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Domination for Partial Functions

Definition

Let f ,g ⊂ ωω be partial functions. Then g dominates f if for all
sufficiently large n, if f (n) is defined, then f (n) ≤ g(m) for some
m ≤ n such that g(m) is defined.

Definition

Let A ⊆ ω. Then A is pdominant if there is an e such that ΦA
e

dominates every partial recursive function.

Problem: Study the recursion-theoretic properties of pdominant
sets.
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History and Motivation

For total functions, the corresponding notion of domination
is well investigated.
(Martin 1967) An r.e. set A is high (i.e. A′ ≡T ∅′′) if and only
if there is an e such that ΦA

e is total and for each total
recursive f , ΦA

e (n) ≥ f (n) for all sufficiently large n.
Functions dominating partial recursive functions (called
“self-generating functions”) occur naturally in the
construction of a nonstandard model of SRT2

2 in which RT2
2

fails. Controlling their growth rates is a major issue.
It leads to the introduction of the BMEk (k < ω) principle
(Chong, Slaman and Yang (2014)).
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History and Motivation

Over RCA0 + BΣ2, BME1 is equivalent to PΣ1.
Kreuzer and Yokoyama have shown that over this theory,
BME1 is equivalent to the totality of the Ackermann
function.
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Π0
1 Class and pDomination

Theorem

1 There is a nontrivial Π0
1 class with no pdominant members.

2 There is a Π0
1 class with only pdominant members.

Proof.
(1). Construct a partial recursive function and let the Π0

1 class
be the collection of all its total extensions.
(2). There is a Π0

1 class whose only nonrecursive member has
complete Turing degree.
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Genericity and pDomination

An extension function is a partial function h mapping binary
strings to binary strings such that if h(σ) is defined, then
σ ⊂ h(σ).
A is 1-generic if it meets every partial recursive extension
function.
A is weakly 2-generic if it meets every partial ∅′-recursive
extension function.

Theorem

1 There is a 1-generic set that is pdominant.
2 No weakly 2-generic set is pdominant.
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Lowness and pDomination

Theorem

1 There is a superlow pdominant set.
2 There is a high r.e. set that is not pdominant.
3 No pdominant set is low for Martin-Löf random.

Note. RCA0 + BΣ2 + “There is a low pdominant set” does not
prove Σ2 induction.
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