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Introduction

Independent statements from PA

It is well-known that several finite variations of Ramsey’s theorem
provide independent statements from Peano Arithmetic (PA).

@ The first such example was found by Paris (in paper 1978).
An “iteration versin of Finite Ramsey’s theorem with relatively
largeness”.

@ A simplification by Harrington (in manuscript 1977).
“Paris-Harrington Principle: Finite Ramsey’s theorem with
relatively largeness”.

Note that the original “iteration version” has the advantage:

it can approximate the infinite version of Ramsey’s theorem.
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Introduction

Infinite vs finite Ramsey’s theorem

Observation

Infinite Ramsey’s theorem implies corresponding finite Ramsey’s
theorem (with some largeness notion).

However,

Infinite Ramsey’s theorem as itself cannot prove the statement
“for any m, m-th iteration of finite Ramsey’s theorem holds”.

This happens because of the lack of Z] -induction, but infinite
Ramsey’s theorem as itself does not prove such a strong induction.
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Introduction

What is needed for iterated Ramsey’s theorem?

What is a version of infinite Ramsey’s theorem which implies
iterated finite Ramsey’s theorem?

= We introduce several new variations of (infinite) Ramsey’s
theorem.

They are inhabited in rather strange places of, so-called, the
Reverse Mathematics Zoo.

http://rmzoo.uconn.edu/
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Finite coloring and density notion

Iteration of Finite Ramsey vs Infinite Ramsey Conservation and separation

Outline

e Iteration of Finite Ramsey vs Infinite Ramsey
@ Finite coloring and density notion
@ Conservation and separation
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Finite coloring and density notion

Iteration of Finite Ramsey vs Infinite Ramsey Conservation and separation

Ramsey’s theorem

Ramsey’s theorem is well-studied in reverse mathematics.
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Finite coloring and density notion
Conservation and separation

Iteration of Finite Ramsey vs Infinite Ramsey

Ramsey’s theorem

Ramsey’s theorem is well-studied in reverse mathematics.

Definition (Ramsey’s theorem.)

@ RT}: forany P : [N]" — k, there exists an infinite set H C N
such that [P([H]")| = 1.

@ RT" := Vk RT}. (In this talk, we may say RTZ,.)
@ RT := V¥YnRT". (In this talk, we may say RT%.)
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Iteration of Finite Ramsey vs Infinite Ramsey

Ramsey’s theorem

Ramsey’s theorem is well-studied in reverse mathematics.

Definition (Ramsey’s theorem.)

@ RT}: forany P : [N]" — k, there exists an infinite set H C N
such that [P([H]")| = 1.

@ RT" := Vk RT}. (In this talk, we may say RTZ,.)
@ RT := V¥YnRT". (In this talk, we may say RT%.)

Over RCAy, we have the following:
e If " < n,k’ <k, then RT{ = RTY..
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Iteration of Finite Ramsey vs Infinite Ramsey

Ramsey’s theorem

Ramsey’s theorem is well-studied in reverse mathematics.

Definition (Ramsey’s theorem.)

@ RT}: forany P : [N]" — k, there exists an infinite set H C N
such that [P([H]")| = 1.

@ RT" := Vk RT}. (In this talk, we may say RTZ,.)
@ RT := V¥YnRT". (In this talk, we may say RT%.)

Over RCAy, we have the following:
e If " < n,k’ <k, then RT{ = RTY..
e RT} = RT} .
@ RT)™" = RT".
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Iteration of Finite Ramsey vs Infinite Ramsey

Ramsey’s theorem

Ramsey’s theorem is well-studied in reverse mathematics.

Definition (Ramsey’s theorem.)

@ RT}: forany P : [N]" — k, there exists an infinite set H C N
such that [P([H]")| = 1.

@ RT" := Vk RT}. (In this talk, we may say RTZ,.)
@ RT := V¥YnRT". (In this talk, we may say RT%.)

Over RCAy, we have the following:
e If " < n,k’ <k, then RT{ = RTY..
e RT} = RT} .
@ RT)™" = RT".

Thus, we have
RT} < RT' <RT5 <RT? <RT <RT°<RT; <...
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Finite coloring and density notion

Iteration of Finite Ramsey vs Infinite Ramsey Conservation and separation

Finite coloring

Definition (finite coloring)

@ (n, k)-finite coloring is a function P : [F]" — k where
F = dom(P) Cgn N.

@ (n, co)-finite coloring is a function P : [F]" — k where
F = dom(P) Cn Nand k < minF.

@ (o0, co)-finite coloring is a function P : [F]" — k where
F = dom(P) S Nand n,k <minF.
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Finite coloring and density notion
Conservation and separation

Iteration of Finite Ramsey vs Infinite Ramsey

Density notion

Let @,8 € w U {oo}.

Definition (RCAo)

@ A finite set X is said to be 0-dense(a, ) if |X| > min X.

@ Afinite set X is said to be m + 1-dense(a, ) if for any
(a,B)-finite coloring P with dom(P) = X, there exists Y € X
which is m-dense(a,8) and P-homogeneous.

Note that “X is m-dense(a,3)” can be expressed by a Zg-formula.
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Finite coloring and density notion
Conservation and separation

Iteration of Finite Ramsey vs Infinite Ramsey

Paris-Harrington principle

@ mPHy: for any a € N there exists an m-dense(a, 8) set X
such that min X > a.

° mﬁ{g:for any Xp Cint N, there exists an m-dense(a, ) set X
such that X Cg, Xop.

We write ItPHg for YVm mPHg .
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Iteration of Finite Ramsey vs Infinite Ramsey

Paris-Harrington principle

@ mPHy: for any a € N there exists an m-dense(a, 8) set X
such that min X > a.

° mﬁ{g:for any Xp Cint N, there exists an m-dense(a, ) set X
such that X Cqp Xo.

We write ItPHg for YVm mPHg .

@ Original Paris’s independent statement from PA is ItPHg.
@ Original Paris-Harrington principle is 1TPH,.
@ They are both equivalent to the ¥ {-soundness of PA.
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Finite coloring and density notion
Conservation and separation

Iteration of Finite Ramsey vs Infinite Ramsey

Paris’s argument

We fix a,8 € w U {oo} such that @, > 2, ora = 1 and 8 = .

If (M, S) is a countable model of RCAq and X c M (X € S and
M-finite) is m-dense(a, B) for some m € M\ w, then there exists a
cut | C¢ M such that I n X is unbounded in | and

(.S I'1) E WKLo +RTj. Here, S 1 I ={InX| X € S}.

This lemma means that m-dense(«, 8) defines an indicator
function for WKL + RTg.
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Finite coloring and density notion
Conservation and separation

Iteration of Finite Ramsey vs Infinite Ramsey

Paris’s argument

Let ﬁg be a class of formulas of the form ¥ X¢(X) where ¢ € 3.

Theorem (essentially due to Paris)

WKLy + RTg is a conservative extension of
RCAq + {mfﬁ; | m € w} with respect to I:Ig-sentences.
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Iteration of Finite Ramsey vs Infinite Ramsey

Paris’s argument

Let ﬁg be a class of formulas of the form ¥ X¢(X) where ¢ € 3.

Theorem (essentially due to Paris)

WKLy + RTg is a conservative extension of
RCAq + {mfﬁ; | m € w} with respect to I:Ig-sentences.

Theorem (essentially due to Paris)

ItPHg is not provable from WKLy + RTg.
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Iteration of Finite Ramsey vs Infinite Ramsey

Paris’s argument

Let ﬁg be a class of formulas of the form ¥ X¢(X) where ¢ € 3.

Theorem (essentially due to Paris)
WKLy + RTg is a conservative extension of
RCAq + {mfﬁ; | m € w} with respect to I:Ig-sentences.

Theorem (essentially due to Paris)

ItPHg is not provable from WKLy + RTg.

In fact, we can strengthen this result to the following.
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Iteration of Finite Ramsey vs Infinite Ramsey

Paris’s argument

Let ﬁg be a class of formulas of the form ¥ X¢(X) where ¢ € 3.

Theorem (essentially due to Paris)

WKLy + RTg is a conservative extension of
RCAq + {mfﬁ; | m € w} with respect to I:Ig-sentences.

Theorem (essentially due to Paris)

ItPH‘B’ is not provable from WKLy + RTg.

In fact, we can strengthen this result to the following.

OverlIx;, ItPHg is equivalent to the ¥1-soundness of WKLy + RTg.
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Finite coloring and density notion
Conservation and separation

Iteration of Finite Ramsey vs Infinite Ramsey

@ The (19-part of WKLo + RT3 is IZ9 + {mPH2 | m € w).
@ The (19-part of WKLo + RT2, is IX9 + {mPHZ, | m € w}.
@ ItPH is not provable from ACAq + RT.
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Iteration of Finite Ramsey vs Infinite Ramsey

@ The (19-part of WKLo + RT3 is IZ9 + {mPH2 | m € w).
@ The (19-part of WKLo + RT2, is IX9 + {mPHZ, | m € w}.
@ ItPH is not provable from ACAq + RT.

Define GPH (generalized Paris-Harrington principle) as

“every arithmetically definable infinite set contains
m-dense(oo, o) set for any m”.

Then, we have the following.
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Finite coloring and density notion
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Iteration of Finite Ramsey vs Infinite Ramsey

@ The (19-part of WKLo + RT3 is IZ9 + {mPH2 | m € w).
@ The (19-part of WKLo + RT2, is IX9 + {mPHZ, | m € w}.
@ ItPH is not provable from ACAq + RT.

Define GPH (generalized Paris-Harrington principle) as

“every arithmetically definable infinite set contains
m-dense(oo, o) set for any m”.

Then, we have the following.

I>4 + GPH is the first-order part of ACA/, or equivalently
ACAy + RT.
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A strengthened Ramsey’s theorem
Finite iteration
A strengthened Ramsey’s theorem A stronger version of AC/—\‘}‘,

Outline

e A strengthened Ramsey’s theorem
@ A strengthened Ramsey’s theorem
@ Finite iteration
@ A stronger version of ACA,
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A strengthened Ramsey’s theorem
Finite iteration
A strengthened Ramsey’s theorem A stronger version of AC/—\‘}‘,

Coloring family

Definition
A set P of (@, B)-finite coloring is said to be an («,8)-coloring

family if it is closed under subfunction, i.e., if P : [F]" — k € £ and
Hc F,then, P | [H]" € P.

@ We write X € dom(P) if for any F Cqy X, there exists P € P
with F = dom(P).

@ For an infinite P : [X]" — k, we write P € [P] if for any
F Cin X, P 1 [F]" € P.

@ For HC N and n, i € N, define Consty,; as Const(X) = i for any
X € [H]".

@ Aninfinite set H C N is said to be homogeneous for P if
H ¢ dom(#) or Consty; ; € # for some i.
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A strengthened Ramsey’s theorem
Finite iteration
A strengthened Ramsey’s theorem A stronger version of ACA‘}‘,

Strengthened Ramsey’s theorem

Definition
For a,8 € N U {o0}, RTgJr is the following assertion:

for any (a,8)-coloring family # and infinite X C N, there exists
an infinite set H C X such that H is homogeneous for £. then
there exists an infinite homogeneous set for .
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A strengthened Ramsey’s theorem
Finite iteration
A strengthened Ramsey’s theorem A stronger version of ACAB

Strengthened Ramsey’s theorem

Definition

For a,8 € N U {o0}, RTgJr is the following assertion:

for any (a,8)-coloring family # and infinite X C N, there exists
an infinite set H C X such that H is homogeneous for £. then
there exists an infinite homogeneous set for .

Proposition (RCAy)

@ RT;;‘+ = RTj.
@ WKLo +RTj = RTg+.

Thus, RT}, RT?,RT; ", RTZ" are all equivalent to ACA, for any
standard n > 3 and k > 2.
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A strengthened Ramsey’s theorem
Finite iteration
A strengthened Ramsey’s theorem A stronger version of ACA‘}‘,

Ramsey type Konig’s lemma

Definition (Ramsey type Konig’s lemma)

Ramsey type Koénig’'s lemma RKLg is the following assertion:

for any (a,B)-coloring family P, if there exists an infinite set
X e dom(%P), there exists an infinite function P € P.

@ RKL) is the original RKL introduced by Flood.
@ WKL, implies RKLg for any a, 8.
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A strengthened Ramsey’s theorem
Finite iteration
A strengthened Ramsey’s theorem A stronger version of ACA‘}‘,

Ramsey type Konig’s lemma

Definition (Ramsey type Konig’s lemma)

Ramsey type Koénig’'s lemma RKLg is the following assertion:

for any (a,B)-coloring family P, if there exists an infinite set
X e dom(%P), there exists an infinite function P € P.

@ RKL) is the original RKL introduced by Flood.
@ WKL, implies RKLg for any a, 8.

Proposition
-+ @ @
RTﬂ < RT; + RKL;.
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A strengthened Ramsey’s theorem
Finite iteration
A strengthened Ramsey’s theorem A stronger version of ACA‘}‘,

Ramsey type Konig’s lemma

Definition (Ramsey type Konig’s lemma)

Ramsey type Koénig’'s lemma RKLg is the following assertion:

for any (a,B)-coloring family P, if there exists an infinite set
X e dom(%P), there exists an infinite function P € P.

@ RKL) is the original RKL introduced by Flood.
@ WKL, implies RKLg for any a, 8.

Proposition
-+ @ @
RTﬂ < RT; + RKL;.

What is the strength of RKL3?
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A strengthened Ramsey’s theorem
Finite iteration
A strengthened Ramsey’s theorem A stronger version of AC/—\‘}‘,

Finite iteration

Next, we consider finite iterations/simultaneous applications of
Ramsey’s theorem.
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A strengthened Ramsey’s theorem
Finite iteration
A strengthened Ramsey’s theorem A stronger version of ACA‘}‘,

Finite iteration

Next, we consider finite iterations/simultaneous applications of
Ramsey’s theorem.

@ mRT}: for any finite sequence (P; : [N]" — k | i < m), there
exists an infinite set H C N such that H is homogeneous for
any P;.

° mRTZ*: for any finite sequence of («,3)-coloring families
(Pj | i < m), there exists an infinite set H C N such that H is
homogeneous for any P;.

We write ItRTj; for Vm mRTg, and ItRTZ* for Vm mRTgJF.
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A strengthened Ramsey’s theorem
Finite iteration
A strengthened Ramsey’s theorem A stronger version of ACA{,!

Finite iteration

Next, we consider finite iterations/simultaneous applications of
Ramsey’s theorem.

Definition

@ mRT}: for any finite sequence (P; : [N]" — k | i < m), there
exists an infinite set H C N such that H is homogeneous for
any P;.

° mRTZ*: for any finite sequence of («,3)-coloring families
(Pj | i < m), there exists an infinite set H C N such that H is
homogeneous for any P;.

We write ItRTj; for Vm mRTg, and ItRTZ* for Vm mRTgJF.

One can easily show by induction (outside of the system) that
RTgJr implies mRTgJr for any m € w over RCA,.
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A strengthened Ramsey’s theorem
Finite iteration
A strengthened Ramsey’s theorem A stronger version of AC/—\‘}‘,

Finite iteration

For the usual Ramsey’s theorem, one can easily show the
following.

Proposition (RCA)

@ IRT} and ItRT(, are both equivalent to RT".
@ ItRT is equivalent to RT.

Thus, it is not useful to think about the iteration of the usual
Ramsey’s theorem.
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A strengthened Ramsey’s theorem
Finite iteration
A strengthened Ramsey’s theorem A stronger version of AC/—\‘}‘,

Finite iteration

For the usual Ramsey’s theorem, one can easily show the
following.

Proposition (RCA)

@ IRT} and ItRT(, are both equivalent to RT".
@ ItRT is equivalent to RT.

Thus, it is not useful to think about the iteration of the usual
Ramsey’s theorem.
For a strengthened version, still we can easily see the following.

Proposition (RCAg)
ItRTL™ = IRT, ™ = RTA'.
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A strengthened Ramsey’s theorem
Finite iteration
A strengthened Ramsey’s theorem A stronger version of AC/—\‘}‘,

Finite iteration

For the usual Ramsey’s theorem, one can easily show the
following.

Proposition (RCA)

@ IRT} and ItRT(, are both equivalent to RT".
@ ItRT is equivalent to RT.

Thus, it is not useful to think about the iteration of the usual
Ramsey’s theorem.

For a strengthened version, still we can easily see the following.
Proposition (RCAg)
ItRTL™ = IRT, ™ = RTA'.

However, ItRT’27+ is not equivalent to RT7" in general.
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A strengthened Ramsey’s theorem
Finite iteration
A strengthened Ramsey’s theorem A stronger version of AC/—\‘}‘,

Finite iteration of RTg’L

Let n > 3 be a (standard) natural number. Then, ItRTgJr and
ItRT™" are both equivalent to RT over RCA,.

Keita Yokoyama Iterations of Ramsey’s theorem



A strengthened Ramsey’s theorem
Finite iteration
A strengthened Ramsey’s theorem A stronger version of ACA‘}‘,

Finite iteration of RTg’L

Let n > 3 be a (standard) natural number. Then, ItRTgJr and
ItRT™" are both equivalent to RT over RCA,.

Theorem (over RCAy)
@ ItRTgJr is strictly stronger than RT, for any n > 2.

@ ItRTY is strictly stronger than RT?, for any n > 1.
@ IRTXT is strictly stronger than RT.

We can show this using finite iterated Ramsey’s theorem.
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A strengthened Ramsey’s theorem
Finite iteration
A strengthened Ramsey’s theorem A stronger version of ACAB

Finite iteration of RTZ’L

@ IRTYT is provable from ACA; .
On the other hand, (w, ARITH) = ItRTXT.
Thus, IIRTST does not imply ACA; .

@ Similarly, w-model of RT5 + WKL, is a model of ItRTZ'.
Therefore, ItRT%" does not imply ACA,. However, we do not
know whether ACA, implies ItRT2} (or even ItRTng) or not.

@ We have RT', + RT}" < RTL} < ItRT}" < IRTL". Which
inequalities are strict or not?

@ We have RT2_, + RT3 < RT2" < ItRT5" < ItRTZ". Which
inequalities are strict or not?
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A strengthened Ramsey’s theorem
Finite iteration
A strengthened Ramsey’s theorem A stronger version of ACA‘}‘,

ItRTgJr implies iterated Finite Ramsey

Theorem
Leta,B € wU {0}, a,B8 > 2.
Then, RCA, proves the following.

Vm(mRT;" = mPH).

Thus, over RCA, ItRTgJr implies Itﬁ{g , and patrticularly, it implies
the X 1-soundness of WKLg + RT‘ﬁ’.

In the above, we do not need IX3 in case m € w.
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A strengthened Ramsey’s theorem
Finite iteration
A strengthened Ramsey’s theorem A stronger version of ACAB

Proof.
Let m € N and Xj be an infinite set. For i < m + 1, define P; as
follows.

P : [F]" — k is a member of #; if and only if F Ca, Xo,
n < min{a, min X}, k < min{B, min X} and any
P-homogeneous set Y C Fis not (m — i — 1)-dence(a, B).

(By the definition, dom(#Pp) 2 dom(#1) 2....)

Let m be the least i < m + 1 such that dom(#;) does not contain
Xo. (Trivially, dom(%#m) does not contain any infinite set.)

If m = 0, we have done.

Assume m > 0, then we can apply r'nRTgJr and (P; | i < m), and let
H C Xo be an infinite common homogeneous set. Then, any finite
subset of His (m — m — 1)-dence(a, ), and thus H € dom(Pp),
which is a contradiction.
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A strengthened Ramsey’s theorem
Finite iteration

A strengthened Ramsey’s theorem A stronger version of ACAB

@ WKLo +RT5", RCAo + RT5" and WKL, + RT2 have the same
I:Ig-part, namely 129 + {mf;ﬁg | m e w).

@ WKLo + RTZF, RCAq + RT3 and WKLo + RTZ,, have the
same [13-part, namely IZ% + {mPHZ, | m € w}.

Q ItRTg+ implies the ¥1-soundness of WKLq + RTg.

@ ItRTZ" implies the ¥ 1-soundness of WKLy + RT2,.

@ IRTS' implies the T1-soundness of ACA,.

@ ItRTXT implies the ¥ 1-soundness of ACAq + RT, or
equivalently ACA;.
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A strengthened Ramsey’s theorem
Finite iteration

A strengthened Ramsey’s theorem A stronger version of ACA6

A stronger version of ACA;,

The following are equivalent over RCAy.

@ ACA({: for any sequence of Turing functionals (®e, | i < m) ,
and for any Z, there exists a sequence (Z(*) | i < my such
that ko = 0 and kiy1 = ki + 2" (0).

@ IRTXT.
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Questions

@ Is RT3 equivalent to RT5" over RCAy?
@ Is RT?, equivalent to RT%" over RCAq?

v

What is the strength of RKL2?

Is there a “simpler” version of ItRT*?
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