(Non-)Reductions in Reverse Mathematics

Henry Towsner!

Joint work with Manuel Lerman and Reed Solomon

08 5450

University of Pennsylvania

February 17, 2014

1Supported by the US National Science Foundation DMS-1001528

n§ Sentences

Much of reverse math focuses on problems of the following kind:

For every set X there exists a set Y such that ¢(X,Y)
holds.

n§ Sentences

Definition (WKL)

Every infinite {0, 1}-branching tree T C 2<“ has an infinite path.

n§ Sentences

Definition (WKL)

Every infinite {0, 1}-branching tree T C 2<“ has an infinite path.

Definition (ADS)

For every linear ordering < of N there is either an infinite
increasing sequence or an infinite decreasing sequence.

‘

5 Sentences

Definition (WKL)

Every infinite {0, 1}-branching tree T C 2<“ has an infinite path.

Definition (ADS)

For every linear ordering < of N there is either an infinite
increasing sequence or an infinite decreasing sequence.

Definition (RT3)

For every coloring ¢ : [N]? — {0, 1} of pairs of integers there is an
infinite set H such that c | [H]? is constant.

‘

5 Sentences

Definition (WKL)

Every infinite {0, 1}-branching tree T C 2<“ has an infinite path.

Definition (ADS)

For every linear ordering < of N there is either an infinite
increasing sequence or an infinite decreasing sequence.

Definition (RT3)

For every coloring ¢ : [N]? — {0, 1} of pairs of integers there is an
infinite set H such that c | [H]? is constant.

Definition (CAC)

For every partial order of N there is either an infinite chain or an
infinite antichain.

n§ Sentences Reductions Non-Implications Non-Reductions

For every set X there exists a set Y such that ¢(X,Y)
holds.

We say that each set X represents an instance of the problem, and
each witnessing Y is a solution to the instance X.

n§ Sentences

We want to compare different problems. A basic question is: does
knowing that Q is solvable imply that P is solvable?

I'I% Sentences Reductions Non-Implications Non-Reductions

We want to compare different problems. A basic question is: does
knowing that Q is solvable imply that P is solvable?

The reverse mathematics version is:
Does T+QHFP?

T is some base theory. For us it is always RCAg, which is a theory
of computable mathematics.

I'I% Sentences Reductions Non-Implications Non-Reductions

Theorem (Hirschfeldt/Shore)
RT3 implies ADS (working in the base theorem RCAy).

Proof.

Let < be a linear ordering of N. Use Ramsey's Theorem for pairs:
define

c(n, m) = 0 if < agreeswith < on (n,m)
/1 if < disagrees with < on (n, m)

Let H be an infinite set such that c is constant on pairs from H. If
c is constantly O then listing H in increasing < order gives an
infinite ascending sequence. If ¢ is constantly 1 then listing H in
increasing < order gives an infinite descending sequence. O

n§ Sentences Reductions on-Impli ons Non-Reductions

Let < be a linear ordering of N. There is a coloring ¢, computable
from <, so that whenever H is homogeneous for ¢ an infinite
monotone sequence for < can be computed from H.

For every instance X of P there is an instance ®(X) of Q such that
whenever Y is a solution to ®(X), W(X, Y) is a solution to X

Reductions

Definition

We say P is strongly Weihrauch reducible to Q if:

For every instance X of P there is an instance ®(X) of Q such that
whenever Y is a solution to ®(X), W(X, Y) is a solution to X
where @, W are computable functionals

To say that P is strongly Weihrauch reducible to Q is much
stronger than saying that RCAg + Q F P.

Reductions on-Imp! s Non-Reductions

To say that P is strongly Weihrauch reducible to Q is much
stronger than saying that RCAg + Q F P.

For example, it could be that RCAy + Q - P because of the
following situation:

For every instance X of P there is an instance ®o(X) of
Q such that whenever Y is a solution to ®o(X) there is
an instance ®1(X,Y) of Q such that whenever Z is a
solution to ®1(X,Y), W(X,Y,Z) is a solution to X.

Reductions Non-Implications Non-Reductions

To say that P is strongly Weihrauch reducible to Q is much
stronger than saying that RCAg + Q F P.

For example, it could be that RCAy + Q - P because of the
following situation:

For every instance X of P there is an instance ®o(X) of
Q such that whenever Yy is a solution to ®o(X) either
Vo (X, Yo) is a solution to X or ®1(X, Yp) is an instance
of Q such that whenvever Y1 is a solution to ®1(X, Yp),
either W1 (X, Yo, Y1) is a solution to X or ®2(X, Yy, Y1)
is an instance of Q such that...

Non-Implications

How can we prove non-implications RCAg + Q I/ P?

Non-Implications

How can we prove non-implications RCAg + Q I/ P?

The usual technique is:
m Fix an instance of P with a known “hardness” property.

Reductions Non-Implications Non-Reductions

How can we prove non-implications RCAg + Q I/ P?

The usual technique is:
m Fix an instance of P with a known “hardness” property. For
instance:
m No low solutions,

m Solutions have measure 0,
m etc

Reductions Non-Implications

How can we prove non-implications RCAg + Q I/ P?

The usual technique is:
m Fix an instance of P with a known “hardness” property. For
instance:
m No low solutions,
m Solutions have measure 0,
m etc
m Show that we can solve an instance of Q in an “easy” way
(low solutions, positive measure solutions, etc.)

Non-Implications

How can we prove non-implications RCAg + Q I/ P?

The usual technique is:
m Fix an instance of P with a known “hardness” property. For
instance:
m No low solutions,
m Solutions have measure 0,
m etc
m Show that we can solve an instance of Q in an “easy” way
(low solutions, positive measure solutions, etc.)

m lteratively solve instances of Q without solving the hard
instance of P.

Reductions Non-Implications Non-Reductions

How can we prove non-implications RCAg + Q I/ P?

The usual technique is:

m Fix an instance of P with a known “hardness” property. For
instance:

m No low solutions,
m Solutions have measure 0,
m etc
m Show that we can solve an instance of Q in an “easy” way
(low solutions, positive measure solutions, etc.)

m lteratively solve instances of Q without solving the hard
instance of P.
Usually the first two steps are the hard part, and iterating is
obvious.

Reductions Non-Implications Non-Reductions

We use this to build a model of RCAy + Q + —P:
m Begin by setting Hp to be the hard instance of P.
m Pick an instance of Q computable from Hy and find an easy
solution Y;. Set Hy = Hy & Y;i.
m Pick an instance of Q computable from H; and find an easy
solution Y5. Set H, = H{ & Y5.
.-

Let H consist of all sets computable from some H,,. This is a model
RCA,. By choosing the instances of Q carefully, we address every
instance in H, so H is a model of Q. H was built from “easy” sets,
so does not contain a solution to the hard instance of P.

Reductions Non-Implications Non-Reductions

There are various situations where we can prove failure of
Weihrauch reducibility, or the stronger failure:
For any computable functional ® there is an instance X
of P such that if &(X) is an instance of Q, there there is
a solution Y to ®(X) such that X @ Y does not
compute any solution to X.

Reductions Non-Implications Non-Reductions

There are various situations where we can prove failure of
Weihrauch reducibility, or the stronger failure:

For any computable functional ® there is an instance X
of P such that if &(X) is an instance of Q, there there is
a solution Y to ®(X) such that X @ Y does not
compute any solution to X.

Note that this is more complicated than the usual diagonalization

because the construction of X is intertwined with the construction
of Y.

Reductions Non-Implications Non-Reductions

Let QF be a forcing notion, given uniformly in oracle X and
functional ®, with a collection of subsets (“requirements”’) RX.
We say q1 > g2 > - - - is generic if for each 7?,2(either:

m Some q; € RY, or
m There is some g; so that whenever g < q;, ¢ & Rff

Reductions Non-Implications Non-Reductions

Let QF be a forcing notion, given uniformly in oracle X and
functional ®, with a collection of subsets (“requirements”’) RX.
We say q1 > g2 > - - - is generic if for each 7?,2(either:

m Some g; € Ré or

m There is some g; so that whenever g < q;, ¢ & Rff

X will be an instance of P and (@fg consists of finite
approximations to a solution of ®(X), together with Mathias
constraints on what future extensions can look like.

Non-Reductions

Suppose that whenever X is an instance of P and g1 > go > --- is
a generic sequence in Qfg:

m g1 > g2+ computes a solution Y to ®(X), but

m X @ (g;) does not compute a solution to X.

Reductions Non-Implications Non-Reductions

Suppose that whenever X is an instance of P and g1 > go > --- is
a generic sequence in Qfg:

m g1 > g2+ computes a solution Y to ®(X), but

m X @ (g;) does not compute a solution to X.

Generic sequences don’t always exist.

Reductions Non-Implications Non-Reductions

Suppose that whenever X is an instance of P and g1 > go > --- is
a generic sequence in Qfg:

m g1 > g2+ computes a solution Y to ®(X), but

m X @ (g;) does not compute a solution to X.

Generic sequences don’t always exist. We can’t expect X to be
just any instance of P—there are probably some instances of P
which have computable solutions.

Reductions on-Impli ons Non-Reductions

Sometimes we can construct an X in such a way that we can
ensure the existence of a generic sequence g1 > g2 > ---. We use
some of our freedom in constructing X to ensure that the generic
sequence exists.

Reductions Non-Implications Non-Reductions

Sometimes we can construct an X in such a way that we can
ensure the existence of a generic sequence g1 > g2 > ---. We use
some of our freedom in constructing X to ensure that the generic
sequence exists.

Then we have shown a non-reducibility result:

There exists an instance X of P and a solution Y to
®(X) (computable from (q;)) so that X @ (q;), and
therefore X ® Y, does not compute a solution to X.

Reductions Non-Implications Non-Reductions

Let Qé’H be a forcing notion, given uniformly in oracles X and H
and a functional ®, with a collection of subsets (“requirements”)
R),;’H. We say g1 > g2 > -- - is generic if for each Rf’H either:

m Some g; € REH or

m There is some g; so that whenever ¢ < g;, g & Rf’H.

Non-Reductions

Suppose that whenever X is an instance of P and g1 > go = -+ is
a generic sequence in Qfg’H:

® g1 > g2+ computes a solution Y to ®(X), but

m X & H® (q;) does not compute a solution to X, and

Reductions Non-Implications Non-Reductions

Suppose that whenever X is an instance of P and g1 > go = -+ is
a generic sequence in Qfg’H:
® g1 > g2+ computes a solution Y to ®(X), but

m X & H® (q;) does not compute a solution to X, and

. . . X, H i
m There exists a generic sequence in Q,’ Bl for every V.

Reductions Non-Implications Non-Reductions

Suppose that whenever X is an instance of P and g1 > go = -+ is
a generic sequence in Qfg’H:
® g1 > g2+ computes a solution Y to ®(X), but

m X & H® (q;) does not compute a solution to X, and

. . . X, H i
m There exists a generic sequence in Q,’ Bl for every V.

Suppose further that there exists an X so that Qé’m contains a
generic sequence.

Non-Reductions

Then we can show RCAy + Q I/ P as follows:

m Let X be an instance of P so that Qf;(’)@ contains a generic
sequence. Set Hy = X.

Reductions Non-Implications Non-Reductions

Then we can show RCAy + Q I/ P as follows:

m Let X be an instance of P so that Qf;(’)@ contains a generic
sequence. Set Hy = X.

m Given H, so that Qé;H" contains a generic sequence (g;), let
Hn+1 = Hn ¥ <q/>

Reductions Non-Implications Non-Reductions

Then we can show RCAy + Q I/ P as follows:

m Let X be an instance of P so that Qf;(’)@ contains a generic
sequence. Set Hy = X.

m Given H, so that Qé;H" contains a generic sequence (g;), let
Hn+1 = Hn @ <q/>

We can consider the model of RCAq containing all sets
computable from some H,. We can ensure that we consider every
instance of Q at some stage n, so this is a model of Q. This model
contains X, but no solution to X, so is a model of —P.

Non-Reductions

= DNR vs. WWKL
[Ambos-Spies/Kjos-Hanssen /Lempp/Slaman]

Reductions Non-Implications Non-Reductions

= DNR vs. WWKL
[Ambos-Spies/Kjos-Hanssen /Lempp/Slaman]

m ADS vs CAC and EM vs SRT3 [Lerman/Solomon/T]

Reductions Non-Implications Non-Reductions

= DNR vs. WWKL
[Ambos-Spies/Kjos-Hanssen /Lempp/Slaman]

m ADS vs CAC and EM vs SRT3 [Lerman/Solomon/T]

m Some principles involving partial orders
[Dzhafarov/Lerman/Solomon]

Reductions Non-Implications Non-Reductions

= DNR vs. WWKL
[Ambos-Spies/Kjos-Hanssen /Lempp/Slaman]

m ADS vs CAC and EM vs SRT3 [Lerman/Solomon/T]

m Some principles involving partial orders
[Dzhafarov/Lerman/Solomon]

m DNR vs. RWKL [Flood/T.] (shown by
Bienvenu/Patey/Shafer using other methods)

Questions

This provides a general technique for leveraging “one-step”
non-reductions into non-implications.

Questions

This provides a general technique for leveraging “one-step”
non-reductions into non-implications.

Question

What kinds of non-reductions does this work on? Are there
meta-theorems showing that certain kinds of non-reductions can
always be generalized like this?

Questions

This provides a general technique for leveraging “one-step”
non-reductions into non-implications.

Question

What kinds of non-reductions does this work on? Are there
meta-theorems showing that certain kinds of non-reductions can
always be generalized like this?

In all known examples the difficult instance of P constructed is
computable and can be constructed using a finite injury priority
argument.

Questions

This provides a general technique for leveraging “one-step”
non-reductions into non-implications.

Question

What kinds of non-reductions does this work on? Are there
meta-theorems showing that certain kinds of non-reductions can
always be generalized like this?

Dzhafarov and Lerman/Solomon/T. have shown non-reductions of
SRT% to RT2, but this method appears not to apply. These
constructions have an infinite injury character.

Reductions Non-Implications Non-Reductions Questions

Infinite injury creates the following obstacle. We are constructing
an instance X of P. We are simultaneously building a generic
sequence g > g2 > - - solving ®o(X), which depends on X. We
are also constructing another generic sequence r; > rp > - -
solving ®1(X, (gi)). When the way (q;) depends on X gets too
complicated, we lose any control over ®1(X, (g;)), which makes it
impossible to ensure that the r; exist.

Reductions Non-Implications Non-Reductions Questions

Infinite injury creates the following obstacle. We are constructing
an instance X of P. We are simultaneously building a generic
sequence g1 > g2 > --- solving ®g(X), which depends on X. We
are also constructing another generic sequence r; > rp > - -
solving ®1(X, (gi)). When the way (q;) depends on X gets too
complicated, we lose any control over ®1(X, (g;)), which makes it
impossible to ensure that the r; exist.

The separation of SRT3 from RT3 by Chong/Slaman/Yang uses a
very similar method to construct a collection of solutions. They
deal with the infinite injury by only solving instances which are low.
This means that the collection of instances which they need to
solve doesn't change: they can replace ®1(X, (g;)) with a
description that depends only on X.

I_\l Sentences Reductions Non-Implications Non-Reductions Questions

Infinite injury creates the following obstacle. We are constructing
an instance X of P. We are simultaneously building a generic
sequence g1 > g2 > --- solving ®g(X), which depends on X. We
are also constructing another generic sequence r; > rp > - -
solving ®1(X, (gi)). When the way (q;) depends on X gets too
complicated, we lose any control over ®1(X, (g;)), which makes it
impossible to ensure that the r; exist.

The separation of SRT3 from RT3 by Chong/Slaman/Yang uses a
very similar method to construct a collection of solutions. They
deal with the infinite injury by only solving instances which are low.
This means that the collection of instances which they need to
solve doesn't change: they can replace ®1(X, (g;)) with a
description that depends only on X.

Unfortunately, this doesn't work over w-models.

Questions

Is there an intrinsic characterization of the generic sequence (q;)?

Questions

Is there an intrinsic characterization of the generic sequence (q;)?

They are Mathias generics of some kind.

Questions

Question

Is there a useful intrinsic characterization of the generic sequence
(gi)?

They are Mathias generics of some kind.

Questions

Question

Is there a useful intrinsic characterization of the generic sequence
(g1)?

They are Mathias generics of some kind.

The separation of RWKL from DNR can be shown both by
iterated forcing and by a more intrinsic characterization (the “no
randomized algorithm” machinery due to Bienvenu/Patay/Shafer).

Questions

The end.

	12 Sentences
	Reductions
	Non-Implications
	Non-Reductions
	Questions

