Finite iterations of infinite and finite Ramsey's theorem

Keita Yokoyama

Japan Advanced Institute of Science and Technology

CTFM 2014, February 18, 2013

Outline

- Iteration of Finite Ramsey vs Infinite Ramsey
 - Finite coloring and density notion
 - Conservation and separation
- 3 A strengthened Ramsey's theorem
 - A strengthened Ramsey's theorem
 - Finite iteration
 - A stronger version of ACA[']₀

Independent statements from PA

It is well-known that several finite variations of Ramsey's theorem provide independent statements from Peano Arithmetic (PA).

- The first such example was found by Paris (in paper 1978). An "iteration versin of Finite Ramsey's theorem with relatively largeness".
- A simplification by Harrington (in manuscript 1977). "Paris-Harrington Principle: Finite Ramsey's theorem with relatively largeness".

Note that the original "iteration version" has the advantage:

it can approximate the infinite version of Ramsey's theorem.

Introduction

Iteration of Finite Ramsey vs Infinite Ramsey A strengthened Ramsey's theorem

Infinite vs finite Ramsey's theorem

Observation

Infinite Ramsey's theorem implies corresponding finite Ramsey's theorem (with some largeness notion).

However,

Fact

Infinite Ramsey's theorem as itself cannot prove the statement "for any m, m-th iteration of finite Ramsey's theorem holds".

This happens because of the lack of Σ_1^1 -induction, but infinite Ramsey's theorem as itself does not prove such a strong induction.

Introduction

Iteration of Finite Ramsey vs Infinite Ramsey A strengthened Ramsey's theorem

What is needed for iterated Ramsey's theorem?

Question

What is a version of infinite Ramsey's theorem which implies iterated finite Ramsey's theorem?

 \Rightarrow We introduce several new variations of (infinite) Ramsey's theorem.

They are inhabited in rather strange places of, so-called, the Reverse Mathematics Zoo.

http://rmzoo.uconn.edu/

Finite coloring and density notion Conservation and separation

Outline

1 Introduction

Iteration of Finite Ramsey vs Infinite Ramsey

- Finite coloring and density notion
- Conservation and separation

3 A strengthened Ramsey's theorem

- A strengthened Ramsey's theorem
- Finite iteration
- A stronger version of ACA[']₀

Finite coloring and density notion Conservation and separation

Ramsey's theorem

Ramsey's theorem is well-studied in reverse mathematics.

Definition (Ramsey's theorem.)

- $\operatorname{RT}_{k}^{n}$: for any $P : [\mathbb{N}]^{n} \to k$, there exists an infinite set $H \subseteq \mathbb{N}$ such that $|P([H]^{n})| = 1$.
- $\mathbf{RT}^n := \forall k \ \mathbf{RT}^n_k$. (In this talk, we may say \mathbf{RT}^n_∞ .)
- $\mathbf{RT} := \forall n \mathbf{RT}^n$. (In this talk, we may say $\mathbf{RT}_{\infty}^{\infty}$.)

Over RCA_0 , we have the following:

- If $n' \leq n, k' \leq k$, then $\mathrm{RT}_k^n \Rightarrow \mathrm{RT}_{k'}^{n'}$.
- $\operatorname{RT}_{k}^{n} \Rightarrow \operatorname{RT}_{k+1}^{n}$.
- $\operatorname{RT}_{2}^{n+1} \Rightarrow \operatorname{RT}^{n}$.

Thus, we have

$RT_2^1 \leq RT^1 \leq RT_2^2 \leq RT^2 \leq RT_2^3 \leq RT_2^3 \leq RT_2^4 \leq \dots$

Ramsey's theorem

Ramsey's theorem is well-studied in reverse mathematics.

Definition (Ramsey's theorem.)

- $\operatorname{RT}_{k}^{n}$: for any $P : [\mathbb{N}]^{n} \to k$, there exists an infinite set $H \subseteq \mathbb{N}$ such that $|P([H]^{n})| = 1$.
- $\operatorname{RT}^n := \forall k \operatorname{RT}^n_k$. (In this talk, we may say $\operatorname{RT}^n_\infty$.)
- $\mathbf{RT} := \forall n \mathbf{RT}^n$. (In this talk, we may say $\mathbf{RT}_{\infty}^{\infty}$.)

Over RCA_0 , we have the following:

- If $n' \leq n, k' \leq k$, then $\operatorname{RT}_{k}^{n} \Rightarrow \operatorname{RT}_{k'}^{n'}$
- $\operatorname{RT}_{k}^{n} \Rightarrow \operatorname{RT}_{k+1}^{n}$.
- $\operatorname{RT}_{2}^{n+1} \Rightarrow \operatorname{RT}^{n}$.

Thus, we have

$RT_2^1 \leq RT^1 \leq RT_2^2 \leq RT^2 \leq RT_2^3 \leq RT_2^3 \leq RT_2^4 \leq \ldots$

Finite coloring and density notion Conservation and separation

Ramsey's theorem

Ramsey's theorem is well-studied in reverse mathematics.

Definition (Ramsey's theorem.)

- $\operatorname{RT}_{k}^{n}$: for any $P : [\mathbb{N}]^{n} \to k$, there exists an infinite set $H \subseteq \mathbb{N}$ such that $|P([H]^{n})| = 1$.
- $\operatorname{RT}^n := \forall k \operatorname{RT}^n_k$. (In this talk, we may say $\operatorname{RT}^n_\infty$.)
- $\mathbf{RT} := \forall n \mathbf{RT}^n$. (In this talk, we may say $\mathbf{RT}_{\infty}^{\infty}$.)

Over RCA_0 , we have the following:

- If $n' \leq n, k' \leq k$, then $\operatorname{RT}_{k}^{n} \Rightarrow \operatorname{RT}_{k'}^{n'}$.
- $\operatorname{RT}_{k}^{n} \Rightarrow \operatorname{RT}_{k+1}^{n}$.
- $\operatorname{RT}_{2}^{n+1} \Rightarrow \operatorname{RT}^{n}$.

Thus, we have

$RT_2^1 \leq RT^1 \leq RT_2^2 \leq RT^2 \leq RT_2^3 \leq RT^3 \leq RT_2^4 \leq \dots$

Ramsey's theorem

Ramsey's theorem is well-studied in reverse mathematics.

Definition (Ramsey's theorem.)

- $\operatorname{RT}_{k}^{n}$: for any $P : [\mathbb{N}]^{n} \to k$, there exists an infinite set $H \subseteq \mathbb{N}$ such that $|P([H]^{n})| = 1$.
- $\operatorname{RT}^n := \forall k \operatorname{RT}^n_k$. (In this talk, we may say $\operatorname{RT}^n_\infty$.)
- $\mathbf{RT} := \forall n \mathbf{RT}^n$. (In this talk, we may say $\mathbf{RT}_{\infty}^{\infty}$.)

Over RCA₀, we have the following:

- If $n' \leq n, k' \leq k$, then $\mathrm{RT}_k^n \Rightarrow \mathrm{RT}_{k'}^{n'}$.
- $\operatorname{RT}_{k}^{n} \Rightarrow \operatorname{RT}_{k+1}^{n}$.
- $\operatorname{RT}_2^{n+1} \Rightarrow \operatorname{RT}^n$.

Thus, we have

$RT_2^1 \leq RT^1 \leq RT_2^2 \leq RT^2 \leq RT_2^3 \leq RT^3 \leq RT_2^4 \leq \dots$

Ramsey's theorem

Ramsey's theorem is well-studied in reverse mathematics.

Definition (Ramsey's theorem.)

- $\operatorname{RT}_{k}^{n}$: for any $P : [\mathbb{N}]^{n} \to k$, there exists an infinite set $H \subseteq \mathbb{N}$ such that $|P([H]^{n})| = 1$.
- $\operatorname{RT}^n := \forall k \operatorname{RT}^n_k$. (In this talk, we may say $\operatorname{RT}^n_\infty$.)
- $\mathbf{RT} := \forall n \mathbf{RT}^n$. (In this talk, we may say $\mathbf{RT}_{\infty}^{\infty}$.)

Over RCA_0 , we have the following:

- If $n' \leq n, k' \leq k$, then $\operatorname{RT}_{k}^{n} \Rightarrow \operatorname{RT}_{k'}^{n'}$.
- $\operatorname{RT}_{k}^{n} \Rightarrow \operatorname{RT}_{k+1}^{n}$.
- $\operatorname{RT}_{2}^{n+1} \Rightarrow \operatorname{RT}^{n}$.

Thus, we have

$$RT_2^1 \leq RT^1 \leq RT_2^2 \leq RT^2 \leq RT_2^3 \leq RT^3 \leq RT_2^4 \leq \dots$$

Finite coloring

Finite coloring and density notion Conservation and separation

Definition (finite coloring)

- (n, k)-finite coloring is a function $P : [F]^n \to k$ where $F = \operatorname{dom}(P) \subseteq_{\operatorname{fin}} \mathbb{N}$.
- (n, ∞) -finite coloring is a function $P : [F]^n \to k$ where $F = \operatorname{dom}(P) \subseteq_{\operatorname{fin}} \mathbb{N}$ and $k \leq \min F$.
- (∞, ∞) -finite coloring is a function $P : [F]^n \to k$ where $F = \operatorname{dom}(P) \subseteq_{\operatorname{fin}} \mathbb{N}$ and $n, k \leq \min F$.

Density notion

Finite coloring and density notion Conservation and separation

Let $\alpha, \beta \in \omega \cup \{\infty\}$.

Definition (RCA₀)

- A finite set X is said to be 0-dense (α, β) if $|X| > \min X$.
- A finite set X is said to be m + 1-dense(α,β) if for any (α,β)-finite coloring P with dom(P) = X, there exists Y ⊆ X which is m-dense(α,β) and P-homogeneous.

Note that "*X* is *m*-dense(α, β)" can be expressed by a Σ_0^0 -formula.

Finite coloring and density notion Conservation and separation

Paris-Harrington principle

Definition

- *m*PH^α_β: for any *a* ∈ N there exists an *m*-dense(α,β) set X such that min X > a.
- mPH^α_β:for any X₀ ⊆_{inf} N, there exists an *m*-dense(α,β) set X such that X ⊆_{fin} X₀.

We write ItPH^{α}_{β} for $\forall m mPH^{\alpha}_{\beta}$.

- Original Paris's independent statement from PA is ItPH³₂.
- Original Paris-Harrington principle is 1PH[∞]_∞.
- They are both equivalent to the Σ₁-soundness of PA.

Finite coloring and density notion Conservation and separation

Paris-Harrington principle

Definition

- *m*PH^α_β: for any *a* ∈ N there exists an *m*-dense(α,β) set X such that min X > a.
- mPH^α_β:for any X₀ ⊆_{inf} N, there exists an *m*-dense(α,β) set X such that X ⊆_{fin} X₀.

We write ItPH^{α}_{β} for $\forall m \, mPH^{\alpha}_{\beta}$.

- Original Paris's independent statement from PA is ItPH³₂.
- Original Paris-Harrington principle is 1PH[∞]_∞.
- They are both equivalent to the Σ₁-soundness of PA.

Finite coloring and density notion Conservation and separation

Paris's argument

We fix $\alpha, \beta \in \omega \cup \{\infty\}$ such that $\alpha, \beta \ge 2$, or $\alpha = 1$ and $\beta = \infty$.

Lemma

If (M, S) is a countable model of RCA_0 and $X \subset M$ ($X \in S$ and M-finite) is m-dense (α, β) for some $m \in M \setminus \omega$, then there exists a cut $I \subseteq_e M$ such that $I \cap X$ is unbounded in I and $(I, S \upharpoonright I) \models \operatorname{WKL}_0 + \operatorname{RT}_{\beta}^{\alpha}$. Here, $S \upharpoonright I = \{I \cap X \mid X \in S\}$.

This lemma means that m-dense (α, β) defines an indicator function for WKL₀ + RT^{α}_{β}.

Finite coloring and density notion Conservation and separation

Paris's argument

Let $\tilde{\Pi}_3^0$ be a class of formulas of the form $\forall X \varphi(X)$ where $\varphi \in \Pi_3^0$.

Theorem (essentially due to Paris)

 $WKL_0 + RT^{\alpha}_{\beta}$ is a conservative extension of $RCA_0 + \{m\widetilde{PH}^{\alpha}_{\beta} \mid m \in \omega\}$ with respect to $\widetilde{\Pi}^0_3$ -sentences.

Theorem (essentially due to Paris)

ItPH^{α} is not provable from WKL₀ + RT^{α}_{β}.

In fact, we can strengthen this result to the following.

Theorem

Over I Σ_1 , ItPH^{α} is equivalent to the Σ_1 -soundness of WKL₀ + RT^{α}_{β}.

Finite coloring and density notion Conservation and separation

Paris's argument

Let $\tilde{\Pi}_3^0$ be a class of formulas of the form $\forall X \varphi(X)$ where $\varphi \in \Pi_3^0$.

Theorem (essentially due to Paris)

 $WKL_0 + RT^{\alpha}_{\beta}$ is a conservative extension of $RCA_0 + \{m\widetilde{PH}^{\alpha}_{\beta} \mid m \in \omega\}$ with respect to $\widetilde{\Pi}^0_3$ -sentences.

Theorem (essentially due to Paris)

It PH^{α}_{β} is not provable from $WKL_0 + RT^{\alpha}_{\beta}$.

In fact, we can strengthen this result to the following.

Theorem

Over I Σ_1 , ItPH^{α} is equivalent to the Σ_1 -soundness of WKL₀ + RT^{α}_{β}.

Finite coloring and density notion Conservation and separation

Paris's argument

Let $\tilde{\Pi}_3^0$ be a class of formulas of the form $\forall X \varphi(X)$ where $\varphi \in \Pi_3^0$.

Theorem (essentially due to Paris)

 $WKL_0 + RT^{\alpha}_{\beta}$ is a conservative extension of $RCA_0 + \{m\widetilde{PH}^{\alpha}_{\beta} \mid m \in \omega\}$ with respect to $\widetilde{\Pi}^0_3$ -sentences.

Theorem (essentially due to Paris)

ItPH^{α}_{β} is not provable from WKL₀ + RT^{α}_{β}.

In fact, we can strengthen this result to the following.

Theorem Over I Σ_1 , ItPH^{α}_{β} is equivalent to the Σ_1 -soundness of WKL₀ + RT^{α}_{β}.

Finite coloring and density notion Conservation and separation

Paris's argument

Let $\tilde{\Pi}_3^0$ be a class of formulas of the form $\forall X \varphi(X)$ where $\varphi \in \Pi_3^0$.

Theorem (essentially due to Paris)

 $WKL_0 + RT^{\alpha}_{\beta}$ is a conservative extension of $RCA_0 + \{m\widetilde{PH}^{\alpha}_{\beta} \mid m \in \omega\}$ with respect to $\widetilde{\Pi}^0_3$ -sentences.

Theorem (essentially due to Paris)

ItPH^{α}_{β} is not provable from WKL₀ + RT^{α}_{β}.

In fact, we can strengthen this result to the following.

Theorem

Over I Σ_1 , ItPH^{α}_{β} is equivalent to the Σ_1 -soundness of WKL₀ + RT^{α}_{β}.

Corollary

- **1** The $\widetilde{\Pi}_3^0$ -part of WKL₀ + RT₂² is I Σ_1^0 + { $m\widetilde{PH}_2^2 \mid m \in \omega$ }.
- 2 The $\widetilde{\Pi}_3^0$ -part of WKL₀ + RT_{∞}² is I Σ_1^0 + { $m\widetilde{PH}_{\infty}^2$ | $m \in \omega$ }.
- **3** ItPH $^{\infty}_{\infty}$ is not provable from ACA $_0$ + RT.

Define GPH (generalized Paris-Harrington principle) as

"every arithmetically definable infinite set contains m-dense (∞, ∞) set for any m".

Then, we have the following.

Theorem

 $I\Sigma_1 + GPH$ is the first-order part of ACA'₀, or equivalently ACA₀ + RT.

Corollary

- **1** The $\widetilde{\Pi}_3^0$ -part of WKL₀ + RT₂² is I Σ_1^0 + { $m\widetilde{PH}_2^2 \mid m \in \omega$ }.
- 2 The $\widetilde{\Pi}_3^0$ -part of WKL₀ + RT_{∞}² is I Σ_1^0 + { $m\widetilde{PH}_{\infty}^2$ | $m \in \omega$ }.
- **3** ItPH $_{\infty}^{\infty}$ is not provable from ACA₀ + RT.

Define GPH (generalized Paris-Harrington principle) as

"every arithmetically definable infinite set contains m-dense (∞, ∞) set for any m".

Then, we have the following.

Theorem

 $I\Sigma_1 + GPH$ is the first-order part of ACA'₀, or equivalently ACA₀ + RT.

Corollary

- **1** The $\widetilde{\Pi}_3^0$ -part of WKL₀ + RT₂² is I Σ_1^0 + { $m\widetilde{PH}_2^2$ | $m \in \omega$ }.
- 2 The $\widetilde{\Pi}_3^0$ -part of WKL₀ + RT_{∞}² is I Σ_1^0 + { $m\widetilde{PH}_{\infty}^2$ | $m \in \omega$ }.
- **3** ItPH $_{\infty}^{\infty}$ is not provable from ACA $_0$ + RT.

Define GPH (generalized Paris-Harrington principle) as

"every arithmetically definable infinite set contains m-dense (∞, ∞) set for any m".

Then, we have the following.

Theorem

 $I\Sigma_1 + GPH$ is the first-order part of $\mathsf{ACA}_0',$ or equivalently $\mathsf{ACA}_0 + RT.$

A strengthened Ramsey's theorem Finite iteration A stronger version of ACA'_0

Outline

1 Introduction

- 2 Iteration of Finite Ramsey vs Infinite Ramsey
 Finite coloring and density notion
 Conservation and separation
- 3 A strengthened Ramsey's theorem
 - A strengthened Ramsey's theorem
 - Finite iteration
 - A stronger version of ACA₀

A strengthened Ramsey's theorem Finite iteration A stronger version of ACA'_

Coloring family

Definition

A set \mathcal{P} of (α, β) -finite coloring is said to be an (α, β) -coloring family if it is closed under subfunction, *i.e.*, if $P : [F]^n \to k \in \mathcal{P}$ and $H \subseteq F$, then, $P \upharpoonright [H]^n \in \mathcal{P}$.

- We write X ∈ dom(P) if for any F ⊆_{fin} X, there exists P ∈ P with F = dom(P).
- For an infinite $\overline{P} : [X]^n \to k$, we write $\overline{P} \in [\mathcal{P}]$ if for any $F \subseteq_{\text{fin}} X, \overline{P} \upharpoonright [F]^n \in \mathcal{P}$.
- For $H \subseteq \mathbb{N}$ and $n, i \in \mathbb{N}$, define $\text{Const}_{H,i}^n$ as $\text{Const}(\bar{x}) = i$ for any $\bar{x} \in [H]^n$.
- An infinite set *H* ⊆ ℕ is said to be homogeneous for *P* if *H* ∉ dom(*P*) or Constⁿ_{H,i} ∈ *P* for some *i*.

A strengthened Ramsey's theorem Finite iteration A stronger version of ACA'

Strengthened Ramsey's theorem

Definition

For $\alpha, \beta \in \mathbb{N} \cup \{\infty\}$, $\mathrm{RT}_{\beta}^{\alpha+}$ is the following assertion:

for any (α, β) -coloring family \mathcal{P} and infinite $X \subseteq \mathbb{N}$, there exists an infinite set $H \subseteq X$ such that H is homogeneous for \mathcal{P} . then there exists an infinite homogeneous set for \mathcal{P} .

Proposition (RCA₀)

- $I RT^{\alpha+}_{\beta} \Rightarrow RT^{\alpha}_{\beta}.$
- 2 WKL₀ + RT^{α}_{β} \Rightarrow RT^{α +}_{β}.

Thus, $\operatorname{RT}_{k}^{n}$, $\operatorname{RT}_{<\infty}^{n}$, $\operatorname{RT}_{k}^{n+}$, $\operatorname{RT}_{\infty}^{n+}$ are all equivalent to ACA₀ for any standard $n \geq 3$ and $k \geq 2$.

A strengthened Ramsey's theorem Finite iteration A stronger version of ACA'

Strengthened Ramsey's theorem

Definition

For $\alpha, \beta \in \mathbb{N} \cup \{\infty\}$, $\mathrm{RT}_{\beta}^{\alpha+}$ is the following assertion:

for any (α, β) -coloring family \mathcal{P} and infinite $X \subseteq \mathbb{N}$, there exists an infinite set $H \subseteq X$ such that H is homogeneous for \mathcal{P} . then there exists an infinite homogeneous set for \mathcal{P} .

Proposition (RCA₀)

$$1 RT^{\alpha+}_{\beta} \Rightarrow RT^{\alpha}_{\beta}$$

Thus, $\operatorname{RT}_{k}^{n}$, $\operatorname{RT}_{<\infty}^{n}$, $\operatorname{RT}_{k}^{n+}$, $\operatorname{RT}_{\infty}^{n+}$ are all equivalent to ACA₀ for any standard $n \ge 3$ and $k \ge 2$.

A strengthened Ramsey's theorem Finite iteration A stronger version of ACA'

Ramsey type König's lemma

Definition (Ramsey type König's lemma)

Ramsey type König's lemma $\operatorname{RKL}_{\beta}^{\alpha}$ is the following assertion: for any (α, β) -coloring family \mathcal{P} , if there exists an infinite set $X \in \operatorname{dom}(\mathcal{P})$, there exists an infinite function $\overline{P} \in \mathcal{P}$.

- RKL₂¹ is the original RKL introduced by Flood.
- WKL₀ implies RKL^{α}_{β} for any α, β .

A strengthened Ramsey's theorem Finite iteration A stronger version of ACA₀

Ramsey type König's lemma

Definition (Ramsey type König's lemma)

Ramsey type König's lemma $\operatorname{RKL}_{\beta}^{\alpha}$ is the following assertion: for any (α, β) -coloring family \mathcal{P} , if there exists an infinite set $X \in \operatorname{dom}(\mathcal{P})$, there exists an infinite function $\overline{P} \in \mathcal{P}$.

- RKL₂¹ is the original RKL introduced by Flood.
- WKL₀ implies RKL^{α}_{β} for any α, β .

Proposition

 $\mathrm{RT}^{\alpha+}_{\beta} \Leftrightarrow \mathrm{RT}^{\alpha}_{\beta} + \mathrm{RKL}^{\alpha}_{\beta}.$

Question

What is the strength of RKL_2^2 ?

A strengthened Ramsey's theorem Finite iteration A stronger version of ACA₀

Ramsey type König's lemma

Definition (Ramsey type König's lemma)

Ramsey type König's lemma $\operatorname{RKL}_{\beta}^{\alpha}$ is the following assertion: for any (α, β) -coloring family \mathcal{P} , if there exists an infinite set $X \in \operatorname{dom}(\mathcal{P})$, there exists an infinite function $\overline{P} \in \mathcal{P}$.

- RKL₂¹ is the original RKL introduced by Flood.
- WKL₀ implies RKL^{α}_{β} for any α, β .

Proposition

 $\mathrm{RT}^{\alpha+}_{\beta} \Leftrightarrow \mathrm{RT}^{\alpha}_{\beta} + \mathrm{RKL}^{\alpha}_{\beta}.$

Question

What is the strength of RKL_2^2 ?

A strengthened Ramsey's theorem Finite iteration A stronger version of ACA'_0

Finite iteration

Next, we consider finite iterations/simultaneous applications of Ramsey's theorem.

Definition

- $m \operatorname{RT}_{k}^{n}$: for any finite sequence $\langle P_{i} : [\mathbb{N}]^{n} \to k \mid i < m \rangle$, there exists an infinite set $H \subseteq \mathbb{N}$ such that H is homogeneous for any P_{i} .
- $m \operatorname{RT}_{\beta}^{\alpha+}$: for any finite sequence of (α, β) -coloring families $\langle \mathcal{P}_i \mid i < m \rangle$, there exists an infinite set $H \subseteq \mathbb{N}$ such that H is homogeneous for any \mathcal{P}_i .

We write $\operatorname{ItRT}_{\beta}^{\alpha}$ for $\forall m \, m \operatorname{RT}_{\beta}^{\alpha}$, and $\operatorname{ItRT}_{\beta}^{\alpha+}$ for $\forall m \, m \operatorname{RT}_{\beta}^{\alpha+}$. One can easily show by induction (outside of the system) that $\operatorname{RT}_{\beta}^{\alpha+}$ implies $m \operatorname{RT}_{\beta}^{\alpha+}$ for any $m \in \omega$ over RCA_{0} .

A strengthened Ramsey's theorem Finite iteration A stronger version of ACA'_0

Finite iteration

Next, we consider finite iterations/simultaneous applications of Ramsey's theorem.

Definition

- *m*RTⁿ_k: for any finite sequence ⟨P_i : [ℕ]ⁿ → k | i < m⟩, there exists an infinite set H ⊆ ℕ such that H is homogeneous for any P_i.
- mRT^{α+}_β: for any finite sequence of (α, β)-coloring families
 ⟨𝒫_i | i < m⟩, there exists an infinite set H ⊆ ℕ such that H is homogeneous for any 𝒫_i.

We write ItRT^{α}_{β} for $\forall m m$ RT^{α}_{β}, and ItRT^{$\alpha+$}_{β} for $\forall m m$ RT^{$\alpha+$}_{β}.

One can easily show by induction (outside of the system) that $\mathrm{RT}_{\beta}^{\alpha+}$ implies $m\mathrm{RT}_{\beta}^{\alpha+}$ for any $m \in \omega$ over RCA_0 .

A strengthened Ramsey's theorem Finite iteration A stronger version of ACA'_0

Finite iteration

Next, we consider finite iterations/simultaneous applications of Ramsey's theorem.

Definition

- *m*RTⁿ_k: for any finite sequence ⟨P_i : [ℕ]ⁿ → k | i < m⟩, there exists an infinite set H ⊆ ℕ such that H is homogeneous for any P_i.
- mRT^{α+}_β: for any finite sequence of (α,β)-coloring families
 ⟨𝒫_i | i < m⟩, there exists an infinite set H ⊆ ℕ such that H is homogeneous for any 𝒫_i.

We write ItRT^{α}_{β} for $\forall m m RT^{\alpha}_{\beta}$, and ItRT^{$\alpha+$}_{β} for $\forall m m RT^{\alpha+}_{\beta}$.

One can easily show by induction (outside of the system) that $\mathrm{RT}_{\beta}^{\alpha+}$ implies $m\mathrm{RT}_{\beta}^{\alpha+}$ for any $m \in \omega$ over RCA_0 .

A strengthened Ramsey's theorem Finite iteration A stronger version of ACA'_0

Finite iteration

For the usual Ramsey's theorem, one can easily show the following.

Proposition (RCA₀)

- **1** ItRT^{*n*} $_{k}$ and ItRT^{*n*} $_{\infty}$ are both equivalent to RT^{*n*}.
- ItRT is equivalent to RT.

Thus, it is not useful to think about the iteration of the usual Ramsey's theorem.

For a strengthened version, still we can easily see the following.

Proposition (RCA₀)

```
\operatorname{ItRT}_{\infty}^{n+} \Rightarrow \operatorname{ItRT}_{2}^{n+} \Rightarrow \operatorname{RT}_{\infty}^{n+}.
```

However, ItRT₂ⁿ⁺ is not equivalent to RT_{∞}ⁿ⁺ in general.

A strengthened Ramsey's theorem Finite iteration A stronger version of ACA'_0

Finite iteration

For the usual Ramsey's theorem, one can easily show the following.

Proposition (RCA₀)

- **1** ItRT^{*n*} $_{k}$ and ItRT^{*n*} $_{\infty}$ are both equivalent to RT^{*n*}.
- 2 ItRT is equivalent to RT.

Thus, it is not useful to think about the iteration of the usual Ramsey's theorem.

For a strengthened version, still we can easily see the following.

Proposition (RCA₀)

 $ItRT_{\infty}^{n+} \Rightarrow ItRT_{2}^{n+} \Rightarrow RT_{\infty}^{n+}.$

However, $ItRT_2^{n+}$ is not equivalent to RT_{∞}^{n+} in general.

A strengthened Ramsey's theorem Finite iteration A stronger version of ACA'_0

Finite iteration

For the usual Ramsey's theorem, one can easily show the following.

Proposition (RCA₀)

- **1** ItRT^{*n*} $_{k}$ and ItRT^{*n*} $_{\infty}$ are both equivalent to RT^{*n*}.
 - ItRT is equivalent to RT.

Thus, it is not useful to think about the iteration of the usual Ramsey's theorem.

For a strengthened version, still we can easily see the following.

Proposition (RCA₀)

 $\text{ItRT}_{\infty}^{n+} \Rightarrow \text{ItRT}_{2}^{n+} \Rightarrow \text{RT}_{\infty}^{n+}.$

However, $ItRT_2^{n+}$ is not equivalent to RT_{∞}^{n+} in general.

A strengthened Ramsey's theorem Finite iteration A stronger version of ACA'_

Finite iteration of $RT^{\alpha+}_{\beta}$

Theorem

Let $n \ge 3$ be a (standard) natural number. Then, $\operatorname{ItRT}_2^{n+}$ and $\operatorname{ItRT}_{\infty}^{n+}$ are both equivalent to RT over RCA₀.

Theorem (over RCA₀)

- **1** ItRT₂ⁿ⁺ is strictly stronger than RT₂ⁿ for any $n \ge 2$.
- **2** ItRT^{*n*+}_{∞} is strictly stronger than RT^{*n*}_{$<\infty$} for any $n \ge 1$.
- **3** ItRT $_{\infty}^{\infty+}$ is strictly stronger than RT.

We can show this using finite iterated Ramsey's theorem.

A strengthened Ramsey's theorem Finite iteration A stronger version of ACA₀

Finite iteration of $RT^{\alpha+}_{\beta}$

Theorem

Let $n \ge 3$ be a (standard) natural number. Then, $\operatorname{ItRT}_2^{n+}$ and $\operatorname{ItRT}_{\infty}^{n+}$ are both equivalent to RT over RCA₀.

Theorem (over RCA₀)

- **1** ItRT₂ⁿ⁺ is strictly stronger than RT₂ⁿ for any $n \ge 2$.
- **2** ItRT^{*n*+}_{∞} is strictly stronger than RT^{*n*}_{$<\infty$} for any $n \ge 1$.
- **3** ItRT $_{\infty}^{\infty+}$ is strictly stronger than RT.

We can show this using finite iterated Ramsey's theorem.

A strengthened Ramsey's theorem Finite iteration A stronger version of ACA'_0

Finite iteration of $RT^{\alpha+}_{\beta}$

Remark

- **1** ItRT^{∞ +} is provable from ACA⁺₀. On the other hand, (ω , ARITH) \models ItRT^{∞ +}. Thus, ItRT^{∞ +} does not imply ACA⁺₀.
- 2 Similarly, ω -model of $RT_2^2 + WKL_0$ is a model of $ItRT_{\infty}^{2+}$. Therefore, $ItRT_{\infty}^{2+}$ does not imply ACA₀. However, we do not know whether ACA₀ implies $ItRT_{\infty}^{2+}$ (or even $ItRT_2^{2+}$) or not.

Question

- **1** We have $RT_{<\infty}^1 + RT_2^{1+} \le RT_{\infty}^{1+} \le ItRT_2^{1+} \le ItRT_{\infty}^{1+}$. Which inequalities are strict or not?
- 2 We have $RT^2_{<\infty} + RT^{2+}_2 \le RT^{2+}_{\infty} \le ItRT^{2+}_2 \le ItRT^{2+}_{\infty}$. Which inequalities are strict or not?

A strengthened Ramsey's theorem Finite iteration A stronger version of ACA₀

ItRT^{α +} implies iterated Finite Ramsey

Theorem

Let $\alpha, \beta \in \omega \cup \{\infty\}, \alpha, \beta \ge 2$. Then, RCA₀ proves the following.

$$\forall m(mRT^{\alpha+}_{\beta} \Rightarrow m\widetilde{PH}^{\alpha}_{\beta}).$$

Thus, over RCA₀, ItRT^{α +}_{β} implies It $\widetilde{PH}^{\alpha}_{\beta}$, and particularly, it implies the Σ_1 -soundness of WKL₀ + RT^{α}_{β}.

In the above, we do not need $I\Sigma_2^0$ in case $m \in \omega$.

A strengthened Ramsey's theorem Finite iteration A stronger version of ACA₀

Proof.

Let $m \in \mathbb{N}$ and X_0 be an infinite set. For i < m + 1, define \mathcal{P}_i as follows.

 $P : [F]^n \to k$ is a member of \mathcal{P}_i if and only if $F \subseteq_{\text{fin}} X_0$, $n \le \min\{\alpha, \min X\}, k \le \min\{\beta, \min X\}$ and any P-homogeneous set $Y \subseteq F$ is not (m - i - 1)-dence (α, β) .

(By the definition, $\operatorname{dom}(\mathcal{P}_0) \supseteq \operatorname{dom}(\mathcal{P}_1) \supseteq \ldots$.)

Let \overline{m} be the least i < m + 1 such that $\operatorname{dom}(\mathcal{P}_i)$ does not contain X_0 . (Trivially, $\operatorname{dom}(\mathcal{P}_m)$ does not contain any infinite set.)

If $\bar{m} = 0$, we have done.

Assume $\bar{m} > 0$, then we can apply $\bar{m} \operatorname{RT}_{\beta}^{\alpha+}$ and $\langle \mathcal{P}_i | i < \bar{m} \rangle$, and let $H \subseteq X_0$ be an infinite common homogeneous set. Then, any finite subset of *H* is $(m - \bar{m} - 1)$ -dence (α, β) , and thus $H \in \operatorname{dom}(\mathcal{P}_{\bar{m}})$, which is a contradiction.

Introduction A strengthened Ramsey's theorem Iteration of Finite Ramsey vs Infinite Ramsey A strengthened Ramsey's theorem A stronger version of ACA[']₀

Corollary

- **1** WKL₀ + RT₂²⁺, RCA₀ + RT₂²⁺ and WKL₀ + RT₂² have the same $\tilde{\Pi}_3^0$ -part, namely I Σ_1^0 + {mPH₂² | $m \in \omega$ }.
- **2** WKL₀ + RT²⁺_{∞}, RCA₀ + RT²⁺_{∞} and WKL₀ + RT²_{$<\infty$} have the same $\widetilde{\Pi}^0_3$ -part, namely I Σ^0_1 + { $m\widetilde{PH}^2_{\infty}$ | $m \in \omega$ }.
- 3 ItRT₂²⁺ implies the Σ_1 -soundness of WKL₀ + RT₂².
- $\begin{tabular}{ll} \hline \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} It RT^{2+}_{\infty} \end{tabular} \end$
- **(a)** ItRT₂³⁺ implies the Σ_1 -soundness of ACA₀.
- **6** ItRT^{∞ +} implies the Σ_1 -soundness of ACA₀ + RT, or equivalently ACA'₀.

A strengthened Ramsey's theorem Finite iteration A stronger version of ACA₀

A stronger version of ACA₀

Theorem

The following are equivalent over RCA₀.

1 ACA₀'': for any sequence of Turing functionals $\langle \Phi_{e_i} | i < m \rangle$, and for any *Z*, there exists a sequence $\langle Z^{(k_i)} | i \le m \rangle$ such that $k_0 = 0$ and $k_{i+1} = k_i + \Phi_{e_i}^{Z^{(k_i+1)}}(0)$.

Questions

Question

- **(1)** Is RT_2^2 equivalent to RT_2^{2+} over RCA_0 ?
- 2 Is RT^2_{∞} equivalent to RT^{2+}_{∞} over RCA_0 ?

Question

What is the strength of RKL₂²?

Question

Is there a "simpler" version of ItRT+?

References

- Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength of Ramsey's theorem for pairs. Journal of Symbolic Logic, 66(1):1–55, 2001.
- Stephen Flood. Reverse mathematics and a Ramsey-type König's Lemma. Journal of Symbolic Logic, 77(4):1272–1280, 2012.
- Denis R. Hirschfeldt. Slicing the truth: On the computability theoretic and reverse mathematical analysis of combinatorial principles. to appear.
- J. Paris and Leo A. Harrington. A mathematical incompleteness in Peano arithmetic. In Jon Barwise, editor, Handbook of Mathematical Logic, pages 1133–1142.
- J. B. Paris. Some independence results for Peano Arithmetic. Journal of Symbolic Logic, 43(4):725–731, 1978.
- Y. A strengthened version of Ramsey's theorem and its finite iteration, draft.