

Gap-sequences

Jeroen Van der Meeren Joint work with Michael Rathjen and Andreas Weiermann

CTFM - 2014

The theorem of Higman Maximal order type

Introduction: The theorem of Higman

The theorem of Higman Maximal order type

The theorem of Higman

 $(a_1, \ldots, a_n) \rightarrow$ sequences of natural numbers with the following ordering:

The theorem of Higman Maximal order type

The theorem of Higman

 $(a_1, \ldots, a_n) \rightarrow$ sequences of natural numbers with the following ordering:

The theorem of Higman

 $(a_1, \ldots, a_n) \rightarrow$ sequences of natural numbers with the following ordering:

Formally,

$$(a_1, \ldots, a_n) \leq^* (b_1, \ldots, b_m) \iff a_1 \leq b_{i_1}, \ldots a_n \leq b_{i_n},$$

for certain $1 \leq i_1 < i_2 < \cdots < i_n \leq m$.

The theorem of Higman Maximal order type

The theorem of Higman

This ordering can be generalized to an arbitrary partial ordering.

The theorem of Higman

This ordering can be generalized to an arbitrary partial ordering.

Theorem (Higman)

If X is a well-partial-ordering, then X^* is also a well-partial-ordering.

Important theorem in well-partial-ordering theory!

What is a wpo?

What is a wpo?

A well-partial-ordering (wpp) is a partial ordering that is

- well-founded,
- has no infinite antichain.

What is a wpo?

What is a wpo?

A well-partial-ordering (wpp) is a partial ordering that is

- well-founded,
- has no infinite antichain.

Definition

A well-partial-ordering (X, \leq_X) is a partial ordering such that for every infinite sequence x_1, x_2, \ldots of elements in X, indices i < jexists such that $x_i \leq_X x_j$.

The theorem of Higman Maximal order type

The theorem of Higman

Theorem (Higman)

If X is a well-partial-ordering, then X^* is also a well-partial-ordering.

$$(a_1^1, \ldots, a_{n_1}^1), \ldots, (a_1^k, \ldots, a_{n_k}^k), \ldots, (a_1^l, \ldots, a_{n_l}^l), \ldots$$

The theorem of Higman Maximal order type

The theorem of Higman

Theorem (Higman)

If X is a well-partial-ordering, then X^* is also a well-partial-ordering.

 $(a_1^1, \ldots, a_{n_1}^1), \ldots, (a_1^k, \ldots, a_{n_k}^k), \ldots, (a_1^l, \ldots, a_{n_l}^l), \ldots$

The theorem of Higman Maximal order type

Gap-sequences Gap-sequences and the theta-functions

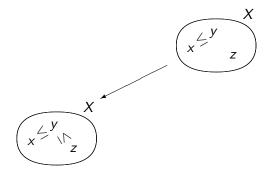
Introduction: Maximal order type

Gap-sequences Gap-sequences and the theta-functions

The theorem of Higman Maximal order type

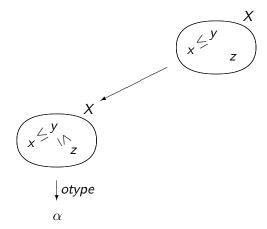
Gap-sequences Gap-sequences and the theta-functions

The theorem of Higman Maximal order type



Gap-sequences Gap-sequences and the theta-functions

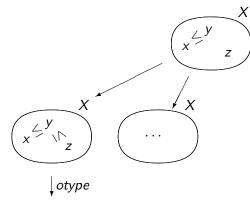
The theorem of Higman Maximal order type



Gap-sequences Gap-sequences and the theta-functions

The theorem of Higman Maximal order type

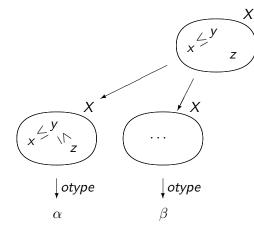
Maximal order type



 α

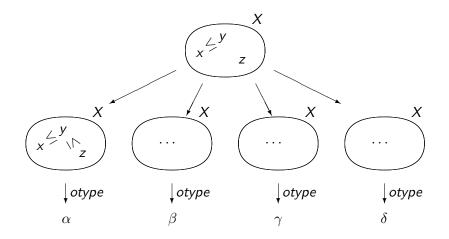
Gap-sequences Gap-sequences and the theta-functions

The theorem of Higman Maximal order type



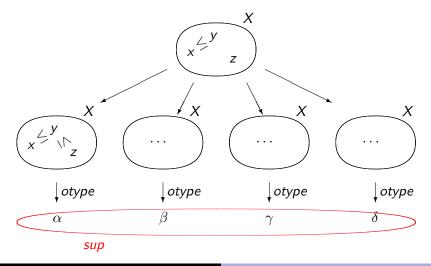
Gap-sequences Gap-sequences and the theta-functions

The theorem of Higman Maximal order type



Gap-sequences Gap-sequences and the theta-functions

The theorem of Higman Maximal order type



The theorem of Higman Maximal order type

Higman ordering

Theorem (De Jongh & Parikh; D. Schmidt)

If X is a well-partial-ordering, then

$$o(X^*) = \begin{cases} \omega^{\omega^{o(X)+1}} & \text{if } o(X) \text{ is equal to } e+n \\ & \text{with } e \text{ an epsilon number and } n < \omega, \\ \omega^{\omega^{o(X)-1}} & \text{if } o(X) \text{ is finite,} \\ \omega^{\omega^{o(X)}} & \text{otherwise.} \end{cases}$$

Definition Results of Schütte-Simpson

Gap-sequences: Definition

Theorem (Higman)

If X is a wpo, then (X^*, \leq^*) is a wpo.

Theorem (Higman)

If X is a wpo, then
$$(X^*,\leq^*)$$
 is a wpo.

Hence,

Theorem

Let
$$S = \mathbb{N}^*$$
, then (S, \leq^*) is a wpo.

$$o(S,\leq^*)=\omega^{\omega^\omega}.$$

Theorem (Higman)

If X is a wpo, then
$$(X^*, \leq^*)$$
 is a wpo.

Hence,

Theorem

Let
$$S = \mathbb{N}^*$$
, then (S, \leq^*) is a wpo.

$$o(S,\leq^*)=\omega^{\omega^\omega}.$$

Now, define a different kind of ordering on S
ightarrow the gap-ordering.

Adding more strength to the statement!

Definition Results of Schütte-Simpson

Gap-sequences: definition

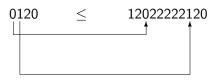
 $0120 \leq 12022222120$

Definition Results of Schütte-Simpson

Gap-sequences: definition

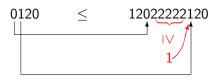
Definition Results of Schütte-Simpson

Gap-sequences: definition



Definition Results of Schütte-Simpson

Gap-sequences: definition



Definition Results of Schütte-Simpson

Gap-sequences: definition

Definition

$$\begin{array}{l} (a_1, \ldots, a_n) \leq_{gap}^w (b_1, \ldots, b_m) \\ \Leftrightarrow \\ \exists 1 \leq i_1 < \cdots < i_n \leq m \text{ such that } a_j = b_{i_j} \text{ for all } j, \text{ and} \\ \text{ for all } k, \text{ if } i_1 < k < i_2 \text{ then } b_k \geq b_{i_2}, \\ \ldots \\ \text{ for all } k, \text{ if } i_{m-1} < k < i_m \text{ then } b_k \geq b_{i_m}. \end{array}$$

Definition Results of Schütte-Simpson

Gap-sequences: definition

Definition

$$\begin{array}{l} \exists 1, \dots, a_n \end{pmatrix} \leq_{gap}^{s} (b_1, \dots, b_m) \\ \Leftrightarrow \\ \exists 1 \leq i_1 < \dots < i_n \leq m \text{ such that } a_j = b_{i_j} \text{ for all } j, \text{ and} \\ \text{ for all } k, \text{ if } k < i_1, \text{ then } b_k \geq b_{i_1}, \\ \text{ for all } k, \text{ if } i_1 < k < i_2, \text{ then } b_k \geq b_{i_2}, \\ \dots \\ \text{ for all } k, \text{ if } i_{m-1} < k < i_m, \text{ then } b_k \geq b_{i_m}. \end{array}$$

WHY interesting?

• Giving more 'strength' to the statement: '... is a wpo'.

WHY interesting?

- Giving more 'strength' to the statement: '... is a wpo'.
- Linearized version of the gap-trees.

Theorem (Friedman, 1982)

 Π_1^1 -CA₀ $\nvDash \forall n < \omega$ ' \mathbb{T}_n^{gap} is a wpo'.

WHY interesting?

- Giving more 'strength' to the statement: '... is a wpo'.
- Linearized version of the gap-trees.

Theorem (Friedman, 1982)

 Π_1^1 -CA₀ $\nvDash \forall n < \omega$ ' \mathbb{T}_n^{gap} is a wpo'.

• Studied in 1985 by Schütte and Simpson

Definition Results of Schütte-Simpson

Gap-sequences: Already known results

Results of Schütte-Simpson (1985)

Definition

 \mathcal{S}_n is the set of finite sequences of natural numbers < n.

Results of Schütte-Simpson (1985)

Definition

 \mathcal{S}_n is the set of finite sequences of natural numbers < n.

Theorem (Friedman, Schütte-Simpson)

For every n, (S_n, \leq_{gap}^w) and (S_n, \leq_{gap}^s) are wpo's.

Denote them as S_n^w and S_n^s

Results of Schütte-Simpson (1985)

Definition

 \mathcal{S}_n is the set of finite sequences of natural numbers < n.

Theorem (Friedman, Schütte-Simpson)

For every n,
$$(S_n, \leq_{gap}^w)$$
 and (S_n, \leq_{gap}^s) are wpo's.

Denote them as S_n^w and S_n^s

Theorem (Schütte-Simpson)

 $ACA_0 \not\vdash \forall n \ 'S_n^w \text{ is a wpo'.}$

Results of Schütte-Simpson (1985)

Definition

 \mathcal{S}_n is the set of finite sequences of natural numbers < n.

Theorem (Friedman, Schütte-Simpson)

For every n,
$$(S_n, \leq_{gap}^w)$$
 and (S_n, \leq_{gap}^s) are wpo's.

Denote them as S_n^w and S_n^s

Theorem (Schütte-Simpson)

 $ACA_0 \not\vdash \forall n \ `S_n^w \text{ is a wpo'.}$

Theorem (Schütte-Simpson)

For every n: $ACA_0 \vdash S_n^w$ is a wpo'.

Results of Schütte-Simpson

They also have results on the maximal order types!

Theorem (Schütte-Simpson)

 $o(S^s_{n+1}) = o(S^s_n \times (S^s_n)^*)$

Results of Schütte-Simpson

They also have results on the maximal order types!

Theorem (Schütte-Simpson)

 $o(S^s_{n+1}) = o(S^s_n \times (S^s_n)^*)$

Theorem

 $o(S_{n+1}^w) = o(\overline{S_{n+1}^s})$, where $\overline{S_{n+1}^s}$ are the sequences starting with zero with the strong gap-embeddability relation.

Hence,

Theorem

$$o(S_{n+1}^w) = o((S_n^s)^*)$$

Introduction	Gap-sequences and the theta-functions
Gap-sequences	Gap-sequences with two labels
Gap-sequences and the theta-functions	Gap-sequences with more than two labels

Gap-sequences and the theta-functions

$0110 \leq^w_{gap} 01110$

 $0110 \leq_{gap}^{w} 01110$

 $heta_0 heta_1 heta_1(0)\leq heta_0 heta_1 heta_1(0)$

 $0110 \leq^w_{gap} 01110$

 $01010 \leq_{gap}^{w} 0100100$

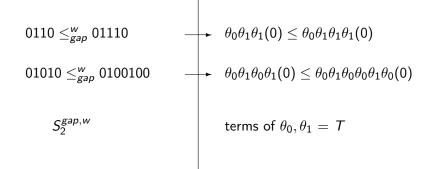
 $heta_0 heta_1 heta_1(0)\leq heta_0 heta_1 heta_1(0)$

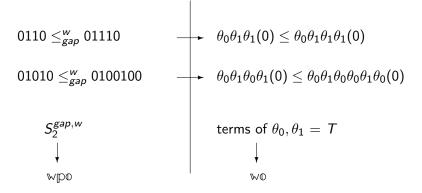
 $0110 \leq^w_{gap} 01110$

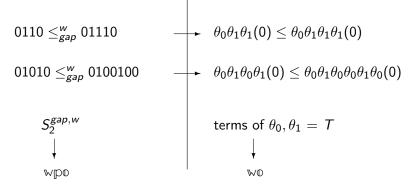
 $01010 \leq_{gap}^{w} 0100100$

 $heta_0 heta_1 heta_1(0)\leq heta_0 heta_1 heta_1(0)$

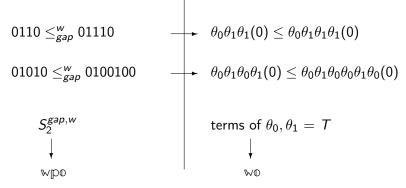
$$heta_0 heta_1 heta_0 heta_1(0)\leq heta_0 heta_1 heta_0 heta_0 heta_0(0)$$







So T is a *linear extension* of the gap-sequences!



So T is a *linear extension* of the gap-sequences! Is it a **maximal linear extension**? Meaning: is $otype(T) = mot(S_2^{gap,w})$?

$\ensuremath{\mathcal{T}}$ is the set of the well-defined theta-terms, meaning

Definition

- **1** $0 \in T$ and S(0) = 0,
- **2** $\alpha \in T$, then $\theta_i \alpha \in T$.

T is the set of the well-defined theta-terms, meaning

Definition

- **1** $0 \in T$ and S(0) = 0,
- **2** $\alpha \in T$, then $\theta_i \alpha \in T$.

However, $\theta_0(\theta_2(0))$ is not defined.

$\ensuremath{\mathcal{T}}$ is the set of the well-defined theta-terms, meaning

Definition

1
$$0 \in T$$
 and $S(0) = 0$

2
$$\alpha \in T$$
, $S(\alpha) \leq i+1$, then $\theta_i \alpha \in T$ and $S(\theta_i \alpha) := i$

${\cal T}$ is the set of the well-defined theta-terms, meaning

Definition 1 $0 \in T$ and S(0) = 0**2** $\alpha \in T$, $S(\alpha) \leq i + 1$, then $\theta_i \alpha \in T$ and $S(\theta_i \alpha) := i$

Set of 'coefficients':

Definition

 $K_1(\theta_2\theta_3\theta_2\theta_0\theta_1(0))=\theta_0\theta_1(0).$

We define the following ordering on it

Definition

$$0 < \alpha, \text{ for all } \alpha \neq 0$$

$$\begin{array}{l} \textcircled{2} \quad i < j \text{ implies } \theta_i(\alpha) < \theta_j(\beta) \\ \alpha < \beta \text{ and } K_i(\alpha) < \theta_i(\beta) \\ \textcircled{3} \quad \text{or} \\ \alpha > \beta \text{ and } \theta_i(\alpha) \le K_i(\beta) \end{array} \right\} \Rightarrow \theta_i(\alpha) < \theta_i(\beta) \end{array}$$

Back to our question: gap-sequences with two labels

Are the theta-functions a maximal linear extension of the gap-sequences on two labels? Meaning:

Is
$$\sup_{n_1,...,n_k} \theta_0 \theta_1^{n_1} \dots \theta_0 \theta_1^{n_k}(0)$$

 $\stackrel{?}{=} o(S_2^{gap,w})$
 $= \omega^{\omega^{\omega}}$

Back to our question: gap-sequences with two labels

Are the theta-functions a maximal linear extension of the gap-sequences on two labels? Meaning:

Is
$$\sup_{n_1,\ldots,n_k} \theta_0 \theta_1^{n_1} \ldots \theta_0 \theta_1^{n_k}(0)$$

 $\stackrel{?}{=} o(S_2^{gap,w})$
 $= \omega^{\omega^{\omega}}$

YES!

Introduction Gap-sequences Gap-sequences and the theta-functions Gap-sequences and the theta-functions Gap-sequences with two labels Gap-sequences with more than two labels

Sketch of proof

Is
$$\theta_0 \theta_1 \Omega_2 = \omega^{\omega^{\omega}}$$
?

Sketch of proof

s
$$\theta_0 \theta_1 \Omega_2 = \omega^{\omega^{\omega}}$$
?

Proofsketch:

 $\chi : \qquad \omega^{\omega^{\omega}} \to \qquad \theta_0 \theta_1 \Omega_2$ $\omega^{\omega^{n-1} \cdot m} \cdot \alpha_m + \dots + \omega^{\omega^{n-1} \cdot 0} \cdot \alpha_0 \quad \mapsto \quad \theta_0 \theta_1^n \chi(\alpha_0) \dots \theta_0 \theta_1^n \chi(\alpha_m)$ $\alpha < \beta \text{ yields } \chi(\alpha) < \chi(\beta), \text{ by induction on } lh(\alpha) + lh(\beta).$

Back to our question: gap-sequences with **more** than two labels

Are the theta-functions a maximal linear extension of the gap-sequences on three labels? Meaning:

Back to our question: gap-sequences with **more** than two labels

Are the theta-functions a maximal linear extension of the gap-sequences on three labels? Meaning:

NO!

Introduction	Gap-sequences and the theta-functions
Gap-sequences	Gap-sequences with two labels
Gap-sequences and the theta-functions	Gap-sequences with more than two labels

Result

In general

Theorem

$$\theta_0(\Omega_1) = \omega,$$

 $\theta_0 \theta_1 \dots \theta_n \Omega_{n+1} = \omega_{n+2}, \text{ for } n \ge 1.$

Introduction Gap-sequences and the theta-functions Gap-sequences with two labels Gap-sequences with more than two labels

Sketch of proof

 $\theta_0 \theta_1 \dots \theta_n \Omega_{n+1} \leq \omega_{n+2}$

Sketch of proof

 $\theta_0 \theta_1 \dots \theta_n \Omega_{n+1} \leq \omega_{n+2}$

Definition

 $f(\omega^{\alpha_1} + \alpha_2) := \omega^{\alpha_1} + f(\alpha_1) + f(\alpha_2)$

Sketch of proof

 $\theta_0 \theta_1 \dots \theta_n \Omega_{n+1} \leq \omega_{n+2}$

Definition

$$f(\omega^{\alpha_1} + \alpha_2) := \omega^{\alpha_1} + f(\alpha_1) + f(\alpha_2)$$

- f is order preserving,
- $\omega^{lpha_1} \leq f(\omega^{lpha_1}+lpha_2) < \omega^{lpha_1+1}$,
- f(ω^{α1} + α2) = ω^{α1} + f(α1) + f(α2) holds for non Cantor normal forms.

Idea of proof

Replace iteratively terms in θ_i (starting with the highest level) by terms in $\omega, +, \Omega_i$ in an order-preserving way such that terms of level 0 are below ε_0 .

Idea of proof

Replace iteratively terms in θ_i (starting with the highest level) by terms in $\omega, +, \Omega_i$ in an order-preserving way such that terms of level 0 are below ε_0 .

Idea:

 τ_i reduces $T_{\leq i} = \{t \in T: \text{ only using } \theta_j \text{ with } j \leq i\}$ to $(T_{< i}, \omega, +)$.

$$\begin{aligned} \tau_i 0 &:= 0, \\ \tau_i \theta_j \alpha &:= \theta_j \alpha \text{ if } j < i, \end{aligned}$$

$$\begin{aligned} \tau_i 0 &:= 0, \\ \tau_i \theta_j \alpha &:= \theta_j \alpha \text{ if } j < i, \end{aligned}$$

What about $\tau_i \theta_i \alpha$?

$$\begin{aligned} \tau_i 0 &:= 0, \\ \tau_i \theta_j \alpha &:= \theta_j \alpha \text{ if } j < i, \end{aligned}$$

What about $\tau_i \theta_i \alpha$? Assume

$$\tau_{i+1}\alpha := \Omega_{i+1}\alpha_1 + \omega^{f(\alpha_1)} \mathcal{K}_i(\alpha) + \alpha_2,$$

with $\alpha_2 < \omega^{f(\alpha_1)}$ and $\omega^{f(\alpha_1)}, \alpha_1 < \varepsilon_0.$

$$\begin{aligned} \tau_i 0 &:= 0, \\ \tau_i \theta_j \alpha &:= \theta_j \alpha \text{ if } j < i, \end{aligned}$$

What about $\tau_i \theta_i \alpha$? Assume

$$\tau_{i+1}\alpha := \Omega_{i+1}\alpha_1 + \omega^{f(\alpha_1)} K_i(\alpha) + \alpha_2,$$

with $\alpha_2 < \omega^{f(\alpha_1)}$ and $\omega^{f(\alpha_1)}, \alpha_1 < \varepsilon_0$. Define (if i > 0)

$$\tau_i \theta_i \alpha := \Omega_i \omega^{\alpha_1} + \omega^{\omega^{\alpha_1}} \left(\omega^{f(\alpha_1)} \cdot \tau_i K_i \alpha + \alpha_2 \right)$$

Define (if i = 0)

$$\tau_i \theta_i \alpha := \omega^{\omega^{\alpha_1}} \left(\omega^{f(\alpha_1)} \cdot \tau_i \mathsf{K}_i \alpha + \alpha_2 \right) + 1$$

$$\begin{aligned} \tau_i 0 &:= 0, \\ \tau_i \theta_j \alpha &:= \theta_j \alpha \text{ if } j < i, \end{aligned}$$

What about $\tau_i \theta_i \alpha$? Assume

$$\tau_{i+1}\alpha := \Omega_{i+1}\alpha_1 + \omega^{f(\alpha_1)} K_i(\alpha) + \alpha_2,$$

with $\alpha_2 < \omega^{f(\alpha_1)}$ and $\omega^{f(\alpha_1)}, \alpha_1 < \varepsilon_0$. Define (if i > 0)

$$\tau_i\theta_i\alpha := \Omega_i\omega^{\alpha_1} + \omega^{\omega^{\alpha_1}} \left(\omega^{f(\alpha_1)} \cdot \tau_i K_i \alpha + \alpha_2\right)$$

Define (if i = 0)

$$\tau_{i}\theta_{i}\alpha := \omega^{\omega^{\alpha_{1}}}\left(\omega^{f(\alpha_{1})}\cdot\tau_{i}\mathsf{K}_{i}\alpha + \alpha_{2}\right) + 1$$

One can prove that $\alpha < \beta$ implies $\tau_i \alpha < \tau_i \beta$.

 \rightarrow We have such collapsing functions $\overline{\theta}_i \alpha \beta$.

Thank you for your attention!

Jeroen Van der Meeren Ghent University jvdm@cage.ugent.be