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Well quasi-orders

Well quasi-orders

A quasi-order is a binary relation which is reflexive and transitive
(no antisymmetry).

A quasi-order Q = (Q,≤Q) is a well quasi-order (wqo)
if for every f : N→ Q there exists i < j such that f(i) ≤Q f(j).

There are many equivalent characterizations of wqos:

• Q is well-founded and has no infinite antichains;

• every sequence in Q has a weakly increasing subsequence;

• every nonempty subset of Q has a finite set of minimal elements;

• all linear extensions of Q are well orders.

The reverse mathematics and computability theory of these equivalences
has been studied in (Cholak-M-Solomon 2004).

All equivalences are provable in WKL0+CAC.
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Well quasi-orders

Some examples of wqos

• Finite partial orders

• Well-orders

• Finite strings over a finite alphabet (Higman, 1952)

• Finite trees (Kruskal, 1960)

• Transfinite sequences with finite labels (Nash-Williams, 1965)

• Countable linear orders (Laver 1971, proving Fräıssé’s conjecture)

• Finite graphs (Robertson and Seymour, 2004)

The ordering is some kind of embeddability
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Well quasi-orders

Closure properties of wqos

• The sum and disjoint sum of two wqos are wqos

• The product of two wqos is a wqo

• Finite strings over a wqo are a wqo (Higman, 1952)

• Finite trees with labels from a wqo are a wqo (Kruskal, 1960)

• Transfinite sequences with labels from a wqo which use only finitely
many labels are a wqo (Nash-Williams, 1965)
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Well quasi-orders

Quasi-orders on the powerset

Let Q = (Q,≤Q) be a quasi-order. For A,B ∈ P(Q):

A ≤[ B ⇐⇒ ∀a ∈ A∃b ∈ B a ≤Q b ⇐⇒ A ⊆ B ↓
A ≤] B ⇐⇒ ∀b ∈ B ∃a ∈ Aa ≤Q b ⇐⇒ B ⊆ A ↑

Let P[(Q) = (P(Q),≤[) and P](Q) = (P(Q),≤]).

P[
f (Q) and P]

f (Q) are the restrictions to finite subsets of Q.

Theorem (Erdős–Rado 1952)

Q is wqo if and only if P[
f (Q) is wqo.

Q wqo does not imply that any of P[(Q), P](Q) and P]
f (Q) are wqo.
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Well quasi-orders

The reverse mathematics of the Erdős–Rado
theorem

Theorem (RCA0)

The following are equivalent:

(i) ACA0;

(ii) if Q is wqo, then P[
f (Q) is wqo.
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From well quasi-orders to Noetherian spaces

Noetherian spaces

A topological space X is Noetherian if every open subset of X is compact.

Some equivalent characterizations of Noetherian spaces:

• every subset of X is compact;

• every increasing sequence of open subsets of X stabilizes;

• every decreasing sequence of closed subsets of X stabilizes.

Noetherian spaces are important in algebraic geometry:
the set of prime ideals (aka the spectrum) of a Noetherian ring with the
Zariski topology is a Noetherian space.

If a T2 space is Noetherian then it is finite.
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From well quasi-orders to Noetherian spaces

From quasi-orders to topological spaces

Let Q = (Q,≤Q) be a quasi-order.

The Alexandroff topology A(Q) is the topology on Q with the downward
closed subsets of Q as closed sets.

The upper topology U(Q) is the topology on Q with the downward
closures of finite subsets of Q as a basis for the closed sets.

Why these two topologies?
Given a topological space, define a quasi-order on the points by

x � y ⇐⇒ every open set that contains x also contains y.

A(Q) is the finest topology on Q such that � is ≤Q.
U(Q) is the coarsest such topology.

If Q is not an antichain A(Q) and U(Q) are not T1.
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From well quasi-orders to Noetherian spaces

Which features of the quasi-order Q are reflected in
A(Q) and U(Q)?

Fact

Q is wqo if and only if A(Q) is Noetherian.
If Q is wqo then U(Q) is Noetherian.

Recall that by Erdős and Rado if Q is wqo, then P[
f (Q) is a wqo.

Thus if Q is wqo, then U(P[
f (Q)) is Noetherian.

However U(Q) might be Noetherian even when Q is not wqo.
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From well quasi-orders to Noetherian spaces

From well quasi-orders to Noetherian spaces

U(Q) might be Noetherian even when Q is not wqo.

If Q is wqo then P[(Q), P]
f (Q) and P](Q) are not necessarily wqo.

Theorem (Goubault-Larrecq, 2007)

If Q is wqo then U(P[(Q)) and U(P]
f (Q)) are Noetherian.

If Q is wqo, for every A ∈ P(Q) there is a B ∈ Pf(Q) such that A ≡] B.
Thus the theorem implies that if Q is wqo, then U(P](Q)) is Noetherian.

In a subsequent paper Goubault-Larrecq applied his theorem
to infinite-state verification problems.

We want to study the reverse mathematics of Goubault-Larrecq’s theorem.
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Coding and the forward directions

What topological spaces do we need to code?

1 U(P[(Q))

2 U(P[
f (Q))

3 U(P](Q))

4 U(P]
f (Q))

Assuming that Q is countably infinite

U(P[
f (Q)) and U(P]

f (Q)) are countable spaces with a countable basis;

U(P[(Q)) and U(P](Q)) are uncountable spaces and we described their
topology using an uncountable basis.
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Coding and the forward directions Working with U(P[
f (Q)) and U(P]

f
(Q))

Countable second countable spaces

Dorais introduced a framework for dealing with countable second
countable spaces.

Definition (RCA0)

A countable second-countable space consists of a set X, a sequence
(Ui)i∈I of subsets of X, and a function k : X × I × I → I such that

• if x ∈ X, then x ∈ Ui for some i ∈ I;

• if x ∈ Ui ∩ Uj , then x ∈ Uk(x,i,j) ⊆ Ui ∩ Uj .
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Coding and the forward directions Working with U(P[
f (Q)) and U(P]

f
(Q))

Coding open sets and expressing compactness

Every function h : N→ Pf(I) codes the open set Gh =
⋃

n∈N
⋃

i∈h(n) Ui.

Definition (RCA0)

The open set Gh is compact if for every f : N→ Pf(I) with
Gh ⊆

⋃
n∈N

⋃
i∈f(n) Ui, there exists N such that Gh ⊆

⋃
n<N

⋃
i∈f(n) Ui.
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Coding and the forward directions Working with U(P[
f (Q)) and U(P]

f
(Q))

Equivalent definitions of Noetherian are equivalent

Lemma (RCA0)

For a countable second-countable space (X, (Ui)i∈I , k), the following
statements are equivalent:

(i) every open set is compact;

(ii) for every open set Gh, there exists N such that
Gh =

⋃
n<N

⋃
i∈h(n) Ui;

(iii) for every sequence (Gn)n∈N of open sets such that ∀nGn ⊆ Gn+1,
there exists N such that ∀n > N Gn = GN ;

(iv) for every sequence (Fn)n∈N of closed sets such that ∀nFn ⊇ Fn+1,
there exists N such that ∀n > N Fn = FN .

Definition (RCA0)

A countable second-countable space is Noetherian if it satisfies any of the
equivalent conditions above.
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Coding and the forward directions Working with U(P[
f (Q)) and U(P]

f
(Q))

Coding the Alexandroff and upper topologies

Definition (RCA0)

Let Q be a quasi-order.

• A base for the Alexandroff topology on Q is given by (Uq)q∈Q,
where Uq = q ↑ for each q ∈ Q, and k(q, p, r) = q.
Let A(Q) denote the countable second-countable space
(Q, (Uq)q∈Q, k).

• A base for the upper topology on Q is given by (Vi)i∈Pf(Q),
where Vi = Q \ (i ↓) for each i ∈ Pf(Q), and `(q, i, j) = i ∪ j.
Let U(Q) denote the countable second-countable space
(Q, (Vi)i∈Pf(Q), `).
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Coding and the forward directions Working with U(P[
f (Q)) and U(P]

f
(Q))

Basic facts

Lemma (RCA0)

Let Q be a quasi-order.

(i) If A(Q) Noetherian, then U(Q) Noetherian.

(ii) Q is wqo if and only if A(Q) is Noetherian.

Corollary (ACA0)

If Q is wqo then A(P[
f (Q)) and U(P[

f (Q)) are Noetherian.

We can also express “if Q is wqo then U(P]
f (Q)) is Noetherian” in RCA0.
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Coding and the forward directions Working with U(P[(Q)) and U(P](Q))

U(P [(Q)) and U(P ](Q)) are second countable

U(P[(Q)) and U(P](Q)) are spaces with uncountably many points.
Moreover we described their topology using uncountable basis.

However both spaces have (non-obvious) countable basis.

Fact

The sets of the form {Q \ (q ↑) | q ∈ i } ↓[, where i ∈ Pf(Q),
are a basis for the closed sets of the topology of U(P[(Q)).

Fact

The sets of the form { {q} | q ∈ i } ↓], where i ∈ Pf(Q),
are a basis for the closed sets of the topology of U(P](Q)).
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Coding and the forward directions Working with U(P[(Q)) and U(P](Q))

Where is second countability provable?

Lemma (RCA0)

The following are equivalent:

(i) ACA0;

(ii) If Q is a quasi-order and E ⊆ Q, then {E} ↓[ is a countable
intersection of sets of the form {Q \ (q ↑) | q ∈ i } ↓[, with i ∈ Pf(Q);

(iii) the same statement when Q is a well order.

Lemma (RCA0)

If Q is a quasi-order and E ⊆ Q, then {E} ↓] is a countable intersection of
sets of the form { {q} | q ∈ i } ↓], with i ∈ Pf(Q).
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Coding and the forward directions Working with U(P[(Q)) and U(P](Q))

A scheme for representing uncountable
second-countable spaces

A second-countable space is coded by a set I ⊆ N and formulas ϕ(X),
Ψ=(X,Y ), and Ψ∈(X,n)

I is the set of codes for open sets

ϕ(X) means “X codes a point”

Ψ=(X,Y ) means “X and Y code the same point”

Ψ∈(X, i) means “the point coded by X belongs to the open set coded
by i ∈ I”

We ask that

• if ϕ(X), then Ψ∈(X, i) for some i ∈ I;

• if ϕ(X), Ψ∈(X, i), and Ψ∈(X, j) for some i, j ∈ I, then there exists
k ∈ I such that Ψ∈(X, k) and
∀Y [Ψ∈(Y, k) =⇒ (Ψ∈(Y, i) ∧Ψ∈(Y, j))];

• if ϕ(X), ϕ(Y ), Ψ∈(X, i) for some i ∈ I, and Ψ=(X,Y ), then
Ψ∈(Y, i).
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Coding and the forward directions Working with U(P[(Q)) and U(P](Q))

Old codings of spaces fit in this scheme

When we code a complete separable metric space (A, d) using a countable
dense set A, we let I = A×Q+ and then set

I ϕ(X)
def
= “X is a rapidly converging Cauchy sequence of points in A”

I Ψ=(X,Y )
def
= “the distances between the points of the sequences X

and Y go to 0 fast enough”

I Ψ∈(X, (a, q))
def
= “the distance between the point coded by X and

a ∈ A is less than q ∈ Q+”

Also, Mummert’s MF spaces (second-countable T1 spaces with the strong
Choquet property) can be accomodated by our scheme.
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Coding and the forward directions Working with U(P[(Q)) and U(P](Q))

The codings for U(P [(Q)) and U(P ](Q))

Definition (RCA0)

Let Q be a quasi-order.
The second-countable space U(P[(Q)) is coded by the set I = Pf(Q)
and the formulas:

• ϕ(X)
def
= X ⊆ Q;

• Ψ=(X,Y )
def
= X = Y ;

• Ψ∈(X, i)
def
= i ⊆ X ↓.

The second-countable space U(P](Q)) is coded by the set I = Pf(Q)
and the formulas:

• ϕ(X)
def
= X ⊆ Q;

• Ψ=(X,Y )
def
= X = Y ;

• Ψ∈(X, i)
def
= i ∩X ↑ = ∅.
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Coding and the forward directions Working with U(P[(Q)) and U(P](Q))

Relations between topologies

Using these codings we can formalize the statements
“U(P[(Q)) is Noetherian” and “U(P](Q)) is Noetherian”
(the equivalence of the various definitions is provable in RCA0).

In general, U(P[
f (Q)) is strictly coarser than the subspace topology on

Pf(Q) induced by U(P[(Q)).

However, U(P]
f (Q)) is the subspace topology on Pf(Q) induced by

U(P](Q)).

Theorem (RCA0)

Let Q be a quasi-order.

1 If U(P[(Q)) is Noetherian, then U(P[
f (Q)) is Noetherian.

2 If U(P](Q)) is Noetherian, then U(P]
f (Q)) is Noetherian.

This is not entirely trivial because the codings are different!
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Coding and the forward directions Working with U(P[(Q)) and U(P](Q))

Proving Goubault-Larrecq’s theorems

Theorem (ACA0)

If Q is wqo then U(P[(Q)) and U(P](Q)) are Noetherian.

Goubault-Larrecq’s original proofs are category-theoretic.
We need to use completely different, more elementary, arguments.

Corollary (ACA0)

If Q is wqo then U(P[
f (Q)) and U(P]

f (Q)) are Noetherian.
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The reversals

The strategy for reversals

We want to show that

if Q is a wqo, then U(P?
f (Q)) is Noetherian

implies ACA0 over RCA0 (where ? ∈ {[, ]}).

Our strategy is to produce, given an injective f : N→ N,
a f -computable Q such that RCA0 proves:

• U(P?
f (Q)) is not Noetherian;

• if g is a bad sequence in Q, then g ⊕ f computes ran(f).
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The reversals

True and false stages of f

f : N→ N is injective

• n is f -true if ∀k > nf(n) < f(k);

• n is f -true at stage s if n < s and ∀k (n < k ≤ s =⇒ f(n) < f(k)).

Otherwise n is false (at stage s).

If g is an injective sequence of true numbers, then ran(f) ≤T g ⊕ f
because we may assume that g is strictly increasing and then

k ∈ ran(f) ⇐⇒ ∃n ≤ g(k) f(n) = k.
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The reversals

A pseudo well order

f : N→ N is injective

The prototype of a construction using true and false stages produces
a linear order L such that

• L has order type ω + ω∗;

• the ω part of L consists of the f -false stages and is Σ0
1 in f ;

• the ω∗ part of L consists of the f -true stages and is Π0
1 in f .

Thus, if we know that L is not a well order then we can compute ran(f).

L is defined recursively: we put the new element s below the n’s that are
f -true at stage s and above the n’s that are f -false at stage s.
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The reversals

Generalizing the construction

f : N→ N is injective

We generalize the previous construction: rather then adding one element,
at each stage we add a finite partial order R with a designated point x.

By controlling how the s-th copy of R sits into the construction
(depending on the n’s that are f -true and f -false at stage s)
we define a partial order Ξf (R, x) so that

Lemma (RCA0)

If Ξf (R, x) is not a wqo then ran(f) exists.
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The reversals

The reversals

f : N→ N is injective

Making appropriate choices of R and x we build Q = Ξf (R, x) such that
U(P[

f (Q)) is not Noetherian and obtain

Theorem (RCA0)

The statement “if Q is wqo then U(P[
f (Q)) is Noetherian” implies ACA0.

Using a different R we get

Theorem (RCA0)

The statement “if Q is wqo then U(P]
f (Q)) is Noetherian” implies ACA0.
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The main result

Summing up: the reverse mathematics of
Goubault-Larrecq’s theorems

Main Theorem (RCA0)

The following are equivalent:

(i) ACA0;

(ii) if Q is wqo then A(P[
f (Q)) is Noetherian;

(iii) if Q is wqo then U(P[
f (Q)) is Noetherian;

(iv) if Q is wqo then U(P]
f (Q)) is Noetherian;

(v) if Q is wqo then U(P[(Q)) is Noetherian;

(vi) if Q is wqo then U(P](Q)) is Noetherian.
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Finer analysis?
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Alberto Marcone (Università di Udine) WQOs and Noetherian Spaces CTFM 2015 36 / 40



Finer analysis?

Π1
2 statements

Many theorems studied in reverse mathematics are Π1
2 statements of the

form
∀X(Φ(X) =⇒ ∃Y Ψ(X,Y ))

where Φ and Ψ are arithmetical.

In this situation we often say that an X such that Φ(X) is a problem,
and a Y satisfying Ψ(X,Y ) is a solution to the problem.

We look at the multi-valued map assigning to a problem the set of its
solutions.
We compare these multi-valued maps using (strong) Weihrauch
reducibility and/or (strong) reducibility.

These reductions lead to a finer analysis of the strength of the statements.
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Finer analysis?

Goubault-Larrecq’s theorems as Π1
2 statements

Goubault-Larrecq’s theorems are indeed Π1
2 statements, but they are of

the following form:

∀X(∀Z Φ(X,Z) =⇒ ∀Y Ψ(X,Y ))

with Φ and Ψ arithmetical.

In fact both “Q is wqo” and “U(Q) is Noetherian” are Π1
1.

These statements do not fit nicely into the problem/solution pattern.

We can rewrite them as

∀X ∀Y (¬Ψ(X,Y ) =⇒ ∃Z ¬Φ(X,Z)).

A problem is a pair consisting of a quasi-order Q and a witness to the fact
that U(P[

f (Q)) is not Noetherian.
Its solutions are the bad sequences in Q.
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Finer analysis?

Which is the real form of Goubault-Larrecq’s
theorems?

In fact our proofs of both directions of the reverse mathematics results
actually consider statements such as

if U(P[
f (Q)) is not Noetherian then Q is not wqo
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Thank you for your attention!
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