.
Theorem (DDHMS)

o Letn>1andjk>2. Then (TSE,TS}) £sw TS}

o If2 < j <k, then TS} %o TS;. Improved by Hirschfeldt and
Jockusch to all exponents.
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