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Basic definitions

Definition
I ⊆ P(ω) is an ideal on ω if

1 I is closed under subsets and finite unions.
2 Every finite subset of ω belongs to I.
3 ω < I.

In this talk I am primarily interested in I that are definable
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The P-ideals form a special class.

Definition
An ideal I on ω is called a P-ideal if I is countably directed mod finite. In
other words, if {an : n ∈ ω} ⊆ I, then there exists a ∈ I such that
∀n ∈ ω [an ⊆

∗ a].

Here a ⊆∗ b means a \ b is finite.

Being a P-ideal has a strong influence on the structure of an ideal I.

It also influences the possible definable complexity of I.
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P(ω) is a Polish space with the usual Cantor topology.

Sets of the form {X ⊆ ω : n ∈ X} and {X ⊆ ω : n < X} form a sub-basis.

We can talk about the complexity of I in the descriptive sense.

The simplest are the Fσ ideals.
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These have a characterization in terms of sub-measures:

Definition
A function φ : P(ω)→ [0,∞] is called a sub-measure if

1 φ(0) = 0 and φ({n}) < ∞, for every n ∈ ω;
2 X ⊆ Y =⇒ φ(X) ≤ φ(Y);
3 φ(X ∪ Y) ≤ φ(X) + φ(Y);

Definition
A sub-measure φ is lower semi-continuous (lsc) if for any X ⊆ ω,
φ(X) = limn→∞φ(X ∩ n).
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Fact (Mazur)
An ideal I on ω is Fσ iff I = Fin(φ) = {X ⊆ ω : φ(X) < ∞}.

Example
I 1

n
is the ideal of summable sets. That is

I 1
n

=

X ⊆ ω :
∑
n∈X

1
n
< ∞


I 1

n
is actually a P-ideal.

The sub-measure here is just φ(X) =
∑

n∈X
1
n .

Can replace 1
n by any divergent series (the ideals are quite different

though!).
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Example
ED is the ideal on ω × ω generated by the vertical columns and graphs of
functions. That is ED =

{X ⊆ ω × ω : ∃k, l ∈ ω∀n > k [|{m ∈ ω : 〈n,m〉 ∈ X}| ≤ l]}

This is an Fσ ideal which is not P.
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Moving up the complexity hierarchy, it turns out that every analytic
P-ideal is Fσδ.

So at least for P-ideals, there is nothing between Fσδ and Π1
1.

Theorem (Solecki)
Let I be an ideal on ω.

1 I is an analytic P-ideal iff there exists a lower semi-continuous
sub-measure φ such that I = Exh(φ) = {X ⊆ ω : limn→∞φ(X \ n) = 0}.

2 I is an Fσ P-ideal iff there exists a lower semi-continuous
sub-measure φ such that I = Fin(φ) = Exh(φ).

Exh(φ) is always an Fσδ P-ideal.
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Example

A set A ⊆ ω is said to have asymptotic density 0 if lim
n→∞

|A ∩ n|
n

= 0.

Z0 =

{
A ⊆ ω : lim

n→∞

|A ∩ n|
n

= 0
}
.

This an Fσδ P-ideal.

Suppose {an : n ∈ ω} ⊆ Z0.

WLOG they are pairwise disjoint.
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Let bn =
⋃

m≤nam and let kn be minimal such that for all k ≥ kn,
|bn ∩ k|

k ≤ 2−n.

Let a =
⋃

n∈ω(an \ kn).

This set a works.
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Three basic invariants

Cardinals invariants are cardinal between ℵ1 and c = 2ℵ0 .
They identify places where basic diagonalization arguments first fail.

Definition
For f , g ∈ ωω, f <∗ g means that |{n ∈ ω : g(n) ≤ f (n)}| < ω. A set F ⊆ ωω is
said to be unbounded if there does not exist g ∈ ωω such that
∀f ∈ F

[
f <∗ g

]
. A set F ⊆ ωω is said to be dominating or cofinal if

∀f ∈ ωω∃g ∈ F
[
f <∗ g

]
.

Definition
For a, b ∈ P(ω) we say that a splits b if both b ∩ a and b ∩ (ω \ a) are
infinite. A family F ⊆ P(ω) is called a splitting family if
∀b ∈ [ω]ω∃a ∈ F [a splits b].
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Definition
We define the cardinal invariants b, d, and s as follows:

b = min{|F| : F ⊆ ωω ∧ F is unbounded};

d = min{|F| : F ⊆ ωω ∧ F is dominating};

s = min{|F| : F ⊆ P(ω) ∧ F is a splitting family}.

Fact
ℵ1 ≤ max{b, s} ≤ d ≤ c.

This is all that can be proved in ZFC.
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We consider cardinal invariants associated with analytic P-ideals.

Two possibilities: invariants associated with the quotient P(ω)/I and
cardinals associated with I itself.

Former is similar to P(ω)/FIN.

The latter involves possibilities that don’t make sense for FIN
because FIN is not a tall ideal.

Definition
Recall that an ideal I on ω is tall if it has the property that
∀a ∈ [ω]ω∃b ∈ [a]ω [b ∈ I].
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When I is a tall P-ideal, we can define invariants associated with I
that don’t make sense for FIN.

There are many interesting open problems about invariants
associated with P(ω)/I (not our topic for today, but . . . ).

Definition
A family F ⊆ P(ω) is splitting for P(ω)/I 1

n
if

∀b ∈ I+
1
n
∃a ∈ F

[
b ∩ a ∈ I+

1
n
∧ b ∩ (ω \ a) ∈ I+

1
n

]
.

Definition
The analogue of s for P(ω)/I 1

n
is:

s 1
n

= min
{
|F| : F ⊆ P(ω) is splitting for P(ω)/I 1

n

}
.
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Theorem (Brendle)
It is consistent to have s 1

n
< s.

Question
Is s < s 1

n
consistent?

Question
Is h < h 1

n
consistent?
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Definition
When I is a tall P-ideal on ω you can define the following:

add∗(I) = min{|F | : F ⊆ I ∧ ∀b ∈ I∃a ∈ F
[
a 1∗ b

]
},

cov∗(I) = min{|F | : F ⊆ I ∧ ∀a ∈ [ω]ω∃b ∈ F [|a ∩ b| = ω]},

cof∗(I) = min{|F | : F ⊆ I ∧ ∀b ∈ I∃a ∈ F
[
b ⊆∗ a

]
},

non∗(I) = min{|F | : F ⊆ [ω]ω ∧ ∀b ∈ I∃a ∈ F [|a ∩ b| < ω]}.

If I were not a P-ideal, add∗(I) would be ω.

If I were not tall, then cov∗(I) would be undefined, and non∗(I)
would be 1.
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These invariants were investigated by Hernández-Hernández and
Hrušák [2] and also by Brendle and Shelah [1].
Terminology is based on analogy with the following definitions which
make sense for any ideal whatsoever.

Definition
Let I be any ideal on a set X. Define

add(I) = min
{
|F | : F ⊆ I ∧

⋃
F < I

}
,

cov(I) = min
{
|F | : F ⊆ I ∧

⋃
F = X

}
,

cof(I) = min {|F | : F ⊆ I ∧ ∀B ∈ I∃A ∈ F [B ⊆ A]} ,

non(I) = {|Y | : Y ⊆ X ∧ Y < I} .

add(I) and cof(I) are duals. So are cov(I) and non(I).
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For each a ∈ P(ω), let â = {b ⊆ ω : |a ∩ b| = ω}.

For each a ∈ P(ω), let â = {b ⊆ ω : |a ∩ b| = ω}.

For a tall ideal I, Î = {X ⊆ P(ω) : ∃a ∈ I [X ⊆ â]} is an ideal on P(ω)
generated by Borel sets.

I is a P-ideal iff Î is a σ-ideal.

add(Î) = add∗(I), cov(Î) = cov∗(I), cof(Î) = cof∗(I),
non(Î) = non∗(I) hold.
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For each a ∈ P(ω), let â = {b ⊆ ω : |a ∩ b| = ω}.
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The Tukey and the Katětov orderings are relevant to these invariants.

Definition
Let I and J be ideals on ω. Recall that I is Katětov below J or I ≤K J

if there is a function f : ω→ ω such that ∀a ∈ I
[
f −1(a) ∈ J

]
.

Definition
We say that 〈I,⊆∗〉 is Tukey below 〈J ,⊆∗〉 and we write I ≤∗T J if there is
a map ϕ : I → J such that if X ⊆ I any set that does not have an upper
bound in the partial order 〈I,⊆∗〉, then ϕ′′X does not have an upper bound
in the partial order 〈J ,⊆∗〉.

I ≤K J implies both that cov∗(I) ≥ cov∗(J) and that
non∗(I) ≤ non∗(J).
If I ≤∗T J , then add∗(I) ≥ add∗(J) and cof∗(I) ≤ cof∗(J).
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Summary of some known results:

Fact
Let I be a tall P-ideal on ω.

1 ℵ1 ≤ add∗(I) ≤ min{non∗(I), cov∗(I)} ≤ max{non∗(I), cov∗(I)} ≤
cof∗(I) ≤ c.

2 p ≤ cov∗(I).
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Theorem
The following hold:

1 add∗
(
I 1

n

)
= add(N).

2 (Todorcevic) For every analytic P-ideal I, 0 × FIN ≤∗T I ≤
∗
T I 1

n
.

Therefore add(N) ≤ add∗(I) ≤ b for all analytic P-ideals I. Here
0 × FIN is

{X ⊆ ω × ω : ∀n ∈ ω [{m ∈ ω : 〈n,m〉 ∈ X} is finite]}

3 (Fremlin) add∗(Z0) = add(N) and cof∗(Z0) = cof(N).
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Theorem (Hernández-Hernández and Hrušák)
min{cov(N), b} ≤ cov∗(Z0) ≤ max{b, non(N)} and
min{d, cov(N)} ≤ non∗(Z0) ≤ max{d, non(N)} hold.

Question ([2])
Is cov∗(Z0) ≤ d?
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This question also has a motivation coming from forcing theory.

Definition
Let V be any ground model and P ∈ V be a notion of forcing. Let I ∈ V be
an ideal on ω. We say that P diagonalizes V ∩ I if there exists Å ∈ VP
such that PÅ ∈ [ω]ω and for each X ∈ V ∩ I, P

∣∣∣X ∩ Å
∣∣∣ < ω.

Theorem (Laflamme [3])
Any Fσ ideal can be diagonalized by a proper ωω-bounding forcing.

Corollary
There is a model where cov∗(I) > d for every tall Fσ ideal I.

Dilip Raghavan Cardinal invariants of density



Analytic P-ideals
Cardinal invariants

The Results and Proofs
Questions

Bibliography

This question also has a motivation coming from forcing theory.

Definition
Let V be any ground model and P ∈ V be a notion of forcing. Let I ∈ V be
an ideal on ω. We say that P diagonalizes V ∩ I if there exists Å ∈ VP
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Question
Suppose I ∈ V is an Fσδ P-ideal. Does there exist a proper ωω-bounding
P ∈ V which diagonalizes V ∩ I? Is it consistent that cov∗(I) > d holds for
all tall Fσδ P-ideals I?

If you move one level up to Fσδσ ideals, then this totally fails.

The ideal FIN × FIN is an Fσδσ ideal and any P that diagonalizes it
must add a dominating real.
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The Results

Theorem (R. and Shelah [4])
cov∗(Z0) ≤ d.

Corollary
Let V be any ground model and let E ∈ V be a dominating family of
minimal size. If P ∈ V diagonalizes Z0 ∩ V, then E is no longer a
dominating family in VP.

Theorem (R.)
cov∗(Z0) ≤ max{b, s}.

The proof dualizes to give non∗(Z0) ≥ min{d, r}.

Dilip Raghavan Cardinal invariants of density



Analytic P-ideals
Cardinal invariants

The Results and Proofs
Questions

Bibliography

The Results

Theorem (R. and Shelah [4])
cov∗(Z0) ≤ d.

Corollary
Let V be any ground model and let E ∈ V be a dominating family of
minimal size. If P ∈ V diagonalizes Z0 ∩ V, then E is no longer a
dominating family in VP.

Theorem (R.)
cov∗(Z0) ≤ max{b, s}.

The proof dualizes to give non∗(Z0) ≥ min{d, r}.

Dilip Raghavan Cardinal invariants of density



Analytic P-ideals
Cardinal invariants

The Results and Proofs
Questions

Bibliography

Theorem (R.)
Let κ be any cardinal. Suppose there exists a function c : κ × ω × ω→ 2
such that for any set A ∈ [ω]ω and any partition 〈Xn : n ∈ ω〉 of κ into
countably many pieces, there exists n ∈ ω such that
∀σ ∈ 2n∃k ∈ A∃α ∈ Xn∀i < n [σ(i) = c(α, k, i)]. Then cov∗(Z0) ≤ max{b, κ}.

Claim
If κ = max{b, s}, then there exists a function c : κ × ω × ω→ 2 as in the
Theorem.
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Open Questions

Question
Is cov∗(Z0) ≤ b?

It is consistent to have cov∗(Z0) > s.

This is because Suslin c.c.c. posets (and their FS iterations) do not
increase s.

M(Z∗0) is Suslin c.c.c.

Question
Does add∗(I) = add(N) for all tall analytic P-ideals?
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