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Basics of Ramsey Theory

[X ]r is the set of r -element subsets of X .

A c-coloring is a function with range contained in c = {0, 1, . . . , c − 1}.

If a coloring f is constant on [H]r then H is homogeneous for f .

Theorem (Ramsey)
For every finite r and c, every f : [ω]r → c admits an infinite
homogeneous set.

RTr
c : the instance of Ramsey’s Theorem for fixed r , c .

A 2-coloring f of pairs is stable iff limy f (x , y) exists for all x .

SRT2
2: RT2

2 for stable 2-colorings of pairs.



A Decomposition of Ramsey’s theorem for pairs

ADS: Every infinite linear ordering has an ascending or descending
sequence (i.e., a subordering of type ω or ω∗ – the reverse ordering of ω).

A 2-coloring of [ω]2 can be identified as a binary relation on ω (so-called
tournament). EM (Erős-Moser) asserts that every tournament R has an
infinite set H on which R is transitive (So, R is a linear ordering on H).

Theorem (Bovykin and Weiermann)
RCA0 ` RT2

2 ↔ EM + ADS.

Theorem (Hirschfeldt and Shore)
RCA0 + ADS 6` RT2

2.

Theorem (Lerman, Solomon and Towsner)
RCA0 + EM 6` RT2

2.
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An Observation of Jockusch

A stable linear odering is a subordering of ω + ω∗.

Theorem (Jockusch; Harizanov)
For every (Turing) degree d ≤ 0′, there exist D ∈ d and a recursive
stable linear ordering <L s.t. D is the ω-part of <L.

Theorem (Hirschfeldt and Shore)
For every recursive stable linear ordering <L, there exists a sequence
S = (an : n < ω) s.t. S is of low degree and S is either <L-ascending or
<L-descending.

Corollary (Jockusch)
Every degree below the halting problem is of recursively enumerable
degree relative to a low degree.

Proof.
If S is an <L-ascending sequence then the ω-part of <L is recursively
enumerable in S .
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Preserving Properly ∆0
2 Definitions

A set X preserves (properly) ∆0
2 definitions (relative to Y ) iff every

properly ∆0
2 (∆Y

2 ) set is properly ∆X
2 (∆X⊕Y

2 ).

Suppose that Φ = ∀X∃Yϕ(X ,Y ) and ϕ is arithmetic. Φ admits
preservation of ∆0

2 definitions iff for each X there exists Y s.t. Y
preserves ∆0

2 definitions relative to X and ϕ(X ,Y ).

SADS: every stable linear ordering admits an infinite ascending or
descending sequence.

Corollary
Neither SADS nor SRT2

2 admits preservation of ∆0
2 definitions.
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WKL0

Theorem (Folklore)
Let X and (Ai : i < ω) be s.t. Ai 6∈ ΣX

1 for all i . Then every non-empty
ΠX

1 class contains a member G s.t. Ai 6∈ ΣX⊕G
1 for all i .

Thus, WKL0 admits preservation of ∆0
2 definitions.

So we have an alternative proof of the following corollary:

Corollary (Hirschfeldt and Shore)
RCA0 + WKL0 6` SADS.
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COH

COH: every sequence ~R = (Rn : n < ω) of subsets of ω admits a cohesive
set C (i.e., C is infinite and for every n either C ∩ Rn or C − Rn is finite).

Theorem (WW)
COH admits preservation of ∆0

2 definitions.

A Mathias condition is a pair (σ,X ) ∈ [ω]<ω × [ω]ω s.t. maxσ < min X .
We identify (σ,X ) with the following set:

{Y : σ ⊂ Y ⊆ σ ∪ X}.

Lemma
Fix A and (σ,X ) with A 6∈ ΣX

1 . For every e there exists (τ,Y ) ⊆ (σ,X )
s.t. X − Y is finite and A 6= W Z

e for all Z ∈ (τ,Y ).

Corollary (Hirschfeldt and Shore)
RCA0 + WKL0 + COH 6` SADS.
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EM

Theorem (WW)
EM admits preservation of ∆0

2 definitions.

So we obtain an alternative proof of the following:

Theorem (Lerman, Solomon and Towsner)
RCA0 + EM 6` SADS.

Corollary
The Σ1

1-theories of RCA0 + EM and RCA0 + SADS are incomparable.

E.g., the following Σ1
1 sentence is a consequence of RCA0 + SADS but

not of RCA0 + EM:

every recursive stable linear ordering admits an infinite
ascending or descending sequence.
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SEM

A tournament R is stable iff it is induced by a stable 2-coloring of pairs.

SEM: EM for stable tournaments.

With the preservation theorem of COH, the preservation theorem of EM
can be reduced to the following preservation lemma of SEM:

Lemma
SEM admits preservation of ∆0

2 definitions.

Below we sketch a proof of the above lemma.



SEM

A tournament R is stable iff it is induced by a stable 2-coloring of pairs.

SEM: EM for stable tournaments.

With the preservation theorem of COH, the preservation theorem of EM
can be reduced to the following preservation lemma of SEM:

Lemma
SEM admits preservation of ∆0

2 definitions.

Below we sketch a proof of the above lemma.



SEM

A tournament R is stable iff it is induced by a stable 2-coloring of pairs.

SEM: EM for stable tournaments.

With the preservation theorem of COH, the preservation theorem of EM
can be reduced to the following preservation lemma of SEM:

Lemma
SEM admits preservation of ∆0

2 definitions.

Below we sketch a proof of the above lemma.



SEM
Compatibility

Fix a recursive stable tournament R. Let f : ω → 2 be as following:

f (x) =

{
0, (∀∞y)(xRy);
1, (∀∞y)(yRx).

If H is R-transitive, then R � [H]2 is a stable linear ordering.

For a ∈ H, if f (a) = 0 then a belongs to the ω-part, otherwise a belongs
to the ω∗-part.

So, σ ∈ [ω]<ω can be extended to an infinite R-transitive set, iff σ is
R-transitive and

aRb ⇔ f (a) ≤ f (b)

for all a, b ∈ σ (R and f are compatible on σ).
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SEM
Acceptable Mathias conditions

A Mathias condition (σ,X ) is acceptable, iff σ〈x〉 is R-transitive and R
and f are compatible on σ〈x〉 for all x ∈ X and

(∀a ∈ σ)(∀x ∈ X )((f (a) = 0→ aRx) ∧ (f (a) = 1→ xRa)).

Lemma
If (σ,X ) is acceptable then there exists an acceptable (τ,Y ) ⊆ (σ,X ) s.t.
|σ| < |τ | and X − Y is finite.

Proof.
Let τ = σ〈x〉 for x = min X .

Let Y be the only infinite set among the following two sets:

X0 = {y ∈ X : xRy},X1 = {y ∈ X : yRx}.
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SEM
The key lemma ...

Lemma
Suppose that (σ,X ) is acceptable and (Ai : i < ω) is s.t. Ai 6∈ ΣX

1 for all
i . For every e and k there exists an acceptable (τ,Y ) ⊆ (σ,X ) s.t.
Ai 6∈ ΣY

1 for all i and Ak 6= W Z
e for all R-transitive Z ∈ (τ,Y ).

Let F be the set of g : ω → 2 s.t. R and g are compatible on σ〈x〉 for
all x ∈ X . So, F is ΠX

1 and f ∈ F .

Let W be the set of n s.t. for all g ∈ F there exists ξ ∈ [X ]<ω satisfying

I σξ is R-transitive;

I R and g are compatible on σξ;

I n ∈W σξ
e .

By the compactness of F , W ∈ ΣX
1 and so W 6= Ak . Fix n ∈ Ak 4W .
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SEM
The key lemma: Case 1

Case 1. n ∈ Ak −W .

Let U be the set of g ∈ F s.t. if ξ ∈ [X ]<ω, σξ is R-transitive and R and
g are compatible on σξ then n 6∈W σξ

e . Then U 6= ∅ and U ∈ ΠX
1 .

By the preservation of WKL0, pick g ∈ U with Ai 6∈ ΣX⊕g
1 for all i .

Let Y be X ∩ g−1(j) s.t. X ∩ g−1(j) is infinite.

(σ,Y ) is acceptable as (σ,X ) is acceptable and Y ⊆ X .

As Y ≤T X ⊕ g and Ai 6∈ ΣX⊕g
1 , Ai 6∈ ΣY⊕g

1 .

If Z ∈ (σ,Y ) then R and g are compatible on Z . So, n 6∈W Z
e for all

R-transitive Z ∈ (σ,Y ).

So, (σ,Y ) is a desirable extension.
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Let Y be X ∩ g−1(j) s.t. X ∩ g−1(j) is infinite.

(σ,Y ) is acceptable as (σ,X ) is acceptable and Y ⊆ X .

As Y ≤T X ⊕ g and Ai 6∈ ΣX⊕g
1 , Ai 6∈ ΣY⊕g

1 .

If Z ∈ (σ,Y ) then R and g are compatible on Z . So, n 6∈W Z
e for all

R-transitive Z ∈ (σ,Y ).

So, (σ,Y ) is a desirable extension.
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The key lemma: Case 2

Case 2. n ∈W − A.

Fix ξ ∈ [X ]<ω s.t. σξ is R-transitive, R and f are compatible on σξ and
n ∈W σξ

e .

Let τ = σξ. As τ is R-transitive, it can be listed in R-ascending order:

a0Ra1R . . .Rak−1, k = |τ |.

Let

X0 = {x ∈ X : x > max τ, xRa0},
Xi = {x ∈ X : x > max τ, ai−1RxRai}(0 < i < k),

Xk = {x ∈ X : x > max τ, ak−1Rx}.

Let Y be the unique infinite Xi . Then (τ,Y ) is as desired.
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FS2

A set H is free for f : [ω]r → ω iff f (σ) 6∈ H − σ for all σ ∈ [H]r ; a set G
is thin for f iff f ([G ]r ) 6= ω.

FSr (TSr ): every f : [ω]r → ω admits an infinite free (thin) set.

Theorem (H. Friedman; Cholak, Giusto, Hirst and Jockusch)
RCA0 ` RTr

2 → FSr
2 → TSr

2

Theorem (WW)
Every recursive f : [ω]2 → ω admits an infinite free set preserving ∆0

2

definitions.

Theorem (WW)
(RCA0) The Σ1

1-theories of FS2 (TS2) and SADS are incomparable. Thus
FS2 (TS2) is strictly weaker than RT2

2.
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Free Sets for Arbitrary Functions

To prove the preservation theorem for FS2, it suffices to combine the
preservation theorem for cohesive sets and the following theorem.

Theorem
Every f : ω → ω admits an infinite free set preserving ∆0

2 definitions.

The above theorem can be reduced to the following:

Lemma

1. If X is Martin-Löf random relative to f : ω → ω s.t. f (x) ≥ x for all
x, then X computes an infinite free set for f ;

2. Every f : ω → ω s.t. f (x) ≤ x for all x admits an infinite free set
preserving ∆0

2 definitions.
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Free Sets for Arbitrary Regressive Functions

Lemma
Every f : ω → ω s.t. f (x) ≤ x for all x admits an infinite free set
preserving ∆0

2 definitions.

Proof.
If there exists an infinite X s.t. X preserves ∆0

2 definitions and f (X ) is
finite, then X − b is f -free for some b.

Suppose that there is no such X . If (σ,X ) is a Mathias condition s.t. σ
is f -free and X preserves ∆0

2 definitions, then σ can be extended to an
infinite f -free Y ∈ (σ,X ). With this simple but useful observation, we
can build a free set, by forcing with conditions (σ0, σ1,X ) s.t.

1. (σi ,X ) is a Mathias condition;

2. σi is f -free and σ0 ∩ σ1 = ∅ (as sets);

3. X preserves ∆0
2 definitions.
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Climbing up the Arithmetic Hierarchy
Preserving the arithmetic hierarchy

A set X preserves (properly) Ξ-definitions (relative to Y ) for Ξ among
∆0

n+1,Π
0
n,Σ

0
n where n > 0, iff every properly Ξ (ΞY ) set is properly ΞX

(ΞX⊕Y ).

X preserves the arithmetic hierarchy (relative to Y ) iff X preserves
Ξ-definitions (relative to Y ) for all Ξ among ∆0

n+1,Π
0
n,Σ

0
n where n > 0.

Proposition (Folklore)
If G is sufficiently Cohen generic (Martin-Löf random) then G preserves
the arithmetic hierarchy.

Suppose that Φ = ∀X∃Yϕ(X ,Y ) and ϕ is arithmetic. Φ admits
preservation of the arithmetic hierarchy iff for each X there exists Y s.t.
Y preserves the arithmetic hierarchy relative to X and ϕ(X ,Y ).

Corollary
These statements admit preservation of the arithmetic hierarchy: RRT2

2,
WWKL0, Π0

1 G, AMT, OPT.
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Climbing up the Arithmetic Hierarchy
WKL0

Theorem (WW)
WKL0 admits preservation of the arithmetic hierarchy.

Proof.
Let T be a recursive infinite binary tree. We build a desired G ∈ [T ] by
forcing with primitively recursive subtrees of T : S ∈ P iff S is an infinite
binary tree of the following form

S = T ∩ R

where R is a primitively recursive subset of 2<ω.

We define S  ϕ for arithmetic ϕ as usual. For n > 0, it can be shown
that S  ϕ is Σ0

n (Π0
n) definable if ϕ is a Σ0

n (Π0
n) sentence.
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Climbing up the Arithmetic Hierarchy
RT2

2

We know that RT2
2 does not admit preservation of ∆0

2 definitions as it is
stronger than SADS.

Theorem (WW)
RT2

2 admits preservation of Ξ definitions for Ξ among Σ0
n+1,Π

0
n+1,∆

0
n+2

where n > 0.

Proof.
By relativizing the last preservation theorem of WKL0, we get P s.t. P is
PA over ∅′ and every properly Ξ∅

′
set is properly ΞP for Ξ among

Σ0
n,Π

0
n,∆

0
n+1 where n > 0.

By a theorem of Cholak, Jockusch and Slaman, every recursive 2-coloring
of pairs admits an infinite homogeneous set H with H ′ ≤T P. Hence for
n > 0 and Ξ among Σ0

n+1,Π
0
n+1,∆

0
n+2, every properly Ξ set is properly

ΞH .
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Questions

1. Are there other combinatorial principles which admit preservation of
the arithmetic hierarchy? E.g., does every uniformly recursive
(Rn : n < ω) admit a cohesive set which preserves the arithmetic
hierarchy?

2. How can we exploit such preservation? Does it lead to any deeper
metamathematical consequences?
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