
Separating the uniformly computably true from the
computably true via strong Weihrauch reducibility

Paul Shafer
Universiteit Gent

Paul.Shafer@UGent.be

http://cage.ugent.be/~pshafer/

CTFM 2014
February 17, 2014

Joint work with François G. Dorais, Damir D. Dzhafarov, Jeffry L. Hirst,
and Joseph R. Mileti

Paul Shafer – UGent ≤sW and combinatorics February 17, 2014 1 / 22

Paul.Shafer@UGent.be
http://cage.ugent.be/~pshafer/


Let’s start with a favorite example

RTn
k is the statement for every f : [N]n → k there is an infinite H ⊆ N

such that f is constant on [H]n.

(The H in the statement of RTn
k is called homogeneous for f .)

RT3
2 → RT2

2 by an easy proof:

• Let f : [N]2 → 2.

• Define g : [N]3 → 2 by g(x, y, z) = f(x, y) for all x < y < z.

• Apply RT3
2 to g to obtain a set H homogenous for g.

• Check that H is also homogeneous for f .
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The easy proof is effective

Every set appearing in the easy proof is either given, computable from
existing sets, or arises from an application of RT3

2:

• Let f : [N]2 → 2. f is given

• Define g : [N]3 → 2 by g(x, y, z) = f(x, y) for all x < y < z. g ≤T f

• Apply RT3
2 to g to obtain a set H homogenous for g. RT3

2

• Check that H is also homogeneous for f .

The proof is formalizable in the system RCA0. So RCA0 ` RT3
2 → RT2

2.
We might say that the implication RT3

2 → RT2
2 is computably true.

(RCA0 essentially says that if sets X0, . . . , Xn−1 exist, then so do all the
sets computable from

⊕
i<nXi.

Formally, the axioms of RCA0 are those of a discretely ordered
commutative semi-ring with 1, the comprehension scheme for ∆0

1

predicates, and the induction scheme for Σ0
1 formulas.)
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The easy proof is even more effective

We translated RT2
2 instances f into RT3

2 instances g via
g(x, y, z) = f(x, y), and we noticed that g ≤T f .

Now notice that the reduction witnessing g ≤T f does not depend on f .

That is, there is a single Turing functional Φ such that
Φ(f)(x, y, z) = f(x, y) is an RT3

2 instance whenever f is an RT2
2 instance.

There is also a single Turing functional Ψ such that Ψ(H) is homogeneous
for f whenever H is homogeneous for Φf : Ψ(H) = H.

So we can uniformly computably translate RT2
2 instances f into RT3

2

instances Φ(f), and then uniformly computably translate solutions H of
Φ(F ) back to solutions Ψ(H) of the original instance f .

Thus we might say that the implication RT3
2 → RT2

2 is uniformly
computably true.
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Strong Weihrauch reducibility

Consider a Π1
2 statement ∀X∃Y ϕ(X,Y ) in second-order arithmetic, such

as RT2
2, weak König’s lemma (WKL), the extreme value theorem on [0, 1],

etc.

The statements we are interested in typically have a natural class of
instances (colorings, trees, continuous functions), and a natural class of
solutions (homogenous sets, paths, real numbers).

Here is today’s key definition:

Definition (strong Weihrauch reducibility)

Let P and Q be Π1
2 statements. Then P is strongly Weihrauch reducible to

Q (P ≤sW Q) if there are Turing functionals Φ and Ψ such that

• when I is an instance of P, Φ(I) is an instance of Q, and

• when S is a solution to Φ(I), Ψ(S) is a solution to I.

Paul Shafer – UGent ≤sW and combinatorics February 17, 2014 5 / 22



Strong Weihrauch reducibility

Definition (strong Weihrauch reducibility)

Let P and Q be Π1
2 statements. Then P is strongly Weihrauch reducible to

Q (P ≤sW Q) if there are Turing functionals Φ and Ψ such that

• when I is an instance of P, Φ(I) is an instance of Q, and

• when S is a solution to Φ(I), Ψ(S) is a solution to I.

We can write RT2
2 ≤sW RT3

2.

Well-known results of Jockusch tell us that RT3
2 �sW RT2

2:

• There is a computable instance of RT3
2 with no ∆0

3 solution.

• Every computable instance of RT2
2 has a ∆0

3 solution.
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P ≤sW Q versus RCA0 ` Q→ P

Many proofs of Q→ P in RCA0 describe strong Weihrauch reductions:

• (Friedman, Simpson, Smith) Let P be the statement every
commutative ring with 1 has a prime ideal. Then P ≤sW WKL.

• (Cholak, Jockusch, Slaman) COH ≤sW RT2
2.

Guideline:

• P ≤sW Q is stronger than RCA0 ` Q→ P.

• RCA0 0 Q→ P is stronger than P �sW Q.

(This is not strictly fact because ≤sW is over ω, while RCA0 considers
non-standard models.)

Examples:

• RCA0 ` RT3
2 ↔ RT4

2, but RT4
2 �sW RT3

2.

• RT3
2 �sW RT2

2 followed from Jockusch. RCA0 0 RT2
2 → RT3

2

(Seetapun) was a major breakthrough.
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(Aside: the interesting situation with DNR functions)

Let DNR(k) be the statement for every set X there is a function f that is
DNR(k) relative to X.

RCA0 ` DNR(k)↔WKL for every fixed, standard k ≥ 2 (by classic
results of Friedberg and Jockusch and Soare).

WKL ≡sW DNR(2).

WKL �sW DNR(k) for k > 2 (by a classic result of Jockusch).

In fact, DNR(`) �sW DNR(k) when 2 ≤ ` < k.

The statement (∀k ≥ 2)(DNR(k)→WKL) is not provable in RCA0 (or in
RCA0 + BΣ0

2), but it is provable in RCA0 + IΣ0
2 (recent work of Dorais,

Hirst, S).
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P ≤sW Q versus RCA0 ` Q→ P?

versus
preposition

(1) against (esp. in sports and legal use): Penn versus Princeton.

(2) as opposed to; in contrast to: weighing the pros and cons of organic
versus inorganic produce.

We mean definition 2!

≤sW can detect differences between statements that are equivalent in
RCA0, so one might consider ≤sW and provability in RCA0 as operating on
different scales.

≤sW is computability-theoretically motivated, and provability in RCA0 is
proof-theoretically motivated.
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On to a more colorful Ramsey’s theorem

RCA0 ` RT2
3 → RT2

2 and RT2
2 ≤sW RT2

3 by trivial proofs.

RCA0 ` RT2
2 → RT2

3 by an easy proof that has interesting features:

• Let f : [N]2 → 3 be given.

• Define g : [N]2 → 2 by g(x, y) = 0 if f(x, y) = 0 and g(x, y) = 1 if
f(x, y) > 0.

• By RT2
2, let H0 be homogeneous for g. If H0 is homogeneous for

color 0, then H0 is homogeneous for f .

• Otherwise, fix an order-preserving bijection ι : N→ H0 and define
h : [N]2 → 2 by h(x, y) = f(ι(x), ι(y))− 1.

• By RT2
2, let H be homogeneous for h. Then ι(H) is homogeneous for

f .

Again every set is given, computable from existing sets, or arises from an
application of RT2

2, but proof uses two applications of RT2
2 and doesn’t

seem to describe an ≤sW-reduction. Does RT2
3 ≤sW RT2

2?
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RT2
3 �sW RT2

2

Theorem (DDHMS)

RT2
3 �sW RT2

2. In fact, fix n ≥ 1 and 2 ≤ j < k. Then RTn
k �sW RTn

j .

We will discuss RT2
4 �sW RT2

2. The general result just needs some extra
coding tricks.

The plan:

• Assume for a contradiction that RT2
4 ≤sW RT2

2.

• Show that two simultaneous instances of RT2
2 ≤sW-reduce to RT2

4

and hence to RT2
2.

• Show that then infinitely many simultaneous instances of RT2
2 must

≤sW-reduce to RT2
2.

• Show that the previous conclusion is false to get the contradiction.
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Parallelization and sequentialization

Definition

Let P and Q be Π1
2 statements.

• 〈P,Q〉 is the Π1
2 statement whose instances are pairs 〈I, J〉, where I

is an instance of P and J is an instance of Q, and whose solutions are
pairs 〈S, T 〉, where S is a solution to I and T is a solution to J .

• SeqP is the Π1
2 statement whose instances are sequences 〈Ii : i ∈ ω〉

of instances of P and whose solutions are sequences 〈Si : i ∈ ω〉,
where Si is a solution to Ii for each i.

The first step is to show that 〈RT2
2,RT2

2〉 ≤sW RT2
4.

The contradiction will be that both SeqRT2
2 ≤sW RT2

2 and
SeqRT2

2 �sW RT2
2.
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〈RT2
2,RT2

2〉 ≤sW RT2
4 is pretty easy

Proposition

〈RT2
2,RT2

2〉 ≤sW RT2
4

Let Φ and Ψ be

• Φ(〈f, g〉) = 2f + g

• Ψ(H) = 〈H,H〉.

If f and g are functions [N]2 → 2, then 2f + g is a function [N]2 → 4.

If H is homogeneous for 2f + g, then H is homogeneous for both f and g.
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SeqRT2
2 �sW RT2

2 isn’t so bad either

SeqRT2
2 �sW RT2

2 follows from:

Proposition

There is a computable instance of SeqRT2
2 such that every solution

computes 0′′. (More generally, for every n ≥ 1 there is a computable
instance of SeqRTn

2 such that every solution computes 0n.)

The instance is 〈fe : e ∈ ω〉, where

fe(x, y) =

{
0 if (∃n < x)Φe,y(n)↑
1 if (∀n < x)Φe,y(n)↓.

Given a solution 〈He : e ∈ ω〉, determine whether or not Φe is total by
checking whether or not He is homogenous for color 1.
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SeqRT2
2 �sW RT2

2 isn’t so bad either

Suppose SeqRT2
2 ≤sW RT2

2, and let Φ and Ψ witness the reduction.

Let 〈fe : e ∈ ω〉 be the computable SeqRT2
2 instance from the proposition.

Then Φ(〈fe : e ∈ ω〉) is a computable RT2
2 instance.

By Jockusch, Φ(〈fe : e ∈ ω〉) has a solution H �T 0′′ (in fact, H ′ ≤T 0′′).

Thus Ψ(H) is a solution to 〈fe : e ∈ ω〉 that does not compute 0′′, a
contradiction.
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Where are we?

Reminder:

• The assumption was RT2
4 ≤sW RT2

2.

• We showed 〈RT2
2,RT2

2〉 ≤sW RT2
4.

• We showed SeqRT2
2 �sW RT2

2.

To finish the proof, we need the squashing theorem: if
〈RT2

2,RT2
2〉 ≤sW RT2

2, then SeqRT2
2 ≤sW RT2

2.
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The squashing theorem

Theorem (squashing theorem; DDHMS)

Let P and Q be Π1
2 statements, where P and Q are total and P has finite

tolerance. Then 〈Q,P〉 ≤sW P→ SeqQ ≤sW P.

P is total means that every set is an instance of P.

P has finite tolerance means that if you make a finite change to a
P-instance, then you only need to make finite changes to its solutions.

Formally: there is a Turing functional Θ such that when I and J are
P-instances with (∀x > m)(I(x) = J(x)) and S is a solution to I, then
Θ(S,m) is a solution to J .
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Ramsey theorems are total and have finite tolerance

Proposition

RT2
2 (in general, RTn

k) is total and has finite tolerance.

It’s easy to see every set as coding a function [N]2 → 2 (and in such a way
that all such functions are coded).

Assume our coding of tuples is such that always x, y ≤ 〈x, y〉.

• Let Θ(H,m) = {x ∈ H : x > m}.
• Suppose f, g : [N]2 → 2 are such that

(∀〈x, y〉 > m)(f(x, y) = g(x, y)).

• Let H be homogeneous for f with color c.

• If x, y ∈ Θ(H,m), then x, y ∈ H and 〈x, y〉 > m, so
g(x, y) = f(x, y) = c.

• Thus Θ(H,m) is homogeneous for g.
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This finishes the proof

Reminder:

Theorem (squashing theorem; DDHMS)

Let P and Q be Π1
2 statements, where P and Q are total and P has finite

tolerance. Then 〈Q,P〉 ≤sW P→ SeqQ ≤sW P.

The squashing theorem applies to RT2
2.

Thus if 〈RT2
2,RT2

2〉 ≤sW RT2
2, then SeqRT2

2 ≤sW RT2
2, giving the

contradiction.
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Some words on the proof of the squashing theorem

Reminder:

• Have Q total; P total, finite tolerance such that 〈Q,P〉 ≤sW P.

• Want SeqQ ≤sW P.

The basic plan: Uniformly fold Q-instances into a single P-instance.

Given a SeqQ-instance 〈Ii : I ∈ ω〉. Compute a sequence 〈Ji : i ∈ ω〉 of
P-instances such that, for all i ∈ ω:

Ji = (C � mi)
aΦ(Ii, Ji+1).

The P-instance we really want is J0.

• C is some fixed, computable P-instance.

• 〈mi : i ∈ ω〉 is a cleverly chose computable sequence that helps make
the folding work.

Special today only: σaτ means replace the first |σ| bits of τ by σ!!!
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Some words on the proof of the squashing theorem

The unfolding
For all i ∈ ω:

Ji = (C � mi)
aΦ(Ii, Ji+1).

From a solution S0 to J0 we can recover a solution 〈Ti : i ∈ ω〉 to
〈Ii : i ∈ ω〉:

• P has finite tolerance, so from S0 we get a solution to Φ(I0, J1).

• The solution to Φ(I0, J1) produces a solution 〈T0, S1〉 to 〈I0, J1〉.
• P has finite tolerance, so from S1 we get a solution to Φ(I1, J2).

• The solution to Φ(I1, J2) produces a solution 〈T1, S2〉 to 〈I1, J2〉.
• Et cetera.
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A few more results

For a rational p ∈ (0, 1), let p-WWKL denote WKL for trees of measure
≥ p.

Theorem (DDHMS)

If 0 < p < q < 1, then p-WWKL �sW q-WWKL

TSn
k is the statement for every f : [N]n → k there is an infinite H ⊆ N

such that |f([H]n)| < k.

Theorem (DDHMS)

• Let n ≥ 1 and j, k ≥ 2. Then 〈TSn
k ,TSn

j 〉 �sW TSn
j .

• If 2 ≤ j < k, then TS1
j �sW TS1

k. Improved by Hirschfeldt and
Jockusch to all exponents.

Paul Shafer – UGent ≤sW and combinatorics February 17, 2014 22 / 22


