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Abstract

e Forcing complexity (of a given formula)
= Min. size of forcing conditions (its domain) which force it.
# Time-bound of extension strategy.

e Resource-bounded forcing theorem holds almost everywhere.
[Dowd, 1992] For almost all inifinite binary sequnece X:

Every tautology with respect to X | {0,1}=" is forced by a
sub-function S of X such that |[domS]| is polynomial in n.
(The poly. depends on t of occurrences of query symbols.)

Resource-bounded randomness implies r.-b. forcing theorem.

Main Theorem: 3 An elementary recursive function t(n) s.t.

Appendix

[X is t(n)-random = Resource-bounded forcing thm. holds for X].
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§1 Forcing Complexity

Forcing complexity
= The minimum size of a forcing condition

Forcing complexity is the minimum size of a forcing condition that
forces a given propositional formula. The origin of forcing
complexity is in Dowd's study on NP=? coNP question.

M. Dowd: Generic oracles, uniform machines, and codes.
Inf. Comput., 96, pp. 65-76 (1992).



Forcing Complexity

§1 Forcing Complexity

Forcing complexity
# Time-bound of extension strategy

Ambos-Spies et al. introduced the concept of resource-bounded
random sets by extending the works of Schnorr and Lutz. They
show that resource-bounded randomness implies resource-bounded
genericity. While the genericity of Ambos-Spies is based on
time-bound of finite-extension strategy, the genericity of Dowd, the
main topic of this talk, is based on an analogy of forcing theorem.

K. Ambos-Spies and E. Mayordomo:
Resource-bounded measure and randomness.
Lecture Notes in Pure and Appl. Math., 187, pp. 1-47,1997.
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§1 Forcing Complexity

To be more precise:

Def. Resource-bounded randomness (Ambos-Spies et al.)
t(n)-random

~ random for O(t(n))-time computable martingales.
Time-bound of finite-extension strategy.

[Ambos-Spies and Mayordomo 1997],
[Ambos-Spies, Terwijn, and Zheng 1997]:

t(n)-random = t(n)-stochastic = t(n)-generic.
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§1 Forcing Complexity

On the other hand, the detail of forcing complexity is as follows.

Def. of Dowd-generic sets (sketch)

“A certain property* of an exponential-sized portion of an oracle X
is forced by a polynomial-sized portion of X. "

“A certain property” is described with
the relativized propositional calculus (RPC).

RPC =( propositional caluculus )
+ {51(_)a 62(_’ _)7 53(_7 ) _)’ e }

For each n, the n-ary connective
¢" (a query symbol) is interpreted to
the initial segment of a given oracle up to 2"th string.
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§1 Forcing Complexity

Example of a formula of RPC
(q0  €%(q1, 42, 43)) = [q0 V (91 A Ga)]

Given a formula F of RPC and an oracle X, truth of F is
determined by “a truth assignment + a finite portion of X".

Interpretation:
£"(ith of {0,1}") is interpreted as to be X(ith of {0,1}*),

where “ith" is that of length-lexicographic order.

Appendix
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§1 Forcing Complexity

£"(ith of {0,1}") is interepreted as to be X(ith of {0,1}*).
Examples (n =2 and n = 3)

£%(0,0) €%(0,
X (empty string) X(
£3(0,0,0) €3(0,0,1) £3(0,1,0) £3(0,1,1)

X(empty string) X(0) X(1) X(00)

£3(1,0,0) £(1,0,1) £(1,1,0) £(1,1,1)
X(01) X(10)  X(11)  X(000)

Thus, £€2(q2, q1) and €3(0, g, q1) are interpreted as to be the same.
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§1 Forcing Complexity

Def. Force

A finite portion o (a finite sub-function) of an oracle X is called a
forcing condition.

o forces F if for any Y extending o, F is a tautology w. r. t. Y.

Example of force

Let F be: (qo < &£3(q1,92,93)) = —qo

F is a tautology w. r. t. the characteristic func. of the empty set.

If o forces F then the size of o (its domain) > 23.
(And, the first 23 bits of o should be 0.)
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Non-Existence
§2 Non-Existence

The case of unbounded occurrences of query symbols
Definition. t-generic sets [Dowd 1992]

X is t-generic if every tautology F with respect to X is forced by a
forcing condition of polynomial-size in |F]|.

Thm. Non-existence of t-generic sets [Dowd, 1992], [S. 2001]

There are no t-generic sets.

M. Dowd: Generic oracles, uniform machines, and codes.
Inf. Comput., 96, pp. 65-76 (1992).

S.: Forcing complexity: minimum sizes of forcing conditions.
Notre Dame J. Formal Logic, 42, pp. 117-120 (2001).

11/27



Existence

§3 Existence

Resource-bounded forcing theorem holds almost everywhere.

It is widely known that 1-randomness and 1-genericity are
incompatible.

Interestingly, Dowd found that the following holds for a randomly
chosen X : w — {0, 1}.

“A property of an exponential-sized portion of X is forced by a
polynomial-sized portion of X".

M. Dowd: Inf. Comput. (1992).
S.: Notre Dame J. Formal Logic (2001).
S.: Inf. Comput. (2002).
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Existence

§3 Existence

The case of bounded occurrences of query symbols:
Here, r-query denotes “the ff of occurrences of query symbols is r."

Def. Dowd-generic sets [Dowd, 1992]

e Let r be a positive integer.
X is r-Dowd
if every r-query tautology F w. r. t. X
is forced by a forcing condition of polynomial-size in |F]|.

e X is Dowd-generic

if X is r-Dowd for every positive integer r.
(Polynomial bound depends on each r, unlike t-genericity)
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Existence

§3 Existence

Thm. Existence of Dowd-generic sets

e [Dowd, 1992], [S.2001], [S.2002]
The class of all Dowd-generic sets has Lebesgue measure 1.

e [S. and Kumabe, 2009] Schnorr random = Dowd-generic.

S.: Degrees of Dowd-type generic oracles.
Inf. Comput., 176, pp.66—-87 (2002).

S. and M. Kumabe: Weak randomness, genericity and Boolean
decision trees.
Proc. 10th Asian Logic Conference, pp.322-344, 2009.
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Existence

§3 Existence

[Dowd 1992] asserts “Any 1-Dowd set is not c.e.” (false)

Thm. Degrees of Dowd-generic sets

e [S. 2002] There exists a primitive recursive 1-Dowd set.
And, every Turing degree contains a 1-Dowd set.

e [Kumabe and S. 2012]

The same holds for “Dowd-generic” in place of “1-Dowd".

M. Kumabe and S.:
Computable Dowd-generic oracles.
Proc. 11th Asian Logic Conference, pp.128-146, 2012.
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Main Theorem

§4 Main Theorem

Main Theorem

There exists an elementary recursive function t(n) s.t.
t(n)-random = Dowd-generic.

Gives an alt. proof: d a primitive recursive Dowd-generic set.

M. Kumabe and S.:
Resource-bounded martingales and computable Dowd-type generic
sets. submitted to a journal (2010).
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Main Theorem

§4 Main Theorem (Sketch of Proof )

The key to our proof is a construction of a martingale that
succeeds on every “non-Dowd” set. A basic idea is as follows.

Suppose a forcing condition S is given
and we want to define the value d(S) of
the martingale. Assume that a polyno-
mial p is given at the node S. In the two
basic open sets given by S0 (S concate-
nated by 0) and S1, we investigate the
following conditional probabilities.

S/SO
2t NG
0

=

Figure 1: Martingale
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Main Theorem

§4 Main Theorem (Sketch of Proof )

We randomly chose an oracle T. Then we investigate a prob. of T
having the following property (), under the condition that T
extends SO (or S1, respectively). Here, f(n) >> n.

(*)

Somewhere between n + 1
and f(n), T fails the test for
“the forcing theorem at stage
i with respect to r and p”.

Figure 2:

We denote these conditional probabilities by o(50) and o(S1).
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§4 Main Theorem (Sketch of Proof )

We define the martingale values d(S0) and d(S1) in proportion to
0(50) and o(S1). In other words, we shall define them so that the
following equation holds.

The ratio of the martingale value to rho

d(S0) _ d(S1)

o(S0)  o(S1)
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Main Theorem

§4 Main Theorem (Sketch of Proof )

Then, in many nodes, the ratio of d to g shall be the same as that
of the parent node. For example, the following holds.

d(S0)  d(S)

o(50)  e(S)

By means of this property, we show that d succeeds on every
“non-Dowd" oracle. In other words, for every “non-Dowd"” oracle
X, it holds that lim sup of d(X | n) is infinite.
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Summary

Summary

§2 Results on Non-Existence (Thm. [Dowd 1992], [S. 2001])

No t-generic sets (No poly.-bound on forcing complexity when
unbounded occurrences of query symbols).

§3 Results on Existence (Def.)

(1) r-Dowd
<+ poly.-bound on forcing comp. for r-query tautologies
(It satisfies the resource-bounded forcing theorem).
(2) Dowd-generic <» Vr > 1 r-Dowd

§4 Main Theorem

There exists an elementary recursive function t(n) s.t.
t(n)-random = Dowd-generic.
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Appendix: Jump and a Problem

Let 1TAUTX denote the set of all 1-query tautologies w. r. t. X.
Question: Does 1ITAUTX has a degree strictly higher than X?
Given a reduction concept <, (e.g., poly.-time Turing g?),

we introduce the following statement, and we call it
“One-query jump hypothesis w. r. t. <,” (1QJH(r), for short).

Def. One-query Jump Hypothesis w. r. t. <, [S. 2002]

“The class  {X : X <, ITAUTX} has Lebesgue measure 1
in the Cantor space”.
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Jump and a Problem

Thm. [S. 1998]
1QJH(poly.-time Turing) < RP # NP.

Here, RP is the one-sided version of BPP.

Thm. [S. 2002]
1QJH(poly.-time truth table) = P # NP.

S.: Recognizing tautology by a deterministic algorithm whose
while-loop’s execution time is bounded by forcing.
Kobe Journal of Mathematics, 15, pp. 91-102 (1998).
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Appendix

Jump and a Problem

Examples of 1QJH  [Kumabe, S. and Yamazaki 2008]
(1) 1QJH(monotone reductions) holds.

(tt-reductions s.t. truth tables are monotone Boolean formulas.)

(2) ¢ <1 = 1QJH(tt-reductions s.t. norm < ¢ x |F|) holds.
(F is an input formula and |F| = f of occurrences of symbols.)

Problem
In (2), can we relax the assumption of “c < 1"7?

M. Kumabe, S. and T. Yamazaki: Does truth-table of linear norm

reduce the one-query tautologies to a random oracle?
Arch. Math. Logic, 47, pp.159-180 (2008).
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