Cardinal invariants of density

Dilip Raghavan

National University of Singapore

Computability Theory and Foundations of Mathematics 2015, Tokyo Institute of Technology, Tokyo, Japan September 8, 2015

イロト イポト イヨト イヨト

2 Cardinal invariants

3 The Results and Proofs

Dilip Raghavan Cardinal invariants of density

イロト イロト イヨト イヨト

Basic definitions

Definition

- $I \subseteq \mathcal{P}(\omega)$ is an **ideal on** ω if
 - I is closed under subsets and finite unions.
 - 2 Every finite subset of ω belongs to I.
 - **③** ω∉Ι.
 - In this talk I am primarily interested in I that are definable

• The P-ideals form a special class.

Definition

An ideal I on ω is called a **P-ideal** if I is countably directed mod finite. In other words, if $\{a_n : n \in \omega\} \subseteq I$, then there exists $a \in I$ such that $\forall n \in \omega [a_n \subseteq^* a]$.

• Here $a \subseteq^* b$ means $a \setminus b$ is finite.

• The P-ideals form a special class.

Definition

An ideal *I* on ω is called a **P-ideal** if *I* is countably directed mod finite. In other words, if $\{a_n : n \in \omega\} \subseteq I$, then there exists $a \in I$ such that $\forall n \in \omega [a_n \subseteq^* a]$.

- Here $a \subseteq^* b$ means $a \setminus b$ is finite.
- Being a P-ideal has a strong influence on the structure of an ideal *I*.
- It also influences the possible definable complexity of *I*.

- $\mathcal{P}(\omega)$ is a Polish space with the usual Cantor topology.
- Sets of the form $\{X \subseteq \omega : n \in X\}$ and $\{X \subseteq \omega : n \notin X\}$ form a sub-basis.
- We can talk about the complexity of *I* in the descriptive sense.
- The simplest are the \mathcal{F}_{σ} ideals.

• These have a characterization in terms of sub-measures:

Definition

A function $\phi : \mathcal{P}(\omega) \to [0, \infty]$ is called a **sub-measure** if

1
$$\phi(0) = 0$$
 and $\phi(\{n\}) < \infty$, for every $n \in \omega$;

$$2 X \subseteq Y \implies \phi(X) \le \phi(Y);$$

Definition

A sub-measure ϕ is **lower semi-continuous (Isc)** if for any $X \subseteq \omega$, $\phi(X) = \lim_{n \to \infty} \phi(X \cap n)$.

イロト イロト イヨト イヨト

Fact (Mazur)

An ideal I on ω is F_{σ} iff $I = Fin(\phi) = \{X \subseteq \omega : \phi(X) < \infty\}.$

Example

 $I_{\frac{1}{n}}$ is the ideal of **summable sets**. That is

$$\mathcal{I}_{\frac{1}{n}} = \left\{ X \subseteq \omega : \sum_{n \in X} \frac{1}{n} < \infty \right\}$$

- $I_{\frac{1}{n}}$ is actually a P-ideal.
- The sub-measure here is just $\phi(X) = \sum_{n \in X} \frac{1}{n}$.
- Can replace $\frac{1}{n}$ by any divergent series (the ideals are quite different though!).

Example

 \mathcal{ED} is the ideal on $\omega\times\omega$ generated by the vertical columns and graphs of functions. That is \mathcal{ED} =

 $\{X \subseteq \omega \times \omega : \exists k, l \in \omega \forall n > k \left[|\{m \in \omega : \langle n, m \rangle \in X\}| \le l \right] \}$

• This is an F_{σ} ideal which is not P.

- Moving up the complexity hierarchy, it turns out that every analytic P-ideal is $F_{\sigma\delta}$.
- So at least for P-ideals, there is nothing between $F_{\sigma\delta}$ and Π_1^1 .

イロト イロト イヨト イヨト

- Moving up the complexity hierarchy, it turns out that every analytic P-ideal is $F_{\sigma\delta}$.
- So at least for P-ideals, there is nothing between $F_{\sigma\delta}$ and Π_1^1 .

Theorem (Solecki)

Let I be an ideal on ω .

- *I* is an analytic P-ideal iff there exists a lower semi-continuous sub-measure ϕ such that $I = \text{Exh}(\phi) = \{X \subseteq \omega : \lim_{n \to \infty} \phi(X \setminus n) = 0\}.$
- 2 *I* is an \mathcal{F}_{σ} P-ideal iff there exists a lower semi-continuous sub-measure ϕ such that $I = Fin(\phi) = Exh(\phi)$.

 $Exh(\phi)$ is always an $F_{\sigma\delta}$ P-ideal.

Example

A set $A \subseteq \omega$ is said to have **asymptotic density** 0 if $\lim_{n \to \infty} \frac{|A \cap n|}{n} = 0$.

$$\mathcal{Z}_0 = \left\{ A \subseteq \omega : \lim_{n \to \infty} \frac{|A \cap n|}{n} = 0 \right\}.$$

- This an $F_{\sigma\delta}$ P-ideal.
- Suppose $\{a_n : n \in \omega\} \subseteq \mathbb{Z}_0$.
- WLOG they are pairwise disjoint.

- Let $b_n = \bigcup_{m \le n} a_m$ and let k_n be minimal such that for all $k \ge k_n$, $\frac{|b_n \cap k|}{k} \le 2^{-n}$.
- Let $a = \bigcup_{n \in \omega} (a_n \setminus k_n)$.
- This set a works.

イロト イロト イヨト イヨト

Э.

Three basic invariants

- Cardinals invariants are cardinal between \aleph_1 and $\mathfrak{c} = 2^{\aleph_0}$.
- They identify places where basic diagonalization arguments first fail.

Three basic invariants

- Cardinals invariants are cardinal between \aleph_1 and $\mathfrak{c} = 2^{\aleph_0}$.
- They identify places where basic diagonalization arguments first fail.

Definition

For $f, g \in \omega^{\omega}$, $f <^{*} g$ means that $|\{n \in \omega : g(n) \leq f(n)\}| < \omega$. A set $F \subseteq \omega^{\omega}$ is said to be **unbounded** if there does not exist $g \in \omega^{\omega}$ such that $\forall f \in F [f <^{*} g]$. A set $F \subseteq \omega^{\omega}$ is said to be **dominating or cofinal** if $\forall f \in \omega^{\omega} \exists g \in F [f <^{*} g]$.

Three basic invariants

- Cardinals invariants are cardinal between \aleph_1 and $\mathfrak{c} = 2^{\aleph_0}$.
- They identify places where basic diagonalization arguments first fail.

Definition

For $f, g \in \omega^{\omega}$, $f <^{*} g$ means that $|\{n \in \omega : g(n) \leq f(n)\}| < \omega$. A set $F \subseteq \omega^{\omega}$ is said to be **unbounded** if there does not exist $g \in \omega^{\omega}$ such that $\forall f \in F [f <^{*} g]$. A set $F \subseteq \omega^{\omega}$ is said to be **dominating or cofinal** if $\forall f \in \omega^{\omega} \exists g \in F [f <^{*} g]$.

Definition

For $a, b \in \mathcal{P}(\omega)$ we say that a **splits** b if both $b \cap a$ and $b \cap (\omega \setminus a)$ are infinite. A family $F \subseteq \mathcal{P}(\omega)$ is called a **splitting family** if $\forall b \in [\omega]^{\omega} \exists a \in F [a \text{ splits } b].$

Definition

We define the cardinal invariants \mathfrak{b} , \mathfrak{d} , and \mathfrak{s} as follows:

 $b = \min\{|F| : F \subseteq \omega^{\omega} \land F \text{ is unbounded}\};$ $b = \min\{|F| : F \subseteq \omega^{\omega} \land F \text{ is dominating}\};$ $s = \min\{|F| : F \subseteq \mathcal{P}(\omega) \land F \text{ is a splitting family}\}.$

Fact

 $\aleph_1 \leq \max\{\mathfrak{b},\mathfrak{s}\} \leq \mathfrak{d} \leq \mathfrak{c}.$

• This is all that can be proved in ZFC.

- We consider cardinal invariants associated with analytic P-ideals.
- Two possibilities: invariants associated with the quotient $\mathcal{P}(\omega)/\mathcal{I}$ and cardinals associated with \mathcal{I} itself.
- Former is similar to $\mathcal{P}(\omega)/\text{FIN}$.
- The latter involves possibilities that don't make sense for FIN because FIN is not a tall ideal.

Definition

Recall that an ideal I on ω is **tall** if it has the property that $\forall a \in [\omega]^{\omega} \exists b \in [a]^{\omega} [b \in I].$

イロト イロト イヨト イヨト

- When *I* is a tall P-ideal, we can define invariants associated with *I* that don't make sense for FIN.
- There are many interesting open problems about invariants associated with $\mathcal{P}(\omega)/\mathcal{I}$ (not our topic for today, but ...).

イロト イポト イヨト イヨト

- When *I* is a tall P-ideal, we can define invariants associated with *I* that don't make sense for FIN.
- There are many interesting open problems about invariants associated with P(ω)/I (not our topic for today, but ...).

Definition

A family
$$F \subseteq \mathcal{P}(\omega)$$
 is splitting for $\mathcal{P}(\omega)/\mathcal{I}_{\frac{1}{n}}$ if
 $\forall b \in \mathcal{I}_{\frac{1}{n}}^+ \exists a \in F\left[b \cap a \in \mathcal{I}_{\frac{1}{n}}^+ \land b \cap (\omega \setminus a) \in \mathcal{I}_{\frac{1}{n}}^+\right].$

- When *I* is a tall P-ideal, we can define invariants associated with *I* that don't make sense for FIN.
- There are many interesting open problems about invariants associated with P(ω)/I (not our topic for today, but ...).

Definition

A family
$$F \subseteq \mathcal{P}(\omega)$$
 is **splitting for** $\mathcal{P}(\omega)/\mathcal{I}_{\frac{1}{n}}$ if
 $\forall b \in \mathcal{I}_{\frac{1}{n}}^+ \exists a \in F\left[b \cap a \in \mathcal{I}_{\frac{1}{n}}^+ \land b \cap (\omega \setminus a) \in \mathcal{I}_{\frac{1}{n}}^+\right].$

Definition

The analogue of
$$\mathfrak{s}$$
 for $\mathcal{P}(\omega)/\mathcal{I}_{\frac{1}{n}}$ is:
 $\mathfrak{s}_{\frac{1}{n}} = \min\left\{|F|: F \subseteq \mathcal{P}(\omega) \text{ is splitting for } \mathcal{P}(\omega)/\mathcal{I}_{\frac{1}{n}}\right\}$

Theorem (Brendle)

It is consistent to have $\mathfrak{s}_{\frac{1}{2}} < \mathfrak{s}$.

Question

Is $s < s_{\frac{1}{n}}$ consistent?

Question

Is $\mathfrak{h} < \mathfrak{h}_{\frac{1}{n}}$ consistent?

Dilip Raghavan Cardinal invariants of density

イロト イロト イヨト イヨト

Definition

When I is a tall P-ideal on ω you can define the following:

$$add^{*}(I) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq I \land \forall b \in I \exists a \in \mathcal{F} [a \notin b]\},\\ cov^{*}(I) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq I \land \forall a \in [\omega]^{\omega} \exists b \in \mathcal{F} [|a \cap b| = \omega]\},\\ cof^{*}(I) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq I \land \forall b \in I \exists a \in \mathcal{F} [b \subseteq^{*} a]\},\\ non^{*}(I) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq [\omega]^{\omega} \land \forall b \in I \exists a \in \mathcal{F} [|a \cap b| < \omega]\}.$$

イロト イロト イヨト イヨト

Э.

Definition

When I is a tall P-ideal on ω you can define the following:

$$add^{*}(I) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq I \land \forall b \in I \exists a \in \mathcal{F} [a \notin b]\},\\ cov^{*}(I) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq I \land \forall a \in [\omega]^{\omega} \exists b \in \mathcal{F} [|a \cap b| = \omega]\},\\ cof^{*}(I) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq I \land \forall b \in I \exists a \in \mathcal{F} [b \subseteq^{*} a]\},\\ non^{*}(I) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq [\omega]^{\omega} \land \forall b \in I \exists a \in \mathcal{F} [|a \cap b| < \omega]\}.$$

- If \mathcal{I} were not a P-ideal, $\mathrm{add}^*(\mathcal{I})$ would be ω .
- If *I* were not tall, then cov^{*}(*I*) would be undefined, and non^{*}(*I*) would be 1.

- These invariants were investigated by Hernández-Hernández and Hrušák [2] and also by Brendle and Shelah [1].
- Terminology is based on analogy with the following definitions which make sense for any ideal whatsoever.

Definition

Let I be any ideal on a set X. Define

$$\begin{aligned} &\operatorname{add}(I) = \min \left\{ |\mathcal{F}| : \mathcal{F} \subseteq I \land \bigcup \mathcal{F} \notin I \right\}, \\ &\operatorname{cov}(I) = \min \left\{ |\mathcal{F}| : \mathcal{F} \subseteq I \land \bigcup \mathcal{F} = X \right\}, \\ &\operatorname{cof}(I) = \min \left\{ |\mathcal{F}| : \mathcal{F} \subseteq I \land \forall B \in I \exists A \in \mathcal{F} [B \subseteq A] \right\}, \\ &\operatorname{non}(I) = \left\{ |Y| : Y \subseteq X \land Y \notin I \right\}. \end{aligned}$$

- These invariants were investigated by Hernández-Hernández and Hrušák [2] and also by Brendle and Shelah [1].
- Terminology is based on analogy with the following definitions which make sense for any ideal whatsoever.

Definition

Let I be any ideal on a set X. Define

$$\begin{aligned} &\operatorname{add}(I) = \min \left\{ |\mathcal{F}| : \mathcal{F} \subseteq I \land \bigcup \mathcal{F} \notin I \right\}, \\ &\operatorname{cov}(I) = \min \left\{ |\mathcal{F}| : \mathcal{F} \subseteq I \land \bigcup \mathcal{F} = X \right\}, \\ &\operatorname{cof}(I) = \min \left\{ |\mathcal{F}| : \mathcal{F} \subseteq I \land \forall B \in I \exists A \in \mathcal{F} \left[B \subseteq A \right] \right\}, \\ &\operatorname{non}(I) = \left\{ |Y| : Y \subseteq X \land Y \notin I \right\}. \end{aligned}$$

• add(I) and cof(I) are duals. So are cov(I) and non(I)

- For each $a \in \mathcal{P}(\omega)$, let $\hat{a} = \{b \subseteq \omega : |a \cap b| = \omega\}$.
- For each $a \in \mathcal{P}(\omega)$, let $\hat{a} = \{b \subseteq \omega : |a \cap b| = \omega\}$.
- For a tall ideal I, $\hat{I} = \{X \subseteq \mathcal{P}(\omega) : \exists a \in I \ [X \subseteq \hat{a}]\}\$ is an ideal on $\mathcal{P}(\omega)$ generated by Borel sets.

- For each $a \in \mathcal{P}(\omega)$, let $\hat{a} = \{b \subseteq \omega : |a \cap b| = \omega\}$.
- For each $a \in \mathcal{P}(\omega)$, let $\hat{a} = \{b \subseteq \omega : |a \cap b| = \omega\}$.
- For a tall ideal I, $\hat{I} = \{X \subseteq \mathcal{P}(\omega) : \exists a \in I \ [X \subseteq \hat{a}]\}$ is an ideal on $\mathcal{P}(\omega)$ generated by Borel sets.
- I is a P-ideal iff \hat{I} is a σ -ideal.
- $\operatorname{add}(\hat{I}) = \operatorname{add}^*(I), \operatorname{cov}(\hat{I}) = \operatorname{cov}^*(I), \operatorname{cof}(\hat{I}) = \operatorname{cof}^*(I), \operatorname{non}(\hat{I}) = \operatorname{non}^*(I)$ hold.

イロト イポト イヨト イヨト

• The Tukey and the Katětov orderings are relevant to these invariants.

Definition

Let I and \mathcal{J} be ideals on ω . Recall that I is **Katětov below** \mathcal{J} or $I \leq_K \mathcal{J}$ if there is a function $f : \omega \to \omega$ such that $\forall a \in I [f^{-1}(a) \in \mathcal{J}]$.

Definition

We say that $\langle I, \subseteq^* \rangle$ is **Tukey below** $\langle \mathcal{J}, \subseteq^* \rangle$ and we write $I \leq^*_T \mathcal{J}$ if there is a map $\varphi : I \to \mathcal{J}$ such that if $X \subseteq I$ any set that does not have an upper bound in the partial order $\langle I, \subseteq^* \rangle$, then $\varphi'' X$ does not have an upper bound in the partial order $\langle \mathcal{J}, \subseteq^* \rangle$.

イロト 不得 トイヨト イヨト

• The Tukey and the Katětov orderings are relevant to these invariants.

Definition

Let I and \mathcal{J} be ideals on ω . Recall that I is **Katětov below** \mathcal{J} or $I \leq_K \mathcal{J}$ if there is a function $f : \omega \to \omega$ such that $\forall a \in I [f^{-1}(a) \in \mathcal{J}]$.

Definition

We say that $\langle I, \subseteq^* \rangle$ is **Tukey below** $\langle \mathcal{J}, \subseteq^* \rangle$ and we write $I \leq^*_T \mathcal{J}$ if there is a map $\varphi : I \to \mathcal{J}$ such that if $X \subseteq I$ any set that does not have an upper bound in the partial order $\langle I, \subseteq^* \rangle$, then $\varphi'' X$ does not have an upper bound in the partial order $\langle \mathcal{J}, \subseteq^* \rangle$.

• $I \leq_K \mathcal{J}$ implies both that $\operatorname{cov}^*(I) \geq \operatorname{cov}^*(\mathcal{J})$ and that $\operatorname{non}^*(I) \leq \operatorname{non}^*(\mathcal{J})$.

• If $I \leq_T^* \mathcal{J}$, then $\operatorname{add}^*(I) \geq \operatorname{add}^*(\mathcal{J})$ and $\operatorname{cof}^*(I) \leq \operatorname{cof}^*(\mathcal{J})$.

• Summary of some known results:

Fact

Let I be a tall P-ideal on ω .

- $\mathfrak{p} \leq \operatorname{cov}^*(\mathcal{I}).$

A B > A B > A B >
 A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Theorem

The following hold:

•
$$\operatorname{add}^*\left(\mathcal{I}_{\frac{1}{n}}\right) = \operatorname{add}(\mathcal{N})$$

(Todorcevic) For every analytic P-ideal $I, 0 \times \text{FIN} \leq_T^* I \leq_T^* I_{\frac{1}{n}}$. Therefore $\text{add}(\mathcal{N}) \leq \text{add}^*(I) \leq \mathfrak{b}$ for all analytic P-ideals I. Here $0 \times \text{FIN}$ is

 $\{X \subseteq \omega \times \omega : \forall n \in \omega [\{m \in \omega : \langle n, m \rangle \in X\} \text{ is finite}]\}$

(Fremlin) $\operatorname{add}^*(\mathcal{Z}_0) = \operatorname{add}(\mathcal{N})$ and $\operatorname{cof}^*(\mathcal{Z}_0) = \operatorname{cof}(\mathcal{N})$.

Theorem (Hernández-Hernández and Hrušák)

 $\min\{\operatorname{cov}(\mathcal{N}), \mathfrak{b}\} \le \operatorname{cov}^*(\mathcal{Z}_0) \le \max\{\mathfrak{b}, \operatorname{non}(\mathcal{N})\} \text{ and } \\ \min\{\mathfrak{d}, \operatorname{cov}(\mathcal{N})\} \le \operatorname{non}^*(\mathcal{Z}_0) \le \max\{\mathfrak{d}, \operatorname{non}(\mathcal{N})\} \text{ hold.}$

Question ([2])

Is $\operatorname{cov}^*(\mathcal{Z}_0) \leq \mathfrak{d}$?

Dilip Raghavan Cardinal invariants of density

A B > A B > A B >
 A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

• This question also has a motivation coming from forcing theory.

Definition

Let **V** be any ground model and $\mathbb{P} \in \mathbf{V}$ be a notion of forcing. Let $I \in \mathbf{V}$ be an ideal on ω . We say that \mathbb{P} **diagonalizes** $\mathbf{V} \cap I$ if there exists $\mathring{A} \in \mathbf{V}^{\mathbb{P}}$ such that $\mathbb{H}_{\mathbb{P}}\mathring{A} \in [\omega]^{\omega}$ and for each $X \in \mathbf{V} \cap I$, $\mathbb{H}_{\mathbb{P}} |X \cap \mathring{A}| < \omega$.

ヘロト 人間 ト ヘヨト ヘヨト

• This question also has a motivation coming from forcing theory.

Definition

Let **V** be any ground model and $\mathbb{P} \in \mathbf{V}$ be a notion of forcing. Let $I \in \mathbf{V}$ be an ideal on ω . We say that \mathbb{P} **diagonalizes** $\mathbf{V} \cap I$ if there exists $\mathring{A} \in \mathbf{V}^{\mathbb{P}}$ such that $\mathbb{H}_{\mathbb{P}}\mathring{A} \in [\omega]^{\omega}$ and for each $X \in \mathbf{V} \cap I$, $\mathbb{H}_{\mathbb{P}} |X \cap \mathring{A}| < \omega$.

Theorem (Laflamme [3])

Any F_{σ} ideal can be diagonalized by a proper ω^{ω} -bounding forcing.

Corollary

There is a model where $cov^*(I) > \mathfrak{d}$ for every tall F_{σ} ideal I.

イロト イポト イヨト イヨト

Question

Suppose $I \in \mathbf{V}$ is an $F_{\sigma\delta}$ P-ideal. Does there exist a proper ω^{ω} -bounding $\mathbb{P} \in \mathbf{V}$ which diagonalizes $\mathbf{V} \cap I$? Is it consistent that $\operatorname{cov}^*(I) > \mathfrak{d}$ holds for all tall $F_{\sigma\delta}$ P-ideals I?

- If you move one level up to $F_{\sigma\delta\sigma}$ ideals, then this totally fails.
- The ideal FIN × FIN is an F_{σδσ} ideal and any ℙ that diagonalizes it must add a dominating real.

The Results

Theorem (R. and Shelah [4])

 $\operatorname{cov}^*(\mathcal{Z}_0) \leq \mathfrak{d}.$

Corollary

Let **V** be any ground model and let $E \in \mathbf{V}$ be a dominating family of minimal size. If $\mathbb{P} \in \mathbf{V}$ diagonalizes $\mathcal{Z}_0 \cap \mathbf{V}$, then *E* is no longer a dominating family in $\mathbf{V}^{\mathbb{P}}$.

A B > A B > A B >
 A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

The Results

Theorem (R. and Shelah [4])

 $\operatorname{cov}^*(\mathcal{Z}_0) \leq \mathfrak{d}.$

Corollary

Let **V** be any ground model and let $E \in \mathbf{V}$ be a dominating family of minimal size. If $\mathbb{P} \in \mathbf{V}$ diagonalizes $\mathcal{Z}_0 \cap \mathbf{V}$, then *E* is no longer a dominating family in $\mathbf{V}^{\mathbb{P}}$.

Theorem (R.)

 $\operatorname{cov}^*(\mathcal{Z}_0) \leq \max\{\mathfrak{b},\mathfrak{s}\}.$

• The proof dualizes to give $non^*(\mathbb{Z}_0) \ge min\{\mathfrak{d},\mathfrak{r}\}$.

Theorem (R.)

Let κ be any cardinal. Suppose there exists a function $c : \kappa \times \omega \times \omega \to 2$ such that for any set $A \in [\omega]^{\omega}$ and any partition $\langle X_n : n \in \omega \rangle$ of κ into countably many pieces, there exists $n \in \omega$ such that $\forall \sigma \in 2^n \exists k \in A \exists \alpha \in X_n \forall i < n [\sigma(i) = c(\alpha, k, i)]$. Then $\operatorname{cov}^*(\mathcal{Z}_0) \leq \max\{\mathfrak{b}, \kappa\}$.

Claim

If $\kappa = \max\{\mathfrak{b}, \mathfrak{s}\}$, then there exists a function $c : \kappa \times \omega \times \omega \to 2$ as in the Theorem.

イロト 不得 トイヨト イヨト

Open Questions

Question

Is $\operatorname{cov}^*(\mathcal{Z}_0) \leq \mathfrak{b}$?

Dilip Raghavan Cardinal invariants of density

イロト イロト イヨト イヨト

Э.

Open Questions

Question

Is $\operatorname{cov}^*(\mathcal{Z}_0) \leq \mathfrak{b}$?

- It is consistent to have $cov^*(\mathcal{Z}_0) > \mathfrak{s}$.
- This is because Suslin c.c.c. posets (and their FS iterations) do not increase s.
- $\mathbb{M}(\mathcal{Z}_0^*)$ is Suslin c.c.c.

イロト イタト イヨト イヨト

Open Questions

Question

Is $\operatorname{cov}^*(\mathcal{Z}_0) \leq \mathfrak{b}$?

- It is consistent to have $cov^*(\mathcal{Z}_0) > \mathfrak{s}$.
- This is because Suslin c.c.c. posets (and their FS iterations) do not increase s.
- $\mathbb{M}(\mathcal{Z}_0^*)$ is Suslin c.c.c.

Question

Does $add^*(I) = add(N)$ for all tall analytic P-ideals?

Bibliography

- J. Brendle and S. Shelah, Ultrafilters on ω—their ideals and their cardinal characteristics, Trans. Amer. Math. Soc. 351 (1999), no. 7, 2643–2674.
- F. Hernández-Hernández and M. Hrušák, *Cardinal invariants of analytic P-ideals*, Canad. J. Math. **59** (2007), no. 3, 575–595.
- C. Laflamme, *Zapping small filters*, Proc. Amer. Math. Soc. **114** (1992), no. 2, 535–544.
- D. Raghavan and S. Shelah, *Two inequalities between cardinal invariants*, Preprint (2015).