Partial Functions and Domination

C T Chong

National University of Singapore

chongct@math.nus.edu.sg

CTFM, Tokyo 7–11 September 2015

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition

Let $f, g \subset \omega^{\omega}$ be partial functions. Then g dominates f if for all sufficiently large n, if f(n) is defined, then $f(n) \leq g(m)$ for some $m \leq n$ such that g(m) is defined.

Definition

Let $A \subseteq \omega$. Then A is *pdominant* if there is an *e* such that Φ_e^A dominates every partial recursive function.

Problem: Study the recursion-theoretic properties of pdominant sets.

Definition

Let $f, g \subset \omega^{\omega}$ be partial functions. Then g dominates f if for all sufficiently large n, if f(n) is defined, then $f(n) \leq g(m)$ for some $m \leq n$ such that g(m) is defined.

Definition

Let $A \subseteq \omega$. Then A is *pdominant* if there is an *e* such that Φ_e^A dominates every partial recursive function.

Problem: Study the recursion-theoretic properties of pdominant sets.

Definition

Let $f, g \subset \omega^{\omega}$ be partial functions. Then g dominates f if for all sufficiently large n, if f(n) is defined, then $f(n) \leq g(m)$ for some $m \leq n$ such that g(m) is defined.

Definition

Let $A \subseteq \omega$. Then A is *pdominant* if there is an *e* such that Φ_e^A dominates every partial recursive function.

Problem: Study the recursion-theoretic properties of pdominant sets.

(日) (日) (日) (日) (日) (日) (日)

Definition

Let $f, g \subset \omega^{\omega}$ be partial functions. Then g dominates f if for all sufficiently large n, if f(n) is defined, then $f(n) \leq g(m)$ for some $m \leq n$ such that g(m) is defined.

Definition

Let $A \subseteq \omega$. Then A is *pdominant* if there is an *e* such that Φ_e^A dominates every partial recursive function.

Problem: Study the recursion-theoretic properties of pdominant sets.

- For total functions, the corresponding notion of domination is well investigated.
- (Martin 1967) An r.e. set *A* is high (i.e. $A' \equiv_T \emptyset''$) if and only if there is an *e* such that Φ_e^A is total and for each total recursive *f*, $\Phi_e^A(n) \ge f(n)$ for all sufficiently large *n*.
- Functions dominating partial recursive functions (called "self-generating functions") occur naturally in the construction of a nonstandard model of SRT²₂ in which RT²₂ fails. Controlling their growth rates is a major issue.
- It leads to the introduction of the BME_k (k < ω) principle (Chong, Slaman and Yang (2014)).

For total functions, the corresponding notion of domination is well investigated.

- (Martin 1967) An r.e. set *A* is high (i.e. $A' \equiv_T \emptyset''$) if and only if there is an *e* such that Φ_e^A is total and for each total recursive *f*, $\Phi_e^A(n) \ge f(n)$ for all sufficiently large *n*.
- Functions dominating partial recursive functions (called "self-generating functions") occur naturally in the construction of a nonstandard model of SRT²₂ in which RT²₂ fails. Controlling their growth rates is a major issue.
- It leads to the introduction of the BME_k ($k < \omega$) principle (Chong, Slaman and Yang (2014)).

- For total functions, the corresponding notion of domination is well investigated.
- (Martin 1967) An r.e. set *A* is high (i.e. $A' \equiv_T \emptyset''$) if and only if there is an *e* such that Φ_e^A is total and for each total recursive *f*, $\Phi_e^A(n) \ge f(n)$ for all sufficiently large *n*.
- Functions dominating partial recursive functions (called "self-generating functions") occur naturally in the construction of a nonstandard model of SRT²₂ in which RT²₂ fails. Controlling their growth rates is a major issue.
- It leads to the introduction of the BME_k ($k < \omega$) principle (Chong, Slaman and Yang (2014)).

- For total functions, the corresponding notion of domination is well investigated.
- (Martin 1967) An r.e. set *A* is high (i.e. $A' \equiv_T \emptyset''$) if and only if there is an *e* such that Φ_e^A is total and for each total recursive *f*, $\Phi_e^A(n) \ge f(n)$ for all sufficiently large *n*.
- Functions dominating partial recursive functions (called "self-generating functions") occur naturally in the construction of a nonstandard model of SRT²₂ in which RT²₂ fails. Controlling their growth rates is a major issue.
- It leads to the introduction of the BME_k (k < ω) principle (Chong, Slaman and Yang (2014)).

- For total functions, the corresponding notion of domination is well investigated.
- (Martin 1967) An r.e. set *A* is high (i.e. $A' \equiv_T \emptyset''$) if and only if there is an *e* such that Φ_e^A is total and for each total recursive *f*, $\Phi_e^A(n) \ge f(n)$ for all sufficiently large *n*.
- Functions dominating partial recursive functions (called "self-generating functions") occur naturally in the construction of a nonstandard model of SRT²₂ in which RT²₂ fails. Controlling their growth rates is a major issue.
- It leads to the introduction of the BME_k (k < ω) principle (Chong, Slaman and Yang (2014)).

- Over $RCA_0 + B\Sigma_2$, BME_1 is equivalent to $P\Sigma_1$.
- Kreuzer and Yokoyama have shown that over this theory, BME₁ is equivalent to the totality of the Ackermann function.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Over $RCA_0 + B\Sigma_2$, BME_1 is equivalent to $P\Sigma_1$.

Kreuzer and Yokoyama have shown that over this theory, BME₁ is equivalent to the totality of the Ackermann function.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Over $RCA_0 + B\Sigma_2$, BME_1 is equivalent to $P\Sigma_1$.
- Kreuzer and Yokoyama have shown that over this theory, BME₁ is equivalent to the totality of the Ackermann function.

(ロ) (同) (三) (三) (三) (○) (○)

Theorem

1 There is a nontrivial Π_1^0 class with no pdominant members. 2 There is a Π_1^0 class with only pdominant members.

Proof.

(1). Construct a partial recursive function and let the Π_1^0 class be the collection of all its total extensions.

(2). There is a Π_1^0 class whose only nonrecursive member has complete Turing degree.

Theorem

There is a nontrivial Π⁰₁ class with no pdominant members.
There is a Π⁰₁ class with only pdominant members.

Proof.

(1). Construct a partial recursive function and let the Π_1^0 class be the collection of all its total extensions.

(日) (日) (日) (日) (日) (日) (日)

complete Turing degree.

Theorem

1 There is a nontrivial Π_1^0 class with no pdominant members.

2 There is a Π_1^0 class with only pdominant members.

Proof.

(1). Construct a partial recursive function and let the Π_1^0 class be the collection of all its total extensions.

(2). There is a Π_1^0 class whose only nonrecursive member has complete Turing degree.

Theorem

1 There is a nontrivial Π_1^0 class with no pdominant members.

2 There is a Π_1^0 class with only pdominant members.

Proof.

(1). Construct a partial recursive function and let the Π_1^0 class be the collection of all its total extensions.

(2). There is a Π_1^0 class whose only nonrecursive member has complete Turing degree.

A is 1-generic if it meets every partial recursive extension function.

A is weakly 2-generic if it meets every partial \emptyset' -recursive extension function.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem

- There is a 1-generic set that is pdominant.
- 2 No weakly 2-generic set is pdominant.

A is 1-generic if it meets every partial recursive extension function.

A is weakly 2-generic if it meets every partial \emptyset' -recursive extension function.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem

There is a 1-generic set that is pdominant.

2 No weakly 2-generic set is pdominant.

A is 1-generic if it meets every partial recursive extension function.

A is weakly 2-generic if it meets every partial \emptyset' -recursive extension function.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem

There is a 1-generic set that is pdominant.

2 No weakly 2-generic set is pdominant.

A is 1-generic if it meets every partial recursive extension function.

A is *weakly* 2-generic if it meets every partial \emptyset' -recursive extension function.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem

1 There is a 1-generic set that is pdominant.

2 No weakly 2-generic set is pdominant.

A is 1-generic if it meets every partial recursive extension function.

A is *weakly* 2-generic if it meets every partial \emptyset' -recursive extension function.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem

- **1** There is a 1-generic set that is pdominant.
 - 2 No weakly 2-generic set is pdominant.

A is 1-generic if it meets every partial recursive extension function.

A is *weakly* 2-generic if it meets every partial \emptyset' -recursive extension function.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem

- **1** There is a 1-generic set that is pdominant.
- 2 No weakly 2-generic set is pdominant.

Theorem

- There is a superlow pdominant set.
- There is a high r.e. set that is not pdominant.
- 3 No pdominant set is low for Martin-Löf random.

Note. $RCA_0 + B\Sigma_2 + "There is a low pdominant set" does not prove <math>\Sigma_2$ induction.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Theorem

- **1** There is a superlow pdominant set.
- 2 There is a high r.e. set that is not pdominant.
- 3 No pdominant set is low for Martin-Löf random.

Note. $RCA_0 + B\Sigma_2 + "There is a low pdominant set" does not prove <math>\Sigma_2$ induction.

Theorem

- **1** There is a superlow pdominant set.
- 2 There is a high r.e. set that is not pdominant.
 - 3 No pdominant set is low for Martin-Löf random.

Note. $RCA_0 + B\Sigma_2 + "There is a low pdominant set" does not prove <math>\Sigma_2$ induction.

Theorem

- **1** There is a superlow pdominant set.
- 2 There is a high r.e. set that is not pdominant.
- 3 No pdominant set is low for Martin-Löf random.

Note. $RCA_0 + B\Sigma_2 + "There is a low pdominant set" does not prove <math>\Sigma_2$ induction.

Theorem

- **1** There is a superlow pdominant set.
- 2 There is a high r.e. set that is not pdominant.
- 3 No pdominant set is low for Martin-Löf random.

Note. $RCA_0 + B\Sigma_2 + "There is a low pdominant set" does not prove <math>\Sigma_2$ induction.