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Abstract

• Forcing complexity (of a given formula)
= Min. size of forcing conditions (its domain) which force it.
6= Time-bound of extension strategy.

• Resource-bounded forcing theorem holds almost everywhere.
[Dowd, 1992] For almost all inifinite binary sequnece X :
Every tautology with respect to X � {0, 1}≤n is forced by a
sub-function S of X such that |domS | is polynomial in n.
(The poly. depends on ] of occurrences of query symbols.)

Resource-bounded randomness implies r.-b. forcing theorem.

Main Theorem: ∃ An elementary recursive function t(n) s.t.
[X is t(n)-random ⇒ Resource-bounded forcing thm. holds for X ].
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§1 Forcing Complexity

Forcing complexity
= The minimum size of a forcing condition

Forcing complexity is the minimum size of a forcing condition that
forces a given propositional formula. The origin of forcing
complexity is in Dowd’s study on NP=? coNP question.

M. Dowd: Generic oracles, uniform machines, and codes.
Inf. Comput., 96, pp. 65–76 (1992).
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§1 Forcing Complexity

Forcing complexity
6= Time-bound of extension strategy

Ambos-Spies et al. introduced the concept of resource-bounded
random sets by extending the works of Schnorr and Lutz. They
show that resource-bounded randomness implies resource-bounded
genericity. While the genericity of Ambos-Spies is based on
time-bound of finite-extension strategy, the genericity of Dowd, the
main topic of this talk, is based on an analogy of forcing theorem.

K. Ambos-Spies and E. Mayordomo:
Resource-bounded measure and randomness.
Lecture Notes in Pure and Appl. Math., 187, pp. 1–47,1997.
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§1 Forcing Complexity

To be more precise:

Def. Resource-bounded randomness (Ambos-Spies et al.)

t(n)-random
' random for O(t(n))-time computable martingales.

Time-bound of finite-extension strategy.

[Ambos-Spies and Mayordomo 1997],
[Ambos-Spies, Terwijn, and Zheng 1997]:

t(n)-random ⇒ t(n)-stochastic ⇒ t(n)-generic.
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§1 Forcing Complexity

On the other hand, the detail of forcing complexity is as follows.

Def. of Dowd-generic sets (sketch)

“A certain property∗ of an exponential-sized portion of an oracle X
is forced by a polynomial-sized portion of X . ”

“A certain property” is described with
the relativized propositional calculus (RPC).

RPC =( propositional caluculus )

+ {ξ1(−), ξ2(−,−), ξ3(−,−,−), · · · }

For each n, the n-ary connective
ξn (a query symbol) is interpreted to
the initial segment of a given oracle up to 2nth string.
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§1 Forcing Complexity

Example of a formula of RPC

(q0 ⇔ ξ3(q1, q2, q3))⇒ [q0 ∨ (q1 ∧ q4)]

Given a formula F of RPC and an oracle X , truth of F is
determined by “a truth assignment + a finite portion of X”.

Interpretation:

ξn(ith of {0, 1}n) is interpreted as to be X (ith of {0, 1}∗),

where “ith” is that of length-lexicographic order.
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§1 Forcing Complexity

ξn(ith of {0, 1}n) is interepreted as to be X (ith of {0, 1}∗).
Examples (n = 2 and n = 3)

ξ2(0, 0) ξ2(0, 1) ξ2(1, 0) ξ2(1, 1)
X (empty string) X (0) X (1) X (00)

ξ3(0, 0, 0) ξ3(0, 0, 1) ξ3(0, 1, 0) ξ3(0, 1, 1)
X (empty string) X (0) X (1) X (00)

ξ3(1, 0, 0) ξ3(1, 0, 1) ξ3(1, 1, 0) ξ3(1, 1, 1)
X (01) X (10) X (11) X (000)

Thus, ξ2(q2, q1) and ξ3(0, q2, q1) are interpreted as to be the same.
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§1 Forcing Complexity

Def. Force

A finite portion σ (a finite sub-function) of an oracle X is called a
forcing condition.

σ forces F if for any Y extending σ, F is a tautology w. r. t. Y .

Example of force

Let F be: (q0 ⇔ ξ3(q1, q2, q3))⇒ ¬q0

F is a tautology w. r. t. the characteristic func. of the empty set.
If σ forces F then the size of σ (its domain) ≥ 23.
(And, the first 23 bits of σ should be 0.)
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§2 Non-Existence

The case of unbounded occurrences of query symbols

Definition. t-generic sets [Dowd 1992]

X is t-generic if every tautology F with respect to X is forced by a
forcing condition of polynomial-size in |F |.

Thm. Non-existence of t-generic sets [Dowd, 1992], [S. 2001]

There are no t-generic sets.

M. Dowd: Generic oracles, uniform machines, and codes.
Inf. Comput., 96, pp. 65–76 (1992).

S.: Forcing complexity: minimum sizes of forcing conditions.
Notre Dame J. Formal Logic, 42, pp. 117–120 (2001).
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§3 Existence

Resource-bounded forcing theorem holds almost everywhere.

It is widely known that 1-randomness and 1-genericity are
incompatible.

Interestingly, Dowd found that the following holds for a randomly
chosen X : ω → {0, 1}.

“A property of an exponential-sized portion of X is forced by a
polynomial-sized portion of X”.

M. Dowd: Inf. Comput. (1992).
S.: Notre Dame J. Formal Logic (2001).
S.: Inf. Comput. (2002).
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§3 Existence

The case of bounded occurrences of query symbols:
Here, r -query denotes “the ] of occurrences of query symbols is r .”

Def. Dowd-generic sets [Dowd, 1992]

• Let r be a positive integer.
X is r -Dowd
if every r -query tautology F w. r. t. X
is forced by a forcing condition of polynomial-size in |F |.

• X is Dowd-generic
if X is r -Dowd for every positive integer r .
(Polynomial bound depends on each r , unlike t-genericity)
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§3 Existence

Thm. Existence of Dowd-generic sets

• [Dowd, 1992], [S.2001], [S.2002]
The class of all Dowd-generic sets has Lebesgue measure 1.

• [S. and Kumabe, 2009] Schnorr random ⇒ Dowd-generic.

S.: Degrees of Dowd-type generic oracles.
Inf. Comput., 176, pp.66–87 (2002).

S. and M. Kumabe: Weak randomness, genericity and Boolean
decision trees.
Proc. 10th Asian Logic Conference, pp.322–344, 2009.
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§3 Existence

[Dowd 1992] asserts “Any 1-Dowd set is not c.e.” (false)

Thm. Degrees of Dowd-generic sets

• [S. 2002] There exists a primitive recursive 1-Dowd set.
And, every Turing degree contains a 1-Dowd set.

• [Kumabe and S. 2012]
The same holds for “Dowd-generic” in place of “1-Dowd”.

M. Kumabe and S.:
Computable Dowd-generic oracles.
Proc. 11th Asian Logic Conference, pp.128–146, 2012.
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§4 Main Theorem

Main Theorem

There exists an elementary recursive function t(n) s.t.
t(n)-random ⇒ Dowd-generic.

Gives an alt. proof: ∃ a primitive recursive Dowd-generic set.

M. Kumabe and S.:
Resource-bounded martingales and computable Dowd-type generic
sets. submitted to a journal (2010).

16 / 27



Abstract Forcing Complexity Non-Existence Existence Main Theorem Summary References Appendix

§4 Main Theorem (Sketch of Proof )

The key to our proof is a construction of a martingale that
succeeds on every “non-Dowd” set. A basic idea is as follows.

Suppose a forcing condition S is given
and we want to define the value d(S) of
the martingale. Assume that a polyno-
mial p is given at the node S . In the two
basic open sets given by S0 (S concate-
nated by 0) and S1, we investigate the
following conditional probabilities. Figure 1: Martingale
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§4 Main Theorem (Sketch of Proof )

We randomly chose an oracle T . Then we investigate a prob. of T
having the following property (∗), under the condition that T
extends S0 (or S1, respectively). Here, f (n) >> n.

(∗)
Somewhere between n + 1
and f (n), T fails the test for
“the forcing theorem at stage
i with respect to r and p”.

Figure 2:

We denote these conditional probabilities by %(S0) and %(S1).
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§4 Main Theorem (Sketch of Proof )

We define the martingale values d(S0) and d(S1) in proportion to
%(S0) and %(S1). In other words, we shall define them so that the
following equation holds.

The ratio of the martingale value to rho

d(S0)

%(S0)
=

d(S1)

%(S1)
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§4 Main Theorem (Sketch of Proof )

Then, in many nodes, the ratio of d to % shall be the same as that
of the parent node. For example, the following holds.

d(S0)

%(S0)
=

d(S)

%(S)

By means of this property, we show that d succeeds on every
“non-Dowd” oracle. In other words, for every “non-Dowd” oracle
X , it holds that lim sup of d(X � n) is infinite.
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Summary

§2 Results on Non-Existence (Thm. [Dowd 1992], [S. 2001])

No t-generic sets (No poly.-bound on forcing complexity when
unbounded occurrences of query symbols).

§3 Results on Existence (Def.)

(1) r -Dowd
↔ poly.-bound on forcing comp. for r -query tautologies

(It satisfies the resource-bounded forcing theorem).
(2) Dowd-generic ↔ ∀r ≥ 1 r -Dowd

§4 Main Theorem

There exists an elementary recursive function t(n) s.t.
t(n)-random ⇒ Dowd-generic.
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Appendix: Jump and a Problem

Let 1TAUTX denote the set of all 1-query tautologies w. r. t. X .

Question: Does 1TAUTX has a degree strictly higher than X?

Given a reduction concept ≤r (e.g., poly.-time Turing ≤P
T ),

we introduce the following statement, and we call it
“One-query jump hypothesis w. r. t. ≤r” (1QJH(r), for short).

Def. One-query Jump Hypothesis w. r. t. ≤r [S. 2002]

“The class {X : X <r 1TAUTX} has Lebesgue measure 1
in the Cantor space”.
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Jump and a Problem

Thm. [S. 1998]

1QJH(poly.-time Turing) ⇔ RP 6= NP.

Here, RP is the one-sided version of BPP.

Thm. [S. 2002]

1QJH(poly.-time truth table) ⇒ P 6= NP.

S.: Recognizing tautology by a deterministic algorithm whose
while-loop’s execution time is bounded by forcing.
Kobe Journal of Mathematics, 15, pp. 91–102 (1998).
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Jump and a Problem

Examples of 1QJH [Kumabe, S. and Yamazaki 2008]

(1) 1QJH(monotone reductions) holds.
(tt-reductions s.t. truth tables are monotone Boolean formulas.)

(2) c < 1 ⇒ 1QJH(tt-reductions s.t. norm ≤ c × |F |) holds.
(F is an input formula and |F | = ] of occurrences of symbols.)

Problem

In (2), can we relax the assumption of “c < 1”?

M. Kumabe, S. and T. Yamazaki: Does truth-table of linear norm
reduce the one-query tautologies to a random oracle?
Arch. Math. Logic, 47, pp.159–180 (2008).
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