From Well-Quasi-Orders to Noetherian Spaces: the Reverse Mathematics Viewpoint

Alberto Marcone

(joint work with Emanuele Frittaion, Matthew Hendtlass, Paul Shafer, and Jeroen Van der Meeren)

Computability Theory and Foundations of Mathematics 2015 Tokyo, September 7–11, 2015

- **1** Well quasi-orders
- **2** From well quasi-orders to Noetherian spaces
- **3** Coding and the forward directions
- **4** The reversals
- **6** The main result
- **6** Finer analysis?

Well quasi-orders

1 Well quasi-orders

Prom well quasi-orders to Noetherian spaces

Original the forward directions Working with $\mathcal{U}(\mathcal{P}^{\flat}_{\mathrm{f}}(\mathcal{Q}))$ and $\mathcal{U}(\mathcal{P}^{\sharp}_{\mathrm{f}}(\mathcal{Q}))$ Working with $\mathcal{U}(\mathcal{P}^{\flat}(\mathcal{Q}))$ and $\mathcal{U}(\mathcal{P}^{\sharp}(\mathcal{Q}))$

The reversals

6 The main result

6 Finer analysis?

Well quasi-orders

A quasi-order is a binary relation which is reflexive and transitive (no antisymmetry).

A quasi-order $Q = (Q, \leq_Q)$ is a well quasi-order (wqo) if for every $f : \mathbb{N} \to Q$ there exists i < j such that $f(i) \leq_Q f(j)$.

There are many equivalent characterizations of wqos:

- \mathcal{Q} is well-founded and has no infinite antichains;
- every sequence in Q has a weakly increasing subsequence;
- every nonempty subset of Q has a finite set of minimal elements;
- all linear extensions of ${\cal Q}$ are well orders.

The reverse mathematics and computability theory of these equivalences has been studied in (Cholak-M-Solomon 2004).

All equivalences are provable in WKL_0+CAC .

Some examples of wqos

- Finite partial orders
- Well-orders
- Finite strings over a finite alphabet (Higman, 1952)
- Finite trees (Kruskal, 1960)
- Transfinite sequences with finite labels (Nash-Williams, 1965)
- Countable linear orders (Laver 1971, proving Fraïssé's conjecture)
- Finite graphs (Robertson and Seymour, 2004)

The ordering is some kind of embeddability

Closure properties of wqos

- The sum and disjoint sum of two wqos are wqos
- The product of two wqos is a wqo
- Finite strings over a wqo are a wqo (Higman, 1952)
- Finite trees with labels from a wqo are a wqo (Kruskal, 1960)
- Transfinite sequences with labels from a wqo which use only finitely many labels are a wqo (Nash-Williams, 1965)

Quasi-orders on the powerset

Let $\mathcal{Q} = (Q, \leq_Q)$ be a quasi-order. For $A, B \in \mathcal{P}(Q)$:

$$A \leq^{\flat} B \iff \forall a \in A \exists b \in B \ a \leq_Q b \iff A \subseteq B \downarrow$$
$$A \leq^{\sharp} B \iff \forall b \in B \ \exists a \in A \ a \leq_Q b \iff B \subseteq A \uparrow$$

Let $\mathcal{P}^{\flat}(\mathcal{Q}) = (\mathcal{P}(Q), \leq^{\flat})$ and $\mathcal{P}^{\sharp}(\mathcal{Q}) = (\mathcal{P}(Q), \leq^{\sharp})$. $\mathcal{P}^{\flat}_{\mathrm{f}}(\mathcal{Q})$ and $\mathcal{P}^{\sharp}_{\mathrm{f}}(\mathcal{Q})$ are the restrictions to finite subsets of Q.

Theorem (Erdős–Rado 1952)

 \mathcal{Q} is wqo if and only if $\mathcal{P}^\flat_f(\mathcal{Q})$ is wqo.

 $\mathcal Q$ wqo does not imply that any of $\mathcal P^\flat(\mathcal Q)$, $\mathcal P^\sharp(\mathcal Q)$ and $\mathcal P^\sharp_f(\mathcal Q)$ are wqo.

Well quasi-orders

The reverse mathematics of the Erdős–Rado theorem

Theorem (RCA₀)

The following are equivalent:

(i) ACA₀;
(ii) if Q is wqo, then P^b_f(Q) is wqo.

From well quasi-orders to Noetherian spaces

1 Well quasi-orders

2 From well quasi-orders to Noetherian spaces

8 Coding and the forward directions Working with $\mathcal{U}(\mathcal{P}^{\flat}_{\mathrm{f}}(\mathcal{Q}))$ and $\mathcal{U}(\mathcal{P}^{\sharp}_{\mathrm{f}}(\mathcal{Q}))$ Working with $\mathcal{U}(\mathcal{P}^{\flat}(\mathcal{Q}))$ and $\mathcal{U}(\mathcal{P}^{\sharp}(\mathcal{Q}))$

The reversals

6 The main result

6 Finer analysis?

Noetherian spaces

A topological space X is Noetherian if every open subset of X is compact.

Some equivalent characterizations of Noetherian spaces:

- every subset of X is compact;
- every increasing sequence of open subsets of X stabilizes;
- every decreasing sequence of closed subsets of X stabilizes.

Noetherian spaces are important in algebraic geometry: the set of prime ideals (aka the spectrum) of a Noetherian ring with the Zariski topology is a Noetherian space.

If a T_2 space is Noetherian then it is finite.

From quasi-orders to topological spaces

Let $\mathcal{Q} = (Q, \leq_Q)$ be a quasi-order.

The Alexandroff topology $\mathcal{A}(\mathcal{Q})$ is the topology on Q with the downward closed subsets of Q as closed sets.

The upper topology $\mathcal{U}(\mathcal{Q})$ is the topology on Q with the downward closures of finite subsets of Q as a basis for the closed sets.

Why these two topologies?

Given a topological space, define a quasi-order on the points by

 $x \preceq y \iff$ every open set that contains x also contains y.

 $\mathcal{A}(\mathcal{Q})$ is the finest topology on Q such that \leq is \leq_Q . $\mathcal{U}(\mathcal{Q})$ is the coarsest such topology.

If Q is not an antichain $\mathcal{A}(Q)$ and $\mathcal{U}(Q)$ are not T_1 .

Which features of the quasi-order ${\cal Q}$ are reflected in ${\cal A}({\cal Q})$ and ${\cal U}({\cal Q})$?

Fact

Q is wqo if and only if A(Q) is Noetherian. If Q is wqo then U(Q) is Noetherian.

Recall that by Erdős and Rado if $\mathcal Q$ is wqo, then $\mathcal P_f^\flat(\mathcal Q)$ is a wqo. Thus if $\mathcal Q$ is wqo, then $\mathcal U(\mathcal P_f^\flat(\mathcal Q))$ is Noetherian.

However $\mathcal{U}(\mathcal{Q})$ might be Noetherian even when \mathcal{Q} is not wqo.

From well quasi-orders to Noetherian spaces

 $\mathcal{U}(\mathcal{Q})$ might be Noetherian even when \mathcal{Q} is not wqo.

If \mathcal{Q} is wqo then $\mathcal{P}^{\flat}(\mathcal{Q})$, $\mathcal{P}_{f}^{\sharp}(\mathcal{Q})$ and $\mathcal{P}^{\sharp}(\mathcal{Q})$ are not necessarily wqo.

Theorem (Goubault-Larrecq, 2007)

If \mathcal{Q} is wqo then $\mathcal{U}(\mathcal{P}^{\flat}(\mathcal{Q}))$ and $\mathcal{U}(\mathcal{P}^{\sharp}_{f}(\mathcal{Q}))$ are Noetherian.

If \mathcal{Q} is wqo, for every $A \in \mathcal{P}(Q)$ there is a $B \in \mathcal{P}_{\mathrm{f}}(Q)$ such that $A \equiv^{\sharp} B$. Thus the theorem implies that if \mathcal{Q} is wqo, then $\mathcal{U}(\mathcal{P}^{\sharp}(\mathcal{Q}))$ is Noetherian.

In a subsequent paper Goubault-Larrecq applied his theorem to infinite-state verification problems.

We want to study the reverse mathematics of Goubault-Larrecq's theorem.

Coding and the forward directions

1 Well quasi-orders

2 From well quasi-orders to Noetherian spaces

4 The reversals

6 The main result

6 Finer analysis?

What topological spaces do we need to code?

\$\mathcal{U}(\mathcal{P}^{\beta}(\mathcal{Q}))\$
 \$\mathcal{U}(\mathcal{P}^{\beta}_{f}(\mathcal{Q}))\$
 \$\mathcal{U}(\mathcal{P}^{\beta}_{f}(\mathcal{Q}))\$
 \$\mathcal{U}(\mathcal{P}^{\beta}_{f}(\mathcal{Q}))\$

Assuming that Q is countably infinite $\mathcal{U}(\mathcal{P}^{\flat}_{\mathrm{f}}(\mathcal{Q})) \text{ and } \mathcal{U}(\mathcal{P}^{\sharp}_{\mathrm{f}}(\mathcal{Q})) \text{ are countable spaces with a countable basis;} \\ \mathcal{U}(\mathcal{P}^{\flat}(\mathcal{Q})) \text{ and } \mathcal{U}(\mathcal{P}^{\sharp}(\mathcal{Q})) \text{ are uncountable spaces and we described their topology using an uncountable basis.}$

Countable second countable spaces

Dorais introduced a framework for dealing with countable second countable spaces.

Definition (RCA₀)

A countable second-countable space consists of a set X, a sequence $(U_i)_{i \in I}$ of subsets of X, and a function $k : X \times I \times I \to I$ such that

- if $x \in X$, then $x \in U_i$ for some $i \in I$;
- if $x \in U_i \cap U_j$, then $x \in U_{k(x,i,j)} \subseteq U_i \cap U_j$.

Coding open sets and expressing compactness

Every function $h : \mathbb{N} \to \mathcal{P}_{\mathrm{f}}(I)$ codes the *open* set $G_h = \bigcup_{n \in \mathbb{N}} \bigcup_{i \in h(n)} U_i$.

Definition (RCA₀)

The open set G_h is *compact* if for every $f : \mathbb{N} \to \mathcal{P}_{\mathrm{f}}(I)$ with $G_h \subseteq \bigcup_{n \in \mathbb{N}} \bigcup_{i \in f(n)} U_i$, there exists N such that $G_h \subseteq \bigcup_{n < N} \bigcup_{i \in f(n)} U_i$.

Equivalent definitions of Noetherian are equivalent

Lemma (RCA₀)

For a countable second-countable space $(X, (U_i)_{i \in I}, k)$, the following statements are equivalent:

- (i) every open set is compact;
- (ii) for every open set G_h , there exists N such that $G_h = \bigcup_{n < N} \bigcup_{i \in h(n)} U_i$;
- (iii) for every sequence $(G_n)_{n \in \mathbb{N}}$ of open sets such that $\forall n G_n \subseteq G_{n+1}$, there exists N such that $\forall n > N G_n = G_N$;
- (iv) for every sequence $(F_n)_{n \in \mathbb{N}}$ of closed sets such that $\forall n F_n \supseteq F_{n+1}$, there exists N such that $\forall n > N F_n = F_N$.

Definition (RCA₀)

A countable second-countable space is *Noetherian* if it satisfies any of the equivalent conditions above.

Coding the Alexandroff and upper topologies

Definition (RCA₀)

Let ${\mathcal Q}$ be a quasi-order.

• A base for the Alexandroff topology on Q is given by $(U_q)_{q \in Q}$, where $U_q = q \uparrow$ for each $q \in Q$, and k(q, p, r) = q. Let $\mathcal{A}(Q)$ denote the countable second-countable space $(Q, (U_q)_{q \in Q}, k)$.

• A base for the upper topology on \mathcal{Q} is given by $(V_{\mathbf{i}})_{\mathbf{i}\in\mathcal{P}_{\mathrm{f}}(Q)}$, where $V_{\mathbf{i}} = Q \setminus (\mathbf{i}\downarrow)$ for each $\mathbf{i}\in\mathcal{P}_{\mathrm{f}}(Q)$, and $\ell(q,\mathbf{i},\mathbf{j}) = \mathbf{i}\cup\mathbf{j}$. Let $\mathcal{U}(\mathcal{Q})$ denote the countable second-countable space $(Q, (V_{\mathbf{i}})_{\mathbf{i}\in\mathcal{P}_{\mathrm{f}}(Q)}, \ell)$.

Basic facts

Lemma (RCA₀)

Let Q be a quasi-order.

(i) If $\mathcal{A}(\mathcal{Q})$ Noetherian, then $\mathcal{U}(\mathcal{Q})$ Noetherian.

(ii) Q is work if and only if A(Q) is Noetherian.

Corollary (ACA₀**)**

If $\mathcal Q$ is wqo then $\mathcal A(\mathcal P_f^\flat(\mathcal Q))$ and $\mathcal U(\mathcal P_f^\flat(\mathcal Q))$ are Noetherian.

We can also express "if \mathcal{Q} is word then $\mathcal{U}(\mathcal{P}_{f}^{\sharp}(\mathcal{Q}))$ is Noetherian" in RCA₀.

$\mathcal{U}(\mathcal{P}^{\flat}(\mathcal{Q}))$ and $\mathcal{U}(\mathcal{P}^{\sharp}(\mathcal{Q}))$ are second countable

 $\mathcal{U}(\mathcal{P}^{\flat}(\mathcal{Q}))$ and $\mathcal{U}(\mathcal{P}^{\sharp}(\mathcal{Q}))$ are spaces with uncountably many points. Moreover we described their topology using uncountable basis. However both spaces have (non-obvious) countable basis.

Fact

The sets of the form $\{Q \setminus (q\uparrow) \mid q \in \mathbf{i}\}\downarrow^{\flat}$, where $\mathbf{i} \in \mathcal{P}_{\mathrm{f}}(Q)$, are a basis for the closed sets of the topology of $\mathcal{U}(\mathcal{P}^{\flat}(\mathcal{Q}))$.

Fact

The sets of the form $\{ \{q\} \mid q \in \mathbf{i} \} \downarrow^{\sharp}$, where $\mathbf{i} \in \mathcal{P}_{\mathrm{f}}(Q)$, are a basis for the closed sets of the topology of $\mathcal{U}(\mathcal{P}^{\sharp}(\mathcal{Q}))$.

Where is second countability provable?

Lemma (RCA₀)

The following are equivalent:

- (i) ACA₀;
- (ii) If Q is a quasi-order and E ⊆ Q, then {E} ↓^b is a countable intersection of sets of the form {Q \ (q↑) | q ∈ i} ↓^b, with i ∈ P_f(Q);

(iii) the same statement when Q is a well order.

Lemma (RCA₀)

If Q is a quasi-order and $E \subseteq Q$, then $\{E\} \downarrow^{\sharp}$ is a countable intersection of sets of the form $\{\{q\} \mid q \in \mathbf{i}\} \downarrow^{\sharp}$, with $\mathbf{i} \in \mathcal{P}_{\mathrm{f}}(Q)$.

A scheme for representing uncountable second-countable spaces

A second-countable space is coded by a set $I \subseteq \mathbb{N}$ and formulas $\varphi(X)$, $\Psi_{=}(X,Y)$, and $\Psi_{\in}(X,n)$ I is the set of codes for open sets $\varphi(X)$ means "X codes a point" $\Psi_{=}(X,Y)$ means "X and Y code the same point" $\Psi_{\in}(X,i)$ means "the point coded by X belongs to the open set coded by $i \in I$ "

We ask that

- if $\varphi(X)$, then $\Psi_{\in}(X,i)$ for some $i \in I$;
- if $\varphi(X)$, $\Psi_{\in}(X, i)$, and $\Psi_{\in}(X, j)$ for some $i, j \in I$, then there exists $k \in I$ such that $\Psi_{\in}(X, k)$ and $\forall Y[\Psi_{\in}(Y, k) \implies (\Psi_{\in}(Y, i) \land \Psi_{\in}(Y, j))];$ • if $\varphi(X) \to \varphi(Y)$ if (X, i) for some $i \in I$ and $\Psi_{\in}(X, Y)$ then
- if $\varphi(X)$, $\varphi(Y)$, $\Psi_{\in}(X,i)$ for some $i \in I$, and $\Psi_{=}(X,Y)$, then $\Psi_{\in}(Y,i)$.

Old codings of spaces fit in this scheme

When we code a complete separable metric space (A,d) using a countable dense set A, we let $I=A\times \mathbb{Q}^+$ and then set

- φ(X) ^{def} = "X is a rapidly converging Cauchy sequence of points in A"
 Ψ₌(X,Y) ^{def} = "the distances between the points of the sequences X and Y go to 0 fast enough"
- ▶ $\Psi_{\in}(X, (a, q)) \stackrel{\text{def}}{=}$ "the distance between the point coded by X and $a \in A$ is less than $q \in \mathbb{Q}^+$ "

Also, Mummert's MF spaces (second-countable T_1 spaces with the strong Choquet property) can be accomodated by our scheme.

Working with $\mathcal{U}(\mathcal{P}^{\flat}(\mathcal{Q}))$ and $\mathcal{U}(\mathcal{P}^{\sharp}(\mathcal{Q}))$

The codings for $\mathcal{U}(\mathcal{P}^{\flat}(\mathcal{Q}))$ and $\mathcal{U}(\mathcal{P}^{\sharp}(\mathcal{Q}))$

Definition (RCA₀)

Let \mathcal{Q} be a quasi-order.

The second-countable space $\mathcal{U}(\mathcal{P}^{\flat}(\mathcal{Q}))$ is coded by the set $I = \mathcal{P}_{\mathrm{f}}(Q)$ and the formulas:

•
$$\varphi(X) \stackrel{\text{\tiny def}}{=} X \subseteq Q;$$

•
$$\Psi_{=}(X,Y) \stackrel{\text{\tiny def}}{=} X = Y;$$

•
$$\Psi_{\in}(X, \mathbf{i}) \stackrel{\text{\tiny def}}{=} \mathbf{i} \subseteq X \downarrow.$$

The second-countable space $\mathcal{U}(\mathcal{P}^{\sharp}(\mathcal{Q}))$ is coded by the set $I = \mathcal{P}_{f}(Q)$ and the formulas:

•
$$\varphi(X) \stackrel{\text{\tiny def}}{=} X \subseteq Q;$$

•
$$\Psi_{=}(X,Y) \stackrel{\text{def}}{=} X = Y;$$

•
$$\Psi_{\in}(X, \mathbf{i}) \stackrel{\text{\tiny def}}{=} \mathbf{i} \cap X \uparrow = \emptyset.$$

Relations between topologies

Using these codings we can formalize the statements " $\mathcal{U}(\mathcal{P}^{\flat}(\mathcal{Q}))$ is Noetherian" and " $\mathcal{U}(\mathcal{P}^{\sharp}(\mathcal{Q}))$ is Noetherian" (the equivalence of the various definitions is provable in RCA₀).

In general, $\mathcal{U}(\mathcal{P}^{\flat}_{f}(\mathcal{Q}))$ is strictly coarser than the subspace topology on $\mathcal{P}_{f}(\mathcal{Q})$ induced by $\mathcal{U}(\mathcal{P}^{\flat}(\mathcal{Q})).$

However, $\mathcal{U}(\mathcal{P}_f^\sharp(\mathcal{Q}))$ is the subspace topology on $\mathcal{P}_f(\mathcal{Q})$ induced by $\mathcal{U}(\mathcal{P}^\sharp(\mathcal{Q})).$

Theorem (RCA₀)

Let Q be a quasi-order.

1 If $\mathcal{U}(\mathcal{P}^{\flat}(\mathcal{Q}))$ is Noetherian, then $\mathcal{U}(\mathcal{P}^{\flat}_{f}(\mathcal{Q}))$ is Noetherian.

2 If $\mathcal{U}(\mathcal{P}^{\sharp}(\mathcal{Q}))$ is Noetherian, then $\mathcal{U}(\mathcal{P}_{f}^{\sharp}(\mathcal{Q}))$ is Noetherian.

This is not entirely trivial because the codings are different!

Proving Goubault-Larrecq's theorems

Theorem (ACA₀)

If Q is wqo then $\mathcal{U}(\mathcal{P}^{\flat}(Q))$ and $\mathcal{U}(\mathcal{P}^{\sharp}(Q))$ are Noetherian.

Goubault-Larrecq's original proofs are category-theoretic. We need to use completely different, more elementary, arguments.

Corollary (ACA₀**)**

If $\mathcal Q$ is wqo then $\mathcal U(\mathcal P_f^\flat(\mathcal Q))$ and $\mathcal U(\mathcal P_f^\sharp(\mathcal Q))$ are Noetherian.

The reversals

1 Well quasi-orders

2 From well quasi-orders to Noetherian spaces

Original the forward directions Working with $\mathcal{U}(\mathcal{P}^{\flat}_{\mathrm{f}}(\mathcal{Q}))$ and $\mathcal{U}(\mathcal{P}^{\sharp}_{\mathrm{f}}(\mathcal{Q}))$ Working with $\mathcal{U}(\mathcal{P}^{\flat}(\mathcal{Q}))$ and $\mathcal{U}(\mathcal{P}^{\sharp}(\mathcal{Q}))$

4 The reversals

G The main result

6 Finer analysis?

The strategy for reversals

We want to show that

if $\mathcal Q$ is a wqo, then $\mathcal U(\mathcal P_f^\star(\mathcal Q))$ is Noetherian

implies ACA₀ over RCA₀ (where $\star \in \{\flat, \sharp\}$).

Our strategy is to produce, given an injective $f : \mathbb{N} \to \mathbb{N}$, a *f*-computable \mathcal{Q} such that RCA_0 proves:

- $\mathcal{U}(\mathcal{P}^{\star}_{\mathrm{f}}(\mathcal{Q}))$ is not Noetherian;
- if g is a bad sequence in \mathcal{Q} , then $g \oplus f$ computes $\operatorname{ran}(f)$.

True and false stages of f

 $f:\mathbb{N}\to\mathbb{N}$ is injective

• n is f-true if $\forall k > n f(n) < f(k)$;

n is f-true at stage s if n < s and ∀k (n < k ≤ s ⇒ f(n) < f(k)).
 Otherwise n is false (at stage s).

If g is an injective sequence of true numbers, then $ran(f) \leq_T g \oplus f$ because we may assume that g is strictly increasing and then

$$k \in \operatorname{ran}(f) \iff \exists n \le g(k) f(n) = k.$$

A pseudo well order

 $f:\mathbb{N}\to\mathbb{N}$ is injective

The prototype of a construction using true and false stages produces a linear order ${\cal L}$ such that

- \mathcal{L} has order type $\omega + \omega^*$;
- the ω part of $\mathcal L$ consists of the f-false stages and is Σ_1^0 in f;
- the ω^* part of \mathcal{L} consists of the *f*-true stages and is Π^0_1 in *f*.

Thus, if we know that \mathcal{L} is not a well order then we can compute ran(f).

 \mathcal{L} is defined recursively: we put the new element s below the n's that are f-true at stage s and above the n's that are f-false at stage s.

Generalizing the construction

 $f:\mathbb{N}\rightarrow\mathbb{N}$ is injective

We generalize the previous construction: rather then adding one element, at each stage we add a finite partial order \mathcal{R} with a designated point x.

By controlling how the s-th copy of \mathcal{R} sits into the construction (depending on the *n*'s that are *f*-true and *f*-false at stage *s*) we define a partial order $\Xi_f(\mathcal{R}, x)$ so that

Lemma (RCA₀)

If $\Xi_f(\mathcal{R}, x)$ is not a wqo then $\operatorname{ran}(f)$ exists.

The reversals

 $f:\mathbb{N}\to\mathbb{N}$ is injective

Making appropriate choices of \mathcal{R} and x we build $\mathcal{Q} = \Xi_f(\mathcal{R}, x)$ such that $\mathcal{U}(\mathcal{P}^\flat_f(\mathcal{Q}))$ is not Noetherian and obtain

Theorem (RCA₀)

The statement "if Q is word then $\mathcal{U}(\mathcal{P}^{\flat}_{f}(Q))$ is Noetherian" implies ACA₀.

Using a different \mathcal{R} we get

Theorem (RCA₀**)**

The statement "if Q is word then $\mathcal{U}(\mathcal{P}_{f}^{\sharp}(Q))$ is Noetherian" implies ACA₀.

The main result

1 Well quasi-orders

2 From well quasi-orders to Noetherian spaces

Original the forward directions Working with $\mathcal{U}(\mathcal{P}^{\flat}_{\mathrm{f}}(\mathcal{Q}))$ and $\mathcal{U}(\mathcal{P}^{\sharp}_{\mathrm{f}}(\mathcal{Q}))$ Working with $\mathcal{U}(\mathcal{P}^{\flat}(\mathcal{Q}))$ and $\mathcal{U}(\mathcal{P}^{\sharp}(\mathcal{Q}))$

4 The reversals

6 The main result

6 Finer analysis?

Summing up: the reverse mathematics of Goubault-Larrecq's theorems

Main Theorem (RCA₀)

The following are equivalent:

(i) ACA₀;

- (ii) if Q is word then $\mathcal{A}(\mathcal{P}^{\flat}_{f}(Q))$ is Noetherian;
- (iii) if Q is word then $\mathcal{U}(\mathcal{P}^{\flat}_{\mathrm{f}}(Q))$ is Noetherian;
- (iv) if Q is word then $\mathcal{U}(\mathcal{P}^{\sharp}_{f}(Q))$ is Noetherian;
- (v) if Q is word then $\mathcal{U}(\mathcal{P}^{\flat}(Q))$ is Noetherian;
- (vi) if Q is word then $\mathcal{U}(\mathcal{P}^{\sharp}(Q))$ is Noetherian.

Finer analysis?

1 Well quasi-orders

Prom well quasi-orders to Noetherian spaces

Original the forward directions Working with $\mathcal{U}(\mathcal{P}^{\flat}_{\mathrm{f}}(\mathcal{Q}))$ and $\mathcal{U}(\mathcal{P}^{\sharp}_{\mathrm{f}}(\mathcal{Q}))$ Working with $\mathcal{U}(\mathcal{P}^{\flat}(\mathcal{Q}))$ and $\mathcal{U}(\mathcal{P}^{\sharp}(\mathcal{Q}))$

4 The reversals

6 The main result

6 Finer analysis?

$\mathbf{\Pi}_2^1$ statements

Many theorems studied in reverse mathematics are $\mathbf{\Pi}_2^1$ statements of the form

$$\forall X(\Phi(X) \implies \exists Y \Psi(X,Y))$$

where Φ and Ψ are arithmetical.

In this situation we often say that an X such that $\Phi(X)$ is a problem, and a Y satisfying $\Psi(X,Y)$ is a solution to the problem.

We look at the multi-valued map assigning to a problem the set of its solutions.

We compare these multi-valued maps using (strong) Weihrauch reducibility and/or (strong) reducibility.

These reductions lead to a finer analysis of the strength of the statements.

Goubault-Larrecq's theorems as Π_2^1 statements

Goubault-Larrecq's theorems are indeed Π^1_2 statements, but they are of the following form:

$$\forall X (\forall Z \, \Phi(X, Z) \implies \forall Y \, \Psi(X, Y))$$

with Φ and Ψ arithmetical.

In fact both " \mathcal{Q} is wqo" and " $\mathcal{U}(\mathcal{Q})$ is Noetherian" are Π_1^1 .

These statements do not fit nicely into the problem/solution pattern.

We can rewrite them as

$$\forall X \,\forall Y (\neg \Psi(X,Y) \implies \exists Z \,\neg \Phi(X,Z)).$$

A problem is a pair consisting of a quasi-order $\mathcal Q$ and a witness to the fact that $\mathcal U(\mathcal P_f^\flat(\mathcal Q))$ is not Noetherian. Its solutions are the bad sequences in $\mathcal Q.$

Finer analysis?

Which is the real form of Goubault-Larrecq's theorems?

In fact our proofs of both directions of the reverse mathematics results actually consider statements such as

if $\mathcal{U}(\mathcal{P}^\flat_f(\mathcal{Q}))$ is not Noetherian then $\mathcal Q$ is not wqo

Thank you for your attention!