(Non-)Reductions in Reverse Mathematics

Henry Towsner¹ Joint work with Manuel Lerman and Reed Solomon

University of Pennsylvania

February 17, 2014

¹Supported by the US National Science Foundation DMS-1001528

Much of reverse math focuses on *problems* of the following kind: For every set X there exists a set Y such that $\phi(X, Y)$ holds.

Every infinite $\{0,1\}$ -branching tree $T \subseteq 2^{<\omega}$ has an infinite path.

Every infinite $\{0,1\}$ -branching tree $T \subseteq 2^{<\omega}$ has an infinite path.

Definition (ADS)

For every linear ordering \prec of \mathbb{N} there is either an infinite increasing sequence or an infinite decreasing sequence.

Every infinite $\{0,1\}$ -branching tree $T \subseteq 2^{<\omega}$ has an infinite path.

Definition (ADS)

For every linear ordering \prec of $\mathbb N$ there is either an infinite increasing sequence or an infinite decreasing sequence.

Definition (\mathbf{RT}_2^2)

For every coloring $c : [\mathbb{N}]^2 \to \{0, 1\}$ of pairs of integers there is an infinite set H such that $c \upharpoonright [H]^2$ is constant.

Every infinite $\{0,1\}$ -branching tree $T \subseteq 2^{<\omega}$ has an infinite path.

Definition (**ADS**)

For every linear ordering \prec of \mathbb{N} there is either an infinite increasing sequence or an infinite decreasing sequence.

Definition (\mathbf{RT}_2^2)

For every coloring $c : [\mathbb{N}]^2 \to \{0, 1\}$ of pairs of integers there is an infinite set H such that $c \upharpoonright [H]^2$ is constant.

Definition (CAC)

For every partial order \sqsubset of $\mathbb N$ there is either an infinite chain or an infinite antichain.

For every set X there exists a set Y such that $\phi(X, Y)$ holds.

We say that each set X represents an *instance* of the problem, and each witnessing Y is a *solution* to the instance X.

Π_2^1 Sentences	Reductions	Non-Reductions	Questions

We want to compare different problems. A basic question is: does knowing that \mathbf{Q} is solvable imply that \mathbf{P} is solvable?

Π ¹ ₂ Sentences	Reductions	Non-Reductions	Questions

We want to compare different problems. A basic question is: does knowing that \mathbf{Q} is solvable imply that \mathbf{P} is solvable?

The reverse mathematics version is:

Does $T + \mathbf{Q} \vdash \mathbf{P}$?

 ${\cal T}$ is some base theory. For us it is always ${\bf RCA}_0,$ which is a theory of computable mathematics.

Theorem (Hirschfeldt/Shore)

 \mathbf{RT}_2^2 implies **ADS** (working in the base theorem \mathbf{RCA}_0).

Proof.

Let \prec be a linear ordering of $\mathbb N.$ Use Ramsey's Theorem for pairs: define

$$c(n,m) = \begin{cases} 0 & \text{if } \prec \text{ agrees with } < \text{ on } (n,m) \\ 1 & \text{if } \prec \text{ disagrees with } < \text{ on } (n,m) \end{cases}$$

Let *H* be an infinite set such that *c* is constant on pairs from *H*. If *c* is constantly 0 then listing *H* in increasing < order gives an infinite ascending sequence. If *c* is constantly 1 then listing *H* in increasing < order gives an infinite descending sequence.

Let \prec be a linear ordering of \mathbb{N} . There is a coloring *c*, computable from \prec , so that whenever *H* is homogeneous for *c* an infinite monotone sequence for \prec can be computed from *H*.

Π_2^1 Sentences	Reductions	Non-Reductions	Questions

For every instance X of **P** there is an instance $\Phi(X)$ of **Q** such that whenever Y is a solution to $\Phi(X)$, $\Psi(X, Y)$ is a solution to X

Definition

We say **P** is strongly Weihrauch reducible to **Q** if: For every instance X of **P** there is an instance $\Phi(X)$ of **Q** such that whenever Y is a solution to $\Phi(X)$, $\Psi(X, Y)$ is a solution to X where Φ , Ψ are computable functionals To say that **P** is strongly Weihrauch reducible to **Q** is much stronger than saying that $\mathbf{RCA}_0 + \mathbf{Q} \vdash \mathbf{P}$.

To say that **P** is strongly Weihrauch reducible to **Q** is much stronger than saying that $\mathbf{RCA}_0 + \mathbf{Q} \vdash \mathbf{P}$.

For example, it could be that $\mathbf{RCA}_0 + \mathbf{Q} \vdash \mathbf{P}$ because of the following situation:

For every instance X of **P** there is an instance $\Phi_0(X)$ of **Q** such that whenever Y is a solution to $\Phi_0(X)$ there is an instance $\Phi_1(X, Y)$ of **Q** such that whenever Z is a solution to $\Phi_1(X, Y)$, $\Psi(X, Y, Z)$ is a solution to X.

To say that **P** is strongly Weihrauch reducible to **Q** is much stronger than saying that $\mathbf{RCA}_0 + \mathbf{Q} \vdash \mathbf{P}$.

For example, it could be that $\mathbf{RCA}_0 + \mathbf{Q} \vdash \mathbf{P}$ because of the following situation:

For every instance X of **P** there is an instance $\Phi_0(X)$ of **Q** such that whenever Y_0 is a solution to $\Phi_0(X)$ either $\Psi_0(X, Y_0)$ is a solution to X or $\Phi_1(X, Y_0)$ is an instance of **Q** such that whenever Y_1 is a solution to $\Phi_1(X, Y_0)$, either $\Psi_1(X, Y_0, Y_1)$ is a solution to X or $\Phi_2(X, Y_0, Y_1)$ is an instance of **Q** such that...

I ₂ Sente	nces Reduction	5 Non-Implications	Non-Reductions	Questions
ł	low can we prove	non-implications R ($CA_0 + Q eq P?$	

The usual technique is:

Fix an instance of **P** with a known "hardness" property.

The usual technique is:

- Fix an instance of P with a known "hardness" property. For instance:
 - No low solutions,
 - Solutions have measure 0,
 - etc

The usual technique is:

- Fix an instance of P with a known "hardness" property. For instance:
 - No low solutions,
 - Solutions have measure 0,
 - etc
- Show that we can solve an instance of Q in an "easy" way (low solutions, positive measure solutions, etc.)

The usual technique is:

- Fix an instance of P with a known "hardness" property. For instance:
 - No low solutions,
 - Solutions have measure 0,
 - etc
- Show that we can solve an instance of Q in an "easy" way (low solutions, positive measure solutions, etc.)
- Iteratively solve instances of Q without solving the hard instance of P.

The usual technique is:

- Fix an instance of P with a known "hardness" property. For instance:
 - No low solutions,
 - Solutions have measure 0,
 - etc
- Show that we can solve an instance of Q in an "easy" way (low solutions, positive measure solutions, etc.)
- Iteratively solve instances of Q without solving the hard instance of P.

Usually the first two steps are the hard part, and iterating is obvious.

We use this to build a model of $\mathbf{RCA}_0 + \mathbf{Q} + \neg \mathbf{P}$:

- Begin by setting H_0 to be the hard instance of **P**.
- Pick an instance of **Q** computable from H_0 and find an easy solution Y_1 . Set $H_1 = H_0 \oplus Y_1$.
- Pick an instance of **Q** computable from H_1 and find an easy solution Y_2 . Set $H_2 = H_1 \oplus Y_2$.

• • • •

Let *H* consist of all sets computable from some H_n . This is a model **RCA**₀. By choosing the instances of **Q** carefully, we address every instance in *H*, so *H* is a model of **Q**. *H* was built from "easy" sets, so does not contain a solution to the hard instance of **P**.

In ₂ Sentences	Reductions	Non-Implications	Non-Reductions	Questions

There are various situations where we can prove failure of Weihrauch reducibility, or the stronger failure:

For any computable functional Φ there is an instance X of **P** such that if $\Phi(X)$ is an instance of **Q**, there there is a solution Y to $\Phi(X)$ such that $X \oplus Y$ does not compute any solution to X.

112 Sentences	Reductions	Non-implications	Non-reductions	

There are various situations where we can prove failure of Weihrauch reducibility, or the stronger failure:

For any computable functional Φ there is an instance X of **P** such that if $\Phi(X)$ is an instance of **Q**, there there is a solution Y to $\Phi(X)$ such that $X \oplus Y$ does not compute any solution to X.

Note that this is more complicated than the usual diagonalization because the construction of X is intertwined with the construction of Y.

 Π_2^1 Sentences Reductions Non-Implications Non-Reductions Questions

Let \mathbb{Q}_{Φ}^{X} be a forcing notion, given uniformly in oracle X and functional Φ , with a collection of subsets ("requirements") \mathcal{R}_{e}^{X} . We say $q_{1} \succ q_{2} \succ \cdots$ is generic if for each \mathcal{R}_{e}^{X} either:

- Some $q_i \in \mathcal{R}_e^X$, or
- There is some q_i so that whenever $q \leq q_i$, $q \notin \mathcal{R}_e^X$.

 ${
m T}_2^1$ Sentences Reductions Non-Implications Non-Reductions Questions

Let \mathbb{Q}_{Φ}^{X} be a forcing notion, given uniformly in oracle X and functional Φ , with a collection of subsets ("requirements") \mathcal{R}_{e}^{X} . We say $q_{1} \succ q_{2} \succ \cdots$ is *generic* if for each \mathcal{R}_{e}^{X} either:

- Some $q_i \in \mathcal{R}_e^X$, or
- There is some q_i so that whenever $q \leq q_i$, $q \notin \mathcal{R}_e^X$.

X will be an instance of **P** and \mathbb{Q}_{Φ}^{X} consists of finite approximations to a solution of $\Phi(X)$, together with Mathias constraints on what future extensions can look like.

Π ₂ [±] Sentences	Reductions	Non-Implications	Non-Reductions	Questions

Suppose that whenever X is an instance of **P** and $q_1 \succ q_2 \succ \cdots$ is a generic sequence in \mathbb{Q}_{Φ}^X :

- $q_1 \succ q_2 \cdots$ computes a solution Y to $\Phi(X)$, but
- $X \oplus \langle q_i \rangle$ does not compute a solution to X.

Π ₂ [±] Sentences	Reductions	Non-Implications	Non-Reductions	Questions

Suppose that whenever X is an instance of **P** and $q_1 \succ q_2 \succ \cdots$ is a generic sequence in \mathbb{Q}_{Φ}^X :

- $q_1 \succ q_2 \cdots$ computes a solution Y to $\Phi(X)$, but
- $X \oplus \langle q_i \rangle$ does not compute a solution to X.

Generic sequences don't always exist.

Π ₂ [±] Sentences	Reductions	Non-Implications	Non-Reductions	Questions

Suppose that whenever X is an instance of **P** and $q_1 \succ q_2 \succ \cdots$ is a generic sequence in \mathbb{Q}_{Φ}^X :

- $q_1 \succ q_2 \cdots$ computes a solution Y to $\Phi(X)$, but
- $X \oplus \langle q_i \rangle$ does not compute a solution to X.

Generic sequences don't always exist. We can't expect X to be just any instance of **P**—there are probably *some* instances of **P** which have computable solutions.

Π ₂ [±] Sentences	Reductions	Non-Implications	Non-Reductions	Questions

Sometimes we can construct an X in such a way that we can ensure the existence of a generic sequence $q_1 \succ q_2 \succ \cdots$. We use some of our freedom in constructing X to ensure that the generic sequence exists.

II ₂ Sentences	Reductions	Non-Implications	Non-Reductions	Questions

Sometimes we can construct an X in such a way that we can ensure the existence of a generic sequence $q_1 \succ q_2 \succ \cdots$. We use some of our freedom in constructing X to ensure that the generic sequence exists.

Then we have shown a non-reducibility result:

There exists an instance X of **P** and a solution Y to $\Phi(X)$ (computable from $\langle q_i \rangle$) so that $X \oplus \langle q_i \rangle$, and therefore $X \oplus Y$, does not compute a solution to X.

Let $\mathbb{Q}_{\Phi}^{X,H}$ be a forcing notion, given uniformly in oracles X and H and a functional Φ , with a collection of subsets ("requirements") $\mathcal{R}_{e}^{X,H}$. We say $q_{1} \succ q_{2} \succ \cdots$ is generic if for each $\mathcal{R}_{e}^{X,H}$ either:

Some
$$q_i \in \mathcal{R}_e^{\wedge, \prime \prime}$$
, or

• There is some q_i so that whenever $q \leq q_i$, $q \notin \mathcal{R}_e^{X,H}$.

Π ₂ [±] Sentences	Reductions	Non-Implications	Non-Reductions	Questions

Suppose that whenever X is an instance of **P** and $q_1 \succ q_2 \succ \cdots$ is a generic sequence in $\mathbb{Q}_{\Phi}^{X,H}$:

- $q_1 \succ q_2 \cdots$ computes a solution Y to $\Phi(X)$, but
- $X \oplus H \oplus \langle q_i \rangle$ does not compute a solution to X, and

II ₂ Sentences	Reductions	Non-Implications	Non-Reductions	Questions

Suppose that whenever X is an instance of **P** and $q_1 \succ q_2 \succ \cdots$ is a generic sequence in $\mathbb{Q}_{\Phi}^{X,H}$:

- $q_1 \succ q_2 \cdots$ computes a solution Y to $\Phi(X)$, but
- $X \oplus H \oplus \langle q_i \rangle$ does not compute a solution to X, and
- There exists a generic sequence in $\mathbb{Q}_{\Psi}^{X,H \oplus \langle q_i \rangle}$ for every Ψ .

 Π_2^1 Sentences Reductions Non-Implications Non-Reductions Questions

Suppose that whenever X is an instance of **P** and $q_1 \succ q_2 \succ \cdots$ is a generic sequence in $\mathbb{Q}_{\Phi}^{X,H}$:

- $q_1 \succ q_2 \cdots$ computes a solution Y to $\Phi(X)$, but
- $X \oplus H \oplus \langle q_i \rangle$ does not compute a solution to X, and
- There exists a generic sequence in $\mathbb{Q}_{\Psi}^{X,H \oplus \langle q_i \rangle}$ for every Ψ .

Suppose further that there exists an X so that $\mathbb{Q}^{X,\emptyset}_{\Phi}$ contains a generic sequence.

II ₂ Sentences	Reductions	Non-Implications	Non-Reductions	Questions

Then we can show $\mathbf{RCA}_0 + \mathbf{Q} \not\vdash \mathbf{P}$ as follows:

Let X be an instance of P so that Q^{X,∅}_{Φ₀} contains a generic sequence. Set H₀ = X.

m2 Sentences		Non Reductions	

Then we can show $\mathbf{RCA}_0 + \mathbf{Q} \not\vdash \mathbf{P}$ as follows:

- Let X be an instance of **P** so that $\mathbb{Q}_{\Phi_0}^{X,\emptyset}$ contains a generic sequence. Set $H_0 = X$.
- Given H_n so that $\mathbb{Q}_{\Phi_n}^{X,H_n}$ contains a generic sequence $\langle q_i \rangle$, let $H_{n+1} = H_n \oplus \langle q_i \rangle$.

Then we can show $\mathbf{RCA}_0 + \mathbf{Q} \not\vdash \mathbf{P}$ as follows:

- Let X be an instance of **P** so that $\mathbb{Q}_{\Phi_0}^{X,\emptyset}$ contains a generic sequence. Set $H_0 = X$.
- Given H_n so that $\mathbb{Q}_{\Phi_n}^{X,H_n}$ contains a generic sequence $\langle q_i \rangle$, let $H_{n+1} = H_n \oplus \langle q_i \rangle$.

We can consider the model of \mathbf{RCA}_0 containing all sets computable from some H_n . We can ensure that we consider every instance of \mathbf{Q} at some stage n, so this is a model of \mathbf{Q} . This model contains X, but no solution to X, so is a model of $\neg \mathbf{P}$.

 $[{\tt Ambos-Spies/Kjos-Hanssen/Lempp/Slaman}]$

[Ambos-Spies/Kjos-Hanssen/Lempp/Slaman]

■ ADS vs CAC and EM vs SRT²₂ [Lerman/Solomon/T.]

[Ambos-Spies/Kjos-Hanssen/Lempp/Slaman]

- ADS vs CAC and EM vs SRT²₂ [Lerman/Solomon/T.]
- Some principles involving partial orders [Dzhafarov/Lerman/Solomon]

[Ambos-Spies/Kjos-Hanssen/Lempp/Slaman]

- ADS vs CAC and EM vs SRT²₂ [Lerman/Solomon/T.]
- Some principles involving partial orders [Dzhafarov/Lerman/Solomon]
- DNR vs. RWKL [Flood/T.] (shown by Bienvenu/Patey/Shafer using other methods)

Question

What kinds of non-reductions does this work on? Are there meta-theorems showing that certain kinds of non-reductions can always be generalized like this?

Question

What kinds of non-reductions does this work on? Are there meta-theorems showing that certain kinds of non-reductions can always be generalized like this?

In all known examples the difficult instance of \mathbf{P} constructed is computable and can be constructed using a finite injury priority argument.

Question

What kinds of non-reductions does this work on? Are there meta-theorems showing that certain kinds of non-reductions can always be generalized like this?

Dzhafarov and Lerman/Solomon/T. have shown non-reductions of \textbf{SRT}_2^2 to \textbf{RT}_2^2 , but this method appears not to apply. These constructions have an infinite injury character.

Infinite injury creates the following obstacle. We are constructing an instance X of **P**. We are simultaneously building a generic sequence $q_1 \succ q_2 \succ \cdots$ solving $\Phi_0(X)$, which depends on X. We are also constructing another generic sequence $r_1 \succ r_2 \succ \cdots$ solving $\Phi_1(X, \langle q_i \rangle)$. When the way $\langle q_i \rangle$ depends on X gets too complicated, we lose any control over $\Phi_1(X, \langle q_i \rangle)$, which makes it impossible to ensure that the r_i exist. Infinite injury creates the following obstacle. We are constructing an instance X of **P**. We are simultaneously building a generic sequence $q_1 \succ q_2 \succ \cdots$ solving $\Phi_0(X)$, which depends on X. We are also constructing another generic sequence $r_1 \succ r_2 \succ \cdots$ solving $\Phi_1(X, \langle q_i \rangle)$. When the way $\langle q_i \rangle$ depends on X gets too complicated, we lose any control over $\Phi_1(X, \langle q_i \rangle)$, which makes it impossible to ensure that the r_i exist.

The separation of \mathbf{SRT}_2^2 from \mathbf{RT}_2^2 by Chong/Slaman/Yang uses a very similar method to construct a collection of solutions. They deal with the infinite injury by only solving instances which are low. This means that the collection of instances which they need to solve doesn't change: they can replace $\Phi_1(X, \langle q_i \rangle)$ with a description that depends only on X.

Infinite injury creates the following obstacle. We are constructing an instance X of **P**. We are simultaneously building a generic sequence $q_1 \succ q_2 \succ \cdots$ solving $\Phi_0(X)$, which depends on X. We are also constructing another generic sequence $r_1 \succ r_2 \succ \cdots$ solving $\Phi_1(X, \langle q_i \rangle)$. When the way $\langle q_i \rangle$ depends on X gets too complicated, we lose any control over $\Phi_1(X, \langle q_i \rangle)$, which makes it impossible to ensure that the r_i exist.

The separation of \mathbf{SRT}_2^2 from \mathbf{RT}_2^2 by Chong/Slaman/Yang uses a very similar method to construct a collection of solutions. They deal with the infinite injury by only solving instances which are low. This means that the collection of instances which they need to solve doesn't change: they can replace $\Phi_1(X, \langle q_i \rangle)$ with a description that depends only on X.

Unfortunately, this doesn't work over ω -models.

Π^1_2 Se		Reductions		Non-Reductions	Questions
	Question				
	Is there an	intrinsic charact	erization of the ge	neric sequence $\langle q_i \rangle$?

Sentences	Reductions	Non-Implications	Non-Reductions	Question
Question				
Is there an in	ntrinsic chai	racterization of the	generic sequence \langle	$\left q_{i} \right\rangle$?
They are Ma	athias generi	ics of some kind.		

Π_2^1		Reductions		Non-Reductions	Questions
	Question				
	Is there a us $\langle q_i \rangle$?	seful intrinsic ch	naracterization of th	ne generic sequence	2
	They are M	athias generics	of some kind.		

entences	Reductions	Non-implications	Non-reductions	Questions
Question				
Is there a $\langle q_i \rangle$?	useful intrinsi	c characterization c	of the generic seque	nce
They are	Mathias gener	ics of some kind.		

The separation of **RWKL** from **DNR** can be shown both by iterated forcing and by a more intrinsic characterization (the "no randomized algorithm" machinery due to Bienvenu/Patay/Shafer).

Π_2^1 Sentences	Reductions	Non-Reductions	Questions

The end.