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Basis theorems in algebra.

Definition. A ring satisfies the ACC

(ascending chain condition) if every

nondecreasing sequence of ideals is finite.

Equivalently, every ideal is finitely generated.

Theorem (Hilbert 1890). Let K be a field.

For all d the polynomial ring K[x1, . . . , xd]

satisfies the ACC.

This is the Hilbert Basis Theorem.

The Hilbert Basis Theorem is very important

in invariant theory and in algebraic geometry.

It is not to be confused with

“basis theorems” in recursion theory!

2



Basis theorems in algebra (continued).

There are also the following theorems.

Theorem (Hilbert ??). Let K be a field.

For all d the formal power series ring

K[[x1, . . . , xd]] satisfies the ACC.

Theorem (Robson 1978). Let K be a field.

For all d the polynomial ring K〈x1, . . . , xd〉

in d noncommuting indeterminates

satisfies the ACC for insertive ideals.

Theorem (Formanek/Lawrence 1976). Let

K be a field of characteristic 0. Let S be the

group of finitely supported permutations of N.

Then, the group ring K[S] satisfies the ACC.
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Some reverse mathematics.

Working in RCA0, we restrict ourselves to

countable fields.

Theorem (Simpson 1988). Over RCA0,

1. Hilbert’s Theorem ⇐⇒ WO(ωω).

2. Robson’s Theorem ⇐⇒ WO(ωωω
).

Theorem (Hatzikiriakou 1994). Over RCA0,

Hilbert’s Theorem for power series rings

is equivalent to WO(ωω).

Theorem (Hatzikiriakou/Simpson 2014).
Over RCA0 the Formanek/Lawrence Theorem

is equivalent to WO(ωω).

Note: Hilbert’s Theorem refers to an infinite

sequence of rings, while Formanek/Lawrence

refers to only one ring, K[S].

We also show that, in all of these reverse
mathematics results, the base theory RCA0
can be weakened to RCA

∗
0.
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I will now give some details about

the Formanek/Lawrence Theorem

and its reversal.
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Partition theory.

As noted by Formanek and Lawrence,

ideals in K[S] are in 1-to-1 correspondence

with certain sets of partitions.

A partition of n is a finite sequence

of integers n1 ≥ · · · ≥ nk > 0 such that

n = n1 + · · ·+ nk.

Example: (5,2,2,1) is a partition of 10,

because 10 = 5+ 2+ 2+ 1 and

5 ≥ 2 ≥ 2 ≥ 1 > 0.

Partitions of n are in 1-to-1 correspondence

with conjugacy classes of Sn. Here Sn is the

group of permutations of the set {1, . . . , n}.

Partition theory is a large branch of

mathematics, closely connected to

the representation theory of Sn.

Note: S =
∞⋃

n=1

Sn and K[S] =
∞⋃

n=1

K[Sn].
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Partitions are often visualized as

Young diagrams. For example, the partition

10 = 5+2+2+1 corresponds to the diagram

consisting of 10 boxes.

Rotated counterclockwise 135 degrees,

it becomes a downwardly closed set in (N2,≤)

where (m,n) ≤ (p, q) ⇐⇒ (m ≤ p and n ≤ q).
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A diagram is a finite downwardly closed

set in N2. Let D2 be the set of diagrams,

partially ordered by inclusion.

A poset P is said to be WPO

(well partially ordered) if

(∀f : N → P) ∃i ∃j (i < j and f(i) ≤ f(j)).

In my 1988 paper I show that, over RCA0,

1. K[x1, . . . , xd] has ACC ⇐⇒ Nd is WPO.

2. K〈x1, . . . , xd〉 ACC ⇐⇒ {x1, . . . , xd}
∗ WPO.

Since N2 is WPO, it follows

by Higman’s Lemma that D2 is WPO.

A set U ⊆ D2 is said to be closed if

∀D (D ∈ U ⇐⇒ ∀E (D ⊂ E ⇒ E ∈ U)).

This implies that U is upwardly closed,

but not conversely!

Formanek and Lawrence exhibit a 1-to-1

correspondence between ideals in K[S] and

closed sets in D2. Since D2 is WPO, it

follows that D2 has the ACC on closed sets,

hence K[S] has the ACC on 2-sided ideals.
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Reversing Formanek/Lawrence.

Working in RCA0, we formalize the work of

Formanek/Lawrence to prove that K[S] has

ACC if and only if D2 has the ACC on closed

sets. Also working in RCA0, we use methods

of Simpson 1988 to prove that

WO(ωω) ⇐⇒ D2 is WPO.

Still working in RCA0, it remains to prove:

D2 is WPO ⇐⇒ D2 has ACC on closed sets.

To prove this, we use a new combinatorial

lemma.

Lemma. Let S be a finite set of diagrams.

Then, the closure of S is equal to

the upward closure of {D0 ∪ E1 | D,E ∈ S}.

Moreover, there are only finitely many

diagrams in the closure of S which are

not in the upward closure of S.

D0 and D1 are the results of truncating the

first row and first column of D, respectively.

For example, if D = (5,2,2,1) then

D0 = (2,2,2,1) and D1 = (5,2,2).
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Weakening the base theory.

Recall that RCA
∗
0 is RCA0 minus Σ0

1 induction

plus integer exponentiation.

In our ACC reversals, we wish to replace RCA0

by RCA
∗
0. For this, it suffices to prove in RCA

∗
0

that if K[x] has ACC then Σ0
1 induction holds.

Lemma. Over RCA
∗
0, if Σ0

1 induction fails,

then there exists f : N → N such that

(1) f(i) ≥ f(i+1) for all i ∈ N, and

(2) f(i) > f(i+1) for infinitely many i ∈ N.

In this situation, letting ni = 2f(i), the ideals

in K[x] generated by xni for each i ∈ N are a

counterexample to the ACC.
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Philosophical aspect.

Recently I suggested that, in contrast to the

concept of potential infinity, the concept of

actual infinity appears to lack objective

justification. Therefore, in order to promote

objectivity in mathematics, it seems desirable

to limit the use of actual infinity.

I see a close connection to Hilbert’s program

of finitistic reductionism. Let us say that a

system T ⊆ Z2 is finitistically reducible if all

Π0
1 (or possibly even Π0

2) sentences provable

in T are provable in PRA, i.e., Primitive

Recursive Arithmetic.

Some important systems are finitistically

reducible, namely WKL0, and WKL0 +

Σ0
2 bounding, and some stronger systems.

On the other hand, RCA0 +WO(ωω) and

RCA0 +Σ0
2 induction are not finitistically

reducible, because they prove Con(PRA)

and totality of the Ackermann function.
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Philosophical aspect (continued).

In particular, the Hilbert Basis Theorem

and the Formanek/Lawrence Theorem

are not finitistically reducible.

(However, for each specific positive integer d,

the Hilbert Basis Theorem for K[x1, . . . , xd] is

finitistically reducible, since provable in RCA0.)

Recently Chong, Slaman, Yang, and

Yokoyama have done some important work

on the reverse mathematics of RT(2,2),

i.e., Ramsey’s Theorem for exponent 2.

An important open question remains:

Is RCA0 +RT(2,2) finitistically reducible?

12



More references:
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Thank you for your attention!
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