On the "finitary" infinite Ramsey's theorem

Florian Pelupessy

Tohoku University

CTFM, Tokyo, 8 September 2015

Overview:

- Motivation
- (2) "finitary" Ramsey
- **③** Inserting the parameter in "finitary" Ramsey
- Some logical strengths for different values

Motivation

Motivation

From the study of first order concrete mathematical incompleteness there is the phenomenon of the *phase transition*: Given some $T \nvDash \varphi$, examine the parametrised version φ_f . Classify parameter values f according to the provability of φ_f . Results in this programme follow certain heuristics.

Motivation

From the study of first order concrete mathematical incompleteness there is the phenomenon of the *phase transition*: Given some $T \nvDash \varphi$, examine the parametrised version φ_f . Classify parameter values f according to the provability of φ_f . Results in this programme follow certain heuristics. *Question:* Do we have something similar in Reverse Mathematics?

Remarks

Instead of unprovability we will examine equivalences.

Remarks

Instead of unprovability we will examine equivalences.

Theorems examined in reverse mathematics have no obvious parametrisation.

The "finitary" infinite Ramsey's theorem

The "finitary" pigeonhole principle was introduced by Tao, examined by Gaspar and Kohlenbach.

We examine the generalisation to Ramsey's theorem.

Definition (AS)

 $F: \{(\text{codes of}) \text{ finite sets}\} \to \mathbb{N} \text{ is asymptotically stable if for every sequence } X_1, X_2, \ldots \text{ of finite sets there is } i \text{ such that } F(X_i) = F(X_j) \text{ for all } j > i.$

Definition (AS)

 $F: \{(\text{codes of}) \text{ finite sets}\} \to \mathbb{N} \text{ is asymptotically stable if for every sequence } X_1, X_2, \ldots$ of finite sets there is *i* such that $F(X_i) = F(X_j)$ for all j > i.

Definition

$$IX]^d = set of d-element subsets of X$$

2
$$[a, b]^d = [\{a, \ldots, b\}]^d$$

Sor C: [X]^d → [0, c] a set H ⊆ X is C-homogeneous if C restricted to [H]^d is constant.

Definition (RT_d^k)

For every $C : \mathbb{N}^d \to [0, k]$ there exists infinite *C*-homogeneous $H \subseteq \mathbb{N}$.

Definition (RT_d^k)

For every $C : \mathbb{N}^d \to [0, k]$ there exists infinite *C*-homogeneous $H \subseteq \mathbb{N}$.

Definition (FRT_d^k)

For every $F \in AS$ there exists R such that for all

$$C\colon [0,R]^d\to [0,k]$$

there exists C-homogeneous H of size > F(H).

Definition (RT_d^k)

For every $C : \mathbb{N}^d \to [0, k]$ there exists infinite *C*-homogeneous $H \subseteq \mathbb{N}$.

Definition (FRT_d^k)

For every $F \in AS$ there exists R such that for all

```
C\colon [0,R]^d\to [0,k]
```

there exists C-homogeneous H of size > F(H).

Theorem WKL₀ \vdash FRT^k_d \leftrightarrow RT^k_d.

Inserting the parameter

Inserting the parameter:

We can use subsets of $\ensuremath{\mathrm{AS}}$ as parameter values:

Definition $(\operatorname{FRT}_d^k(G))$ For every $F \in G$ there exists R such that for all

 $C: [0, R]^d \rightarrow [0, k]$

there exists C-homogeneous H of size > F(H).

Some values:

Definition (CF)

Constant functions

Some values:

Definition (CF) Constant functions

Definition (UI)

 $\{F \in AS : \exists m \forall X.F(X) \le \max\{\min X, m\}\}$

Some values:

- Definition (CF) Constant functions
- Definition (UI) $\{F \in AS : \exists m \forall X.F(X) \le \max\{\min X, m\}\}$ Definition (MD) $\{F \in AS : \min X = \min Y \rightarrow F(X) = F(Y)\}$

Some logical strengths for different values

 ${\rm FRT}({\rm CF})$ is the finite Ramsey's theorem, which is known to be provable in ${\rm RCA}_0.$

 ${\rm FRT}({\rm CF})$ is the finite Ramsey's theorem, which is known to be provable in ${\rm RCA}_0.$

FRT(UI) is equivalent to the Paris–Harrington principle, which is known to be equivalent to 1- $Con(I\Sigma_d)$ when the dimension is fixed to d + 1.

Definition

- **1** WO(α) is the statement " α is well-founded".
- 2 $\omega_0 = 1$ and $\omega_{n+1} = \omega^{\omega_n}$.

Definition

1 WO(α) is the statement " α is well-founded".

2
$$\omega_0 = 1$$
 and $\omega_{n+1} = \omega^{\omega_n}$.

Theorem RCA₀ \vdash FRT_d(MD) \leftrightarrow WO(ω_d)

Summary

RCA_0 proves the following:				
FRT	\leftrightarrow	RT		
FRT_d^k	\leftarrow	RT_d^k for $(d > 2)$		
FRT_d^k	\rightarrow	RT_d^k		
FRT(MD)	\leftrightarrow	AR	\leftrightarrow	$WO(\varepsilon_0)$
$\operatorname{FRT}_{d+1}(\operatorname{MD})$	\leftrightarrow	AR_d	\leftrightarrow	$WO(\omega_{d+1})$
FRT(UI)	\leftrightarrow	1-consistency of PA		
$\operatorname{FRT}_{d+1}(\operatorname{UI})$	\leftrightarrow	1-consistency of $I\Sigma_d$		
FRT(CF)				

Furthermore, $WKL_0 \vdash RT_d^k \to FRT_d^k$.

Thank you for listening.

ペルペッシー フロリャン

florian.pelupessy@operamail.com pelupessy.github.io

