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Much of reverse math focuses on problems of the following kind:

For every set X there exists a set Y such that φ(X ,Y )
holds.
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Definition (WKL)

Every infinite {0, 1}-branching tree T ⊆ 2<ω has an infinite path.

Definition (ADS)

For every linear ordering ≺ of N there is either an infinite
increasing sequence or an infinite decreasing sequence.

Definition (RT2
2)

For every coloring c : [N]2 → {0, 1} of pairs of integers there is an
infinite set H such that c � [H]2 is constant.

Definition (CAC)

For every partial order @ of N there is either an infinite chain or an
infinite antichain.
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For every set X there exists a set Y such that φ(X ,Y )
holds.

We say that each set X represents an instance of the problem, and
each witnessing Y is a solution to the instance X .
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We want to compare different problems. A basic question is: does
knowing that Q is solvable imply that P is solvable?

The reverse mathematics version is:

Does T + Q ` P?

T is some base theory. For us it is always RCA0, which is a theory
of computable mathematics.
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Theorem (Hirschfeldt/Shore)

RT2
2 implies ADS (working in the base theorem RCA0).

Proof.

Let ≺ be a linear ordering of N. Use Ramsey’s Theorem for pairs:
define

c(n,m) =

{
0 if ≺ agrees with < on (n,m)
1 if ≺ disagrees with < on (n,m)

Let H be an infinite set such that c is constant on pairs from H. If
c is constantly 0 then listing H in increasing < order gives an
infinite ascending sequence. If c is constantly 1 then listing H in
increasing < order gives an infinite descending sequence.
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Let ≺ be a linear ordering of N. There is a coloring c , computable
from ≺, so that whenever H is homogeneous for c an infinite
monotone sequence for ≺ can be computed from H.
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Definition

We say P is strongly Weihrauch reducible to Q if:

For every instance X of P there is an instance Φ(X ) of Q such that
whenever Y is a solution to Φ(X ), Ψ(X ,Y ) is a solution to X

where Φ, Ψ are computable functionals
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We say P is strongly Weihrauch reducible to Q if:
For every instance X of P there is an instance Φ(X ) of Q such that
whenever Y is a solution to Φ(X ), Ψ(X ,Y ) is a solution to X
where Φ, Ψ are computable functionals
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To say that P is strongly Weihrauch reducible to Q is much
stronger than saying that RCA0 + Q ` P.

For example, it could be that RCA0 + Q ` P because of the
following situation:

For every instance X of P there is an instance Φ(X ) of Q
such that whenever Y is a solution to Φ(X ), at least one
of Ψ0(X ,Y ) and Ψ1(X ,Y ) is a solution to X .
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To say that P is strongly Weihrauch reducible to Q is much
stronger than saying that RCA0 + Q ` P.

For example, it could be that RCA0 + Q ` P because of the
following situation:

For every instance X of P there is an instance Φ0(X ) of
Q such that whenever Y is a solution to Φ0(X ) there is
an instance Φ1(X ,Y ) of Q such that whenever Z is a
solution to Φ1(X ,Y ), Ψ(X ,Y ,Z ) is a solution to X .
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To say that P is strongly Weihrauch reducible to Q is much
stronger than saying that RCA0 + Q ` P.

For example, it could be that RCA0 + Q ` P because of the
following situation:

For every instance X of P there is an instance Φ0(X ) of
Q such that whenever Y0 is a solution to Φ0(X ) either
Ψ0(X ,Y0) is a solution to X or Φ1(X ,Y0) is an instance
of Q such that whenvever Y1 is a solution to Φ1(X ,Y0),
either Ψ1(X ,Y0,Y1) is a solution to X or Φ2(X ,Y0,Y1)
is an instance of Q such that...
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How can we prove non-implications RCA0 + Q 6` P?

The usual technique is:

Fix an instance of P with a known “hardness” property.

For
instance:

No low solutions,
Solutions have measure 0,
etc

Show that we can solve an instance of Q in an “easy” way
(low solutions, positive measure solutions, etc.)

Iteratively solve instances of Q without solving the hard
instance of P.

Usually the first two steps are the hard part, and iterating is
obvious.
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We use this to build a model of RCA0 + Q + ¬P:

Begin by setting H0 to be the hard instance of P.

Pick an instance of Q computable from H0 and find an easy
solution Y1. Set H1 = H0 ⊕ Y1.

Pick an instance of Q computable from H1 and find an easy
solution Y2. Set H2 = H1 ⊕ Y2.

· · ·
Let H consist of all sets computable from some Hn. This is a model
RCA0. By choosing the instances of Q carefully, we address every
instance in H, so H is a model of Q. H was built from “easy” sets,
so does not contain a solution to the hard instance of P.



Π1
2 Sentences Reductions Non-Implications Non-Reductions Questions

There are various situations where we can prove failure of
Weihrauch reducibility, or the stronger failure:

For any computable functional Φ there is an instance X
of P such that if Φ(X ) is an instance of Q, there there is
a solution Y to Φ(X ) such that X ⊕ Y does not
compute any solution to X .

Note that this is more complicated than the usual diagonalization
because the construction of X is intertwined with the construction
of Y .
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Let QX
Φ be a forcing notion, given uniformly in oracle X and

functional Φ, with a collection of subsets (“requirements”) RX
e .

We say q1 � q2 � · · · is generic if for each RX
e either:

Some qi ∈ RX
e , or

There is some qi so that whenever q � qi , q 6∈ RX
e .

X will be an instance of P and QX
Φ consists of finite

approximations to a solution of Φ(X ), together with Mathias
constraints on what future extensions can look like.
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Suppose that whenever X is an instance of P and q1 � q2 � · · · is
a generic sequence in QX

Φ :

q1 � q2 · · · computes a solution Y to Φ(X ), but

X ⊕ 〈qi 〉 does not compute a solution to X .

Generic sequences don’t always exist. We can’t expect X to be
just any instance of P—there are probably some instances of P
which have computable solutions.
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Sometimes we can construct an X in such a way that we can
ensure the existence of a generic sequence q1 � q2 � · · · . We use
some of our freedom in constructing X to ensure that the generic
sequence exists.

Then we have shown a non-reducibility result:

There exists an instance X of P and a solution Y to
Φ(X ) (computable from 〈qi 〉) so that X ⊕ 〈qi 〉, and
therefore X ⊕ Y , does not compute a solution to X .
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Let QX ,H
Φ be a forcing notion, given uniformly in oracles X and H

and a functional Φ, with a collection of subsets (“requirements”)

RX ,H
e . We say q1 � q2 � · · · is generic if for each RX ,H

e either:

Some qi ∈ RX ,H
e , or

There is some qi so that whenever q � qi , q 6∈ RX ,H
e .
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Suppose that whenever X is an instance of P and q1 � q2 � · · · is
a generic sequence in QX ,H

Φ :

q1 � q2 · · · computes a solution Y to Φ(X ), but

X ⊕ H ⊕ 〈qi 〉 does not compute a solution to X , and

There exists a generic sequence in QX ,H⊕〈qi 〉
Ψ for every Ψ.

Suppose further that there exists an X so that QX ,∅
Φ contains a

generic sequence.
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Then we can show RCA0 + Q 6` P as follows:

Let X be an instance of P so that QX ,∅
Φ0

contains a generic
sequence. Set H0 = X .

Given Hn so that QX ,Hn

Φn
contains a generic sequence 〈qi 〉, let

Hn+1 = Hn ⊕ 〈qi 〉.

We can consider the model of RCA0 containing all sets
computable from some Hn. We can ensure that we consider every
instance of Q at some stage n, so this is a model of Q. This model
contains X , but no solution to X , so is a model of ¬P.
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DNR vs. WWKL
[Ambos-Spies/Kjos-Hanssen/Lempp/Slaman]

ADS vs CAC and EM vs SRT2
2 [Lerman/Solomon/T.]

Some principles involving partial orders
[Dzhafarov/Lerman/Solomon]

DNR vs. RWKL [Flood/T.] (shown by
Bienvenu/Patey/Shafer using other methods)
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This provides a general technique for leveraging “one-step”
non-reductions into non-implications.

Question

What kinds of non-reductions does this work on? Are there
meta-theorems showing that certain kinds of non-reductions can
always be generalized like this?
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This provides a general technique for leveraging “one-step”
non-reductions into non-implications.

Question

What kinds of non-reductions does this work on? Are there
meta-theorems showing that certain kinds of non-reductions can
always be generalized like this?

In all known examples the difficult instance of P constructed is
computable and can be constructed using a finite injury priority
argument.
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This provides a general technique for leveraging “one-step”
non-reductions into non-implications.

Question

What kinds of non-reductions does this work on? Are there
meta-theorems showing that certain kinds of non-reductions can
always be generalized like this?

Dzhafarov and Lerman/Solomon/T. have shown non-reductions of
SRT2

2 to RT2
2, but this method appears not to apply. These

constructions have an infinite injury character.
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Infinite injury creates the following obstacle. We are constructing
an instance X of P. We are simultaneously building a generic
sequence q1 � q2 � · · · solving Φ0(X ), which depends on X . We
are also constructing another generic sequence r1 � r2 � · · ·
solving Φ1(X , 〈qi 〉). When the way 〈qi 〉 depends on X gets too
complicated, we lose any control over Φ1(X , 〈qi 〉), which makes it
impossible to ensure that the ri exist.

The separation of SRT2
2 from RT2

2 by Chong/Slaman/Yang uses a
very similar method to construct a collection of solutions. They
deal with the infinite injury by only solving instances which are low.
This means that the collection of instances which they need to
solve doesn’t change: they can replace Φ1(X , 〈qi 〉) with a
description that depends only on X .

Unfortunately, this doesn’t work over ω-models.
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Question

Is there an intrinsic characterization of the generic sequence 〈qi 〉?

They are Mathias generics of some kind.

The separation of RWKL from DNR can be shown both by
iterated forcing and by a more intrinsic characterization (the “no
randomized algorithm” machinery due to Bienvenu/Patay/Shafer).
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The end.
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